Back to Multiple platform build/check report for BioC 3.21:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2024-12-24 11:46 -0500 (Tue, 24 Dec 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_64R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences" 4754
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences" 4472
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" 4426
kjohnson3macOS 13.7.1 Venturaarm64R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" 4381
kunpeng2Linux (openEuler 22.03 LTS-SP1)aarch64R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences" 4373
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 245/2274HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.71.1  (landing page)
Ben Bolstad
Snapshot Date: 2024-12-23 13:40 -0500 (Mon, 23 Dec 2024)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 824836d
git_last_commit_date: 2024-12-14 17:47:34 -0500 (Sat, 14 Dec 2024)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 22.03 LTS-SP1) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on kunpeng2

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: BufferedMatrix
Version: 1.71.1
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.71.1.tar.gz
StartedAt: 2024-12-24 04:59:14 -0000 (Tue, 24 Dec 2024)
EndedAt: 2024-12-24 04:59:37 -0000 (Tue, 24 Dec 2024)
EllapsedTime: 23.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.71.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2024-11-24 r87369)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.71.1’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.5.0-devel_2024-11-24/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -shared -L/home/biocbuild/R/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/R/R/lib -lR
installing to /home/biocbuild/R/R-4.5.0-devel_2024-11-24/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.327   0.044   0.355 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478192 25.6    1046321 55.9   639882 34.2
Vcells 884352  6.8    8388608 64.0  2080652 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Dec 24 04:59:31 2024"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Dec 24 04:59:31 2024"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x3db93460>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Dec 24 04:59:32 2024"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Dec 24 04:59:32 2024"
> 
> ColMode(tmp2)
<pointer: 0x3db93460>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]       [,4]
[1,] 100.5350675 -1.7982371 -0.9758848  0.8687395
[2,]   0.2386293  0.7897031  0.7660186  1.0229768
[3,]   0.4172136  0.9925550 -0.1000993 -1.1543401
[4,]   0.5101493 -0.2889108  1.8040051  1.4647381
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]      [,4]
[1,] 100.5350675 1.7982371 0.9758848 0.8687395
[2,]   0.2386293 0.7897031 0.7660186 1.0229768
[3,]   0.4172136 0.9925550 0.1000993 1.1543401
[4,]   0.5101493 0.2889108 1.8040051 1.4647381
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]     [,4]
[1,] 10.0267177 1.3409836 0.9878688 0.932062
