ElementwiseProduct#
- class pyspark.ml.feature.ElementwiseProduct(*, scalingVec=None, inputCol=None, outputCol=None)[source]#
Outputs the Hadamard product (i.e., the element-wise product) of each input vector with a provided “weight” vector. In other words, it scales each column of the dataset by a scalar multiplier.
New in version 1.5.0.
Examples
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([2.0, 1.0, 3.0]),)], ["values"]) >>> ep = ElementwiseProduct() >>> ep.setScalingVec(Vectors.dense([1.0, 2.0, 3.0])) ElementwiseProduct... >>> ep.setInputCol("values") ElementwiseProduct... >>> ep.setOutputCol("eprod") ElementwiseProduct... >>> ep.transform(df).head().eprod DenseVector([2.0, 2.0, 9.0]) >>> ep.setParams(scalingVec=Vectors.dense([2.0, 3.0, 5.0])).transform(df).head().eprod DenseVector([4.0, 3.0, 15.0]) >>> elementwiseProductPath = temp_path + "/elementwise-product" >>> ep.save(elementwiseProductPath) >>> loadedEp = ElementwiseProduct.load(elementwiseProductPath) >>> loadedEp.getScalingVec() == ep.getScalingVec() True >>> loadedEp.transform(df).take(1) == ep.transform(df).take(1) True
Methods
clear
(param)Clears a param from the param map if it has been explicitly set.
copy
([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam
(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap
([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Gets the value of inputCol or its default value.
getOrDefault
(param)Gets the value of a param in the user-supplied param map or its default value.
Gets the value of outputCol or its default value.
getParam
(paramName)Gets a param by its name.
Gets the value of scalingVec or its default value.
hasDefault
(param)Checks whether a param has a default value.
hasParam
(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined
(param)Checks whether a param is explicitly set by user or has a default value.
isSet
(param)Checks whether a param is explicitly set by user.
load
(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read
()Returns an MLReader instance for this class.
save
(path)Save this ML instance to the given path, a shortcut of 'write().save(path)'.
set
(param, value)Sets a parameter in the embedded param map.
setInputCol
(value)Sets the value of
inputCol
.setOutputCol
(value)Sets the value of
outputCol
.setParams
(self, \*[, scalingVec, inputCol, ...])Sets params for this ElementwiseProduct.
setScalingVec
(value)Sets the value of
scalingVec
.transform
(dataset[, params])Transforms the input dataset with optional parameters.
write
()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
Methods Documentation
- clear(param)#
Clears a param from the param map if it has been explicitly set.
- copy(extra=None)#
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
- extradict, optional
Extra parameters to copy to the new instance
- Returns
JavaParams
Copy of this instance
- explainParam(param)#
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams()#
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra=None)#
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
- getInputCol()#
Gets the value of inputCol or its default value.
- getOrDefault(param)#
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets the value of outputCol or its default value.
- getParam(paramName)#
Gets a param by its name.
- hasDefault(param)#
Checks whether a param has a default value.
- hasParam(paramName)#
Tests whether this instance contains a param with a given (string) name.
- isDefined(param)#
Checks whether a param is explicitly set by user or has a default value.
- isSet(param)#
Checks whether a param is explicitly set by user.
- classmethod load(path)#
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path)#
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param, value)#
Sets a parameter in the embedded param map.
- setParams(self, \*, scalingVec=None, inputCol=None, outputCol=None)[source]#
Sets params for this ElementwiseProduct.
New in version 1.5.0.
- setScalingVec(value)[source]#
Sets the value of
scalingVec
.New in version 2.0.0.
- transform(dataset, params=None)#
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
- dataset
pyspark.sql.DataFrame
input dataset
- paramsdict, optional
an optional param map that overrides embedded params.
- dataset
- Returns
pyspark.sql.DataFrame
transformed dataset
- write()#
Returns an MLWriter instance for this ML instance.
Attributes Documentation
- inputCol = Param(parent='undefined', name='inputCol', doc='input column name.')#
- outputCol = Param(parent='undefined', name='outputCol', doc='output column name.')#
- params#
Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
- scalingVec = Param(parent='undefined', name='scalingVec', doc='Vector for hadamard product.')#
- uid#
A unique id for the object.