pyspark.pandas.DataFrame.explode#
- DataFrame.explode(column, ignore_index=False)[source]#
- Transform each element of a list-like to a row, replicating index values. - Parameters
- columnstr or tuple
- Column to explode. 
- ignore_indexbool, default False
- If True, the resulting index will be labeled 0, 1, …, n - 1. 
 
- Returns
- DataFrame
- Exploded lists to rows of the subset columns; index will be duplicated for these rows. 
 
 - See also - DataFrame.unstack
- Pivot a level of the (necessarily hierarchical) index labels. 
- DataFrame.melt
- Unpivot a DataFrame from wide format to long format. 
 - Examples - >>> df = ps.DataFrame({'A': [[1, 2, 3], [], [3, 4]], 'B': 1}) >>> df A B 0 [1, 2, 3] 1 1 [] 1 2 [3, 4] 1 - >>> df.explode('A') A B 0 1.0 1 0 2.0 1 0 3.0 1 1 NaN 1 2 3.0 1 2 4.0 1 - >>> df.explode('A', ignore_index=True) A B 0 1.0 1 1 2.0 1 2 3.0 1 3 NaN 1 4 3.0 1 5 4.0 1