[2,]  0.4884970 0.8886524 0.8752249 1.011423
[3,]  0.6459208 0.9962705 0.3163848 1.074402
[4,]  0.7142474 0.5375042 1.3431326 1.210264
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.80224 40.20807 35.85457 35.18936
[2,]  30.12360 34.67623 34.51827 36.13721
[3,]  31.87642 35.95526 28.26395 36.89836
[4,]  32.65262 30.66395 40.23533 38.56737
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x3d9d8410>
> exp(tmp5)
<pointer: 0x3d9d8410>
> log(tmp5,2)
<pointer: 0x3d9d8410>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 469.9778
> Min(tmp5)
[1] 54.63143
> mean(tmp5)
[1] 73.94591
> Sum(tmp5)
[1] 14789.18
> Var(tmp5)
[1] 870.5918
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 92.56890 72.16409 70.40047 75.00187 70.96006 69.33061 73.79445 71.59359
 [9] 71.18769 72.45732
> rowSums(tmp5)
 [1] 1851.378 1443.282 1408.009 1500.037 1419.201 1386.612 1475.889 1431.872
 [9] 1423.754 1449.146
> rowVars(tmp5)
 [1] 7990.29798   95.40883   56.99047   82.79335   58.83587   99.89269
 [7]   67.40866   77.19126   68.27736   90.39476
> rowSd(tmp5)
 [1] 89.388467  9.767745  7.549203  9.099085  7.670454  9.994633  8.210278
 [8]  8.785856  8.263012  9.507616
> rowMax(tmp5)
 [1] 469.97779  94.25659  85.52266  88.45871  80.76655  91.28757  94.13688
 [8]  89.06968  85.48777  88.33580
> rowMin(tmp5)
 [1] 59.90059 57.40237 57.28991 61.38177 57.48738 54.63143 59.39941 57.37182
 [9] 55.10393 55.18215
> 
> colMeans(tmp5)
 [1] 107.93350  71.54923  71.07687  72.84982  72.87728  73.52133  72.53448
 [8]  72.91265  69.21889  76.11209  74.85864  67.71988  73.22557  69.32904
[15]  74.41323  71.31509  75.11379  72.81418  68.90959  70.63296
> colSums(tmp5)
 [1] 1079.3350  715.4923  710.7687  728.4982  728.7728  735.2133  725.3448
 [8]  729.1265  692.1889  761.1209  748.5864  677.1988  732.2557  693.2904
[15]  744.1323  713.1509  751.1379  728.1418  689.0959  706.3296
> colVars(tmp5)
 [1] 16214.70196    60.10706    72.17399    47.01654    63.09654    68.72396
 [7]   101.21268    81.04407   106.90815    55.61081   111.28446    77.40291
[13]   106.56406    73.82220    79.92868   109.35439    71.33898   200.46592
[19]    34.30624    59.90292
> colSd(tmp5)
 [1] 127.336962   7.752874   8.495528   6.856861   7.943333   8.289991
 [7]  10.060451   9.002448  10.339640   7.457265  10.549145   8.797892
[13]  10.322987   8.591985   8.940284  10.457265   8.446240  14.158599
[19]   5.857153   7.739698
> colMax(tmp5)
 [1] 469.97779  83.68784  83.74457  85.54868  89.06968  91.52783  82.96946
 [8]  88.19814  87.75527  89.19318  91.28757  80.71479  94.11347  85.73530
[15]  88.30569  87.88063  85.27865  94.25659  80.76655  79.22383
> colMin(tmp5)
 [1] 59.39941 57.37182 54.63143 63.29207 61.09977 62.53478 55.21402 60.45370
 [9] 55.27678 61.28540 60.68268 56.16243 63.15316 58.55559 60.45045 59.07085
[17] 57.28991 55.10393 60.24671 57.48738
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 92.56890 72.16409       NA 75.00187 70.96006 69.33061 73.79445 71.59359
 [9] 71.18769 72.45732
> rowSums(tmp5)
 [1] 1851.378 1443.282       NA 1500.037 1419.201 1386.612 1475.889 1431.872
 [9] 1423.754 1449.146
> rowVars(tmp5)
 [1] 7990.29798   95.40883   56.56605   82.79335   58.83587   99.89269
 [7]   67.40866   77.19126   68.27736   90.39476
> rowSd(tmp5)
 [1] 89.388467  9.767745  7.521040  9.099085  7.670454  9.994633  8.210278
 [8]  8.785856  8.263012  9.507616
> rowMax(tmp5)
 [1] 469.97779  94.25659        NA  88.45871  80.76655  91.28757  94.13688
 [8]  89.06968  85.48777  88.33580
> rowMin(tmp5)
 [1] 59.90059 57.40237       NA 61.38177 57.48738 54.63143 59.39941 57.37182
 [9] 55.10393 55.18215
> 
> colMeans(tmp5)
 [1] 107.93350  71.54923  71.07687  72.84982  72.87728  73.52133  72.53448
 [8]  72.91265  69.21889  76.11209  74.85864  67.71988  73.22557  69.32904
[15]  74.41323  71.31509  75.11379        NA  68.90959  70.63296
> colSums(tmp5)
 [1] 1079.3350  715.4923  710.7687  728.4982  728.7728  735.2133  725.3448
 [8]  729.1265  692.1889  761.1209  748.5864  677.1988  732.2557  693.2904
[15]  744.1323  713.1509  751.1379        NA  689.0959  706.3296
> colVars(tmp5)
 [1] 16214.70196    60.10706    72.17399    47.01654    63.09654    68.72396
 [7]   101.21268    81.04407   106.90815    55.61081   111.28446    77.40291
[13]   106.56406    73.82220    79.92868   109.35439    71.33898          NA
[19]    34.30624    59.90292
> colSd(tmp5)
 [1] 127.336962   7.752874   8.495528   6.856861   7.943333   8.289991
 [7]  10.060451   9.002448  10.339640   7.457265  10.549145   8.797892
[13]  10.322987   8.591985   8.940284  10.457265   8.446240         NA
[19]   5.857153   7.739698
> colMax(tmp5)
 [1] 469.97779  83.68784  83.74457  85.54868  89.06968  91.52783  82.96946
 [8]  88.19814  87.75527  89.19318  91.28757  80.71479  94.11347  85.73530
[15]  88.30569  87.88063  85.27865        NA  80.76655  79.22383
> colMin(tmp5)
 [1] 59.39941 57.37182 54.63143 63.29207 61.09977 62.53478 55.21402 60.45370
 [9] 55.27678 61.28540 60.68268 56.16243 63.15316 58.55559 60.45045 59.07085
[17] 57.28991       NA 60.24671 57.48738
> 
> Max(tmp5,na.rm=TRUE)
[1] 469.9778
> Min(tmp5,na.rm=TRUE)
[1] 54.63143
> mean(tmp5,na.rm=TRUE)
[1] 73.92435
> Sum(tmp5,na.rm=TRUE)
[1] 14710.94
> Var(tmp5,na.rm=TRUE)
[1] 874.8953
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.56890 72.16409 69.98806 75.00187 70.96006 69.33061 73.79445 71.59359
 [9] 71.18769 72.45732
> rowSums(tmp5,na.rm=TRUE)
 [1] 1851.378 1443.282 1329.773 1500.037 1419.201 1386.612 1475.889 1431.872
 [9] 1423.754 1449.146
> rowVars(tmp5,na.rm=TRUE)
 [1] 7990.29798   95.40883   56.56605   82.79335   58.83587   99.89269
 [7]   67.40866   77.19126   68.27736   90.39476
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.388467  9.767745  7.521040  9.099085  7.670454  9.994633  8.210278
 [8]  8.785856  8.263012  9.507616
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.97779  94.25659  85.52266  88.45871  80.76655  91.28757  94.13688
 [8]  89.06968  85.48777  88.33580
> rowMin(tmp5,na.rm=TRUE)
 [1] 59.90059 57.40237 57.28991 61.38177 57.48738 54.63143 59.39941 57.37182
 [9] 55.10393 55.18215
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 107.93350  71.54923  71.07687  72.84982  72.87728  73.52133  72.53448
 [8]  72.91265  69.21889  76.11209  74.85864  67.71988  73.22557  69.32904
[15]  74.41323  71.31509  75.11379  72.21173  68.90959  70.63296
> colSums(tmp5,na.rm=TRUE)
 [1] 1079.3350  715.4923  710.7687  728.4982  728.7728  735.2133  725.3448
 [8]  729.1265  692.1889  761.1209  748.5864  677.1988  732.2557  693.2904
[15]  744.1323  713.1509  751.1379  649.9056  689.0959  706.3296
> colVars(tmp5,na.rm=TRUE)
 [1] 16214.70196    60.10706    72.17399    47.01654    63.09654    68.72396
 [7]   101.21268    81.04407   106.90815    55.61081   111.28446    77.40291
[13]   106.56406    73.82220    79.92868   109.35439    71.33898   221.44106
[19]    34.30624    59.90292
> colSd(tmp5,na.rm=TRUE)
 [1] 127.336962   7.752874   8.495528   6.856861   7.943333   8.289991
 [7]  10.060451   9.002448  10.339640   7.457265  10.549145   8.797892
[13]  10.322987   8.591985   8.940284  10.457265   8.446240  14.880896
[19]   5.857153   7.739698
> colMax(tmp5,na.rm=TRUE)
 [1] 469.97779  83.68784  83.74457  85.54868  89.06968  91.52783  82.96946
 [8]  88.19814  87.75527  89.19318  91.28757  80.71479  94.11347  85.73530
[15]  88.30569  87.88063  85.27865  94.25659  80.76655  79.22383
> colMin(tmp5,na.rm=TRUE)
 [1] 59.39941 57.37182 54.63143 63.29207 61.09977 62.53478 55.21402 60.45370
 [9] 55.27678 61.28540 60.68268 56.16243 63.15316 58.55559 60.45045 59.07085
[17] 57.28991 55.10393 60.24671 57.48738
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.56890 72.16409      NaN 75.00187 70.96006 69.33061 73.79445 71.59359
 [9] 71.18769 72.45732
> rowSums(tmp5,na.rm=TRUE)
 [1] 1851.378 1443.282    0.000 1500.037 1419.201 1386.612 1475.889 1431.872
 [9] 1423.754 1449.146
> rowVars(tmp5,na.rm=TRUE)
 [1] 7990.29798   95.40883         NA   82.79335   58.83587   99.89269
 [7]   67.40866   77.19126   68.27736   90.39476
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.388467  9.767745        NA  9.099085  7.670454  9.994633  8.210278
 [8]  8.785856  8.263012  9.507616
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.97779  94.25659        NA  88.45871  80.76655  91.28757  94.13688
 [8]  89.06968  85.48777  88.33580
> rowMin(tmp5,na.rm=TRUE)
 [1] 59.90059 57.40237       NA 61.38177 57.48738 54.63143 59.39941 57.37182
 [9] 55.10393 55.18215
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.55427  71.18401  72.43789  72.41101  72.73246  73.51046  72.81844
 [8]  72.75070  68.48223  77.75950  74.65875  68.74291  73.73860  68.89848
[15]  75.10293  69.73647  77.09422       NaN  69.56734  70.40445
> colSums(tmp5,na.rm=TRUE)
 [1] 1012.9884  640.6561  651.9410  651.6990  654.5922  661.5942  655.3660
 [8]  654.7563  616.3401  699.8355  671.9288  618.6862  663.6474  620.0863
[15]  675.9263  627.6282  693.8480    0.0000  626.1060  633.6401
> colVars(tmp5,na.rm=TRUE)
 [1] 18001.33544    66.11990    60.35655    50.72737    70.74769    77.31313
 [7]   112.95716    90.87950   114.16671    32.03008   124.74550    75.30412
[13]   116.92355    80.96448    84.56842    94.98825    36.13262          NA
[19]    33.72750    66.80337
> colSd(tmp5,na.rm=TRUE)
 [1] 134.169055   8.131414   7.768948   7.122315   8.411165   8.792788
 [7]  10.628131   9.533074  10.684882   5.659513  11.168953   8.677795
[13]  10.813119   8.998026   9.196109   9.746192   6.011041         NA
[19]   5.807538   8.173333
> colMax(tmp5,na.rm=TRUE)
 [1] 469.97779  83.68784  83.74457  85.54868  89.06968  91.52783  82.96946
 [8]  88.19814  87.75527  89.19318  91.28757  80.71479  94.11347  85.73530
[15]  88.30569  87.88063  85.27865      -Inf  80.76655  79.22383
> colMin(tmp5,na.rm=TRUE)
 [1] 59.39941 57.37182 54.63143 63.29207 61.09977 62.53478 55.21402 60.45370
 [9] 55.27678 67.83834 60.68268 56.16243 63.15316 58.55559 60.45045 59.07085
[17] 67.27867      Inf 60.24671 57.48738
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 347.4427 198.9343 149.8771 229.2580 308.9698 164.7311 170.8852 164.4380
 [9] 201.3702 202.0140
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 347.4427 198.9343 149.8771 229.2580 308.9698 164.7311 170.8852 164.4380
 [9] 201.3702 202.0140
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  5.684342e-14  0.000000e+00 -1.421085e-13  0.000000e+00 -8.526513e-14
 [6]  5.684342e-14 -1.421085e-13 -2.842171e-14 -2.273737e-13 -1.705303e-13
[11]  5.684342e-14  5.684342e-14  9.947598e-14  1.136868e-13  7.105427e-14
[16]  0.000000e+00 -2.273737e-13  0.000000e+00  0.000000e+00  2.842171e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
10   12 
10   7 
8   15 
2   13 
10   14 
6   14 
8   11 
5   3 
9   15 
2   6 
6   6 
7   9 
2   16 
9   1 
8   20 
7   3 
7   16 
8   10 
5   2 
7   2 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 1.984475
> Min(tmp)
[1] -2.174878
> mean(tmp)
[1] -0.01827448
> Sum(tmp)
[1] -1.827448
> Var(tmp)
[1] 0.7646035
> 
> rowMeans(tmp)
[1] -0.01827448
> rowSums(tmp)
[1] -1.827448
> rowVars(tmp)
[1] 0.7646035
> rowSd(tmp)
[1] 0.8744161
> rowMax(tmp)
[1] 1.984475
> rowMin(tmp)
[1] -2.174878
> 
> colMeans(tmp)
  [1] -0.91334769  1.54313581  0.03682403  1.53167145  1.01759580  1.47616839
  [7] -0.02644543  0.11446140 -0.04086321 -0.02502901 -0.07598935  1.13900013
 [13] -0.28449811  1.29109862  0.07551402 -0.19611133  0.35137468  0.38067982
 [19]  0.48861331  0.63417247 -2.17487772 -0.19257559  0.83670037 -0.10625524
 [25]  0.40517715  0.51800584  0.20020842 -0.50579122  0.10274452 -1.86504762
 [31] -1.72269224 -0.57745869 -0.68255630  1.63591611  0.29615240 -0.37951571
 [37]  0.49783108  0.21539734  0.58332289 -0.51142160 -0.36770817 -0.95790050
 [43] -0.15767903  0.72976838 -2.04683480 -0.20760041  0.32883713  0.27856228
 [49]  0.51124483  0.31589049 -1.04406299 -0.49429814  0.12752157  0.63376948
 [55] -0.46086382 -0.08554652  0.13063820  0.42077941 -0.81276119 -1.28152029
 [61] -0.47981770 -0.91458112  1.98447508 -0.78698685 -0.21247203  0.48977188
 [67] -0.24078617  1.05906462  0.11248784  0.67080270  0.03450268 -0.73429743
 [73] -1.99557100  0.17172361  1.08655596  0.21994864 -0.17457147  0.18195690
 [79] -0.19907178 -0.49464398  1.26627097 -0.05263479 -1.17785250 -0.41523599
 [85]  0.06395410 -0.06515462 -0.73250889 -0.72622321  1.04875236 -1.88457154
 [91] -1.20284210  0.47446666  1.65732509  0.39396294 -1.53488623 -0.18599267
 [97]  1.34824412  0.95375053 -1.59137890  0.10509087
> colSums(tmp)
  [1] -0.91334769  1.54313581  0.03682403  1.53167145  1.01759580  1.47616839
  [7] -0.02644543  0.11446140 -0.04086321 -0.02502901 -0.07598935  1.13900013
 [13] -0.28449811  1.29109862  0.07551402 -0.19611133  0.35137468  0.38067982
 [19]  0.48861331  0.63417247 -2.17487772 -0.19257559  0.83670037 -0.10625524
 [25]  0.40517715  0.51800584  0.20020842 -0.50579122  0.10274452 -1.86504762
 [31] -1.72269224 -0.57745869 -0.68255630  1.63591611  0.29615240 -0.37951571
 [37]  0.49783108  0.21539734  0.58332289 -0.51142160 -0.36770817 -0.95790050
 [43] -0.15767903  0.72976838 -2.04683480 -0.20760041  0.32883713  0.27856228
 [49]  0.51124483  0.31589049 -1.04406299 -0.49429814  0.12752157  0.63376948
 [55] -0.46086382 -0.08554652  0.13063820  0.42077941 -0.81276119 -1.28152029
 [61] -0.47981770 -0.91458112  1.98447508 -0.78698685 -0.21247203  0.48977188
 [67] -0.24078617  1.05906462  0.11248784  0.67080270  0.03450268 -0.73429743
 [73] -1.99557100  0.17172361  1.08655596  0.21994864 -0.17457147  0.18195690
 [79] -0.19907178 -0.49464398  1.26627097 -0.05263479 -1.17785250 -0.41523599
 [85]  0.06395410 -0.06515462 -0.73250889 -0.72622321  1.04875236 -1.88457154
 [91] -1.20284210  0.47446666  1.65732509  0.39396294 -1.53488623 -0.18599267
 [97]  1.34824412  0.95375053 -1.59137890  0.10509087
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.91334769  1.54313581  0.03682403  1.53167145  1.01759580  1.47616839
  [7] -0.02644543  0.11446140 -0.04086321 -0.02502901 -0.07598935  1.13900013
 [13] -0.28449811  1.29109862  0.07551402 -0.19611133  0.35137468  0.38067982
 [19]  0.48861331  0.63417247 -2.17487772 -0.19257559  0.83670037 -0.10625524
 [25]  0.40517715  0.51800584  0.20020842 -0.50579122  0.10274452 -1.86504762
 [31] -1.72269224 -0.57745869 -0.68255630  1.63591611  0.29615240 -0.37951571
 [37]  0.49783108  0.21539734  0.58332289 -0.51142160 -0.36770817 -0.95790050
 [43] -0.15767903  0.72976838 -2.04683480 -0.20760041  0.32883713  0.27856228
 [49]  0.51124483  0.31589049 -1.04406299 -0.49429814  0.12752157  0.63376948
 [55] -0.46086382 -0.08554652  0.13063820  0.42077941 -0.81276119 -1.28152029
 [61] -0.47981770 -0.91458112  1.98447508 -0.78698685 -0.21247203  0.48977188
 [67] -0.24078617  1.05906462  0.11248784  0.67080270  0.03450268 -0.73429743
 [73] -1.99557100  0.17172361  1.08655596  0.21994864 -0.17457147  0.18195690
 [79] -0.19907178 -0.49464398  1.26627097 -0.05263479 -1.17785250 -0.41523599
 [85]  0.06395410 -0.06515462 -0.73250889 -0.72622321  1.04875236 -1.88457154
 [91] -1.20284210  0.47446666  1.65732509  0.39396294 -1.53488623 -0.18599267
 [97]  1.34824412  0.95375053 -1.59137890  0.10509087
> colMin(tmp)
  [1] -0.91334769  1.54313581  0.03682403  1.53167145  1.01759580  1.47616839
  [7] -0.02644543  0.11446140 -0.04086321 -0.02502901 -0.07598935  1.13900013
 [13] -0.28449811  1.29109862  0.07551402 -0.19611133  0.35137468  0.38067982
 [19]  0.48861331  0.63417247 -2.17487772 -0.19257559  0.83670037 -0.10625524
 [25]  0.40517715  0.51800584  0.20020842 -0.50579122  0.10274452 -1.86504762
 [31] -1.72269224 -0.57745869 -0.68255630  1.63591611  0.29615240 -0.37951571
 [37]  0.49783108  0.21539734  0.58332289 -0.51142160 -0.36770817 -0.95790050
 [43] -0.15767903  0.72976838 -2.04683480 -0.20760041  0.32883713  0.27856228
 [49]  0.51124483  0.31589049 -1.04406299 -0.49429814  0.12752157  0.63376948
 [55] -0.46086382 -0.08554652  0.13063820  0.42077941 -0.81276119 -1.28152029
 [61] -0.47981770 -0.91458112  1.98447508 -0.78698685 -0.21247203  0.48977188
 [67] -0.24078617  1.05906462  0.11248784  0.67080270  0.03450268 -0.73429743
 [73] -1.99557100  0.17172361  1.08655596  0.21994864 -0.17457147  0.18195690
 [79] -0.19907178 -0.49464398  1.26627097 -0.05263479 -1.17785250 -0.41523599
 [85]  0.06395410 -0.06515462 -0.73250889 -0.72622321  1.04875236 -1.88457154
 [91] -1.20284210  0.47446666  1.65732509  0.39396294 -1.53488623 -0.18599267
 [97]  1.34824412  0.95375053 -1.59137890  0.10509087
> colMedians(tmp)
  [1] -0.91334769  1.54313581  0.03682403  1.53167145  1.01759580  1.47616839
  [7] -0.02644543  0.11446140 -0.04086321 -0.02502901 -0.07598935  1.13900013
 [13] -0.28449811  1.29109862  0.07551402 -0.19611133  0.35137468  0.38067982
 [19]  0.48861331  0.63417247 -2.17487772 -0.19257559  0.83670037 -0.10625524
 [25]  0.40517715  0.51800584  0.20020842 -0.50579122  0.10274452 -1.86504762
 [31] -1.72269224 -0.57745869 -0.68255630  1.63591611  0.29615240 -0.37951571
 [37]  0.49783108  0.21539734  0.58332289 -0.51142160 -0.36770817 -0.95790050
 [43] -0.15767903  0.72976838 -2.04683480 -0.20760041  0.32883713  0.27856228
 [49]  0.51124483  0.31589049 -1.04406299 -0.49429814  0.12752157  0.63376948
 [55] -0.46086382 -0.08554652  0.13063820  0.42077941 -0.81276119 -1.28152029
 [61] -0.47981770 -0.91458112  1.98447508 -0.78698685 -0.21247203  0.48977188
 [67] -0.24078617  1.05906462  0.11248784  0.67080270  0.03450268 -0.73429743
 [73] -1.99557100  0.17172361  1.08655596  0.21994864 -0.17457147  0.18195690
 [79] -0.19907178 -0.49464398  1.26627097 -0.05263479 -1.17785250 -0.41523599
 [85]  0.06395410 -0.06515462 -0.73250889 -0.72622321  1.04875236 -1.88457154
 [91] -1.20284210  0.47446666  1.65732509  0.39396294 -1.53488623 -0.18599267
 [97]  1.34824412  0.95375053 -1.59137890  0.10509087
> colRanges(tmp)
           [,1]     [,2]       [,3]     [,4]     [,5]     [,6]        [,7]
[1,] -0.9133477 1.543136 0.03682403 1.531671 1.017596 1.476168 -0.02644543
[2,] -0.9133477 1.543136 0.03682403 1.531671 1.017596 1.476168 -0.02644543
          [,8]        [,9]       [,10]       [,11] [,12]      [,13]    [,14]
[1,] 0.1144614 -0.04086321 -0.02502901 -0.07598935 1.139 -0.2844981 1.291099
[2,] 0.1144614 -0.04086321 -0.02502901 -0.07598935 1.139 -0.2844981 1.291099
          [,15]      [,16]     [,17]     [,18]     [,19]     [,20]     [,21]
[1,] 0.07551402 -0.1961113 0.3513747 0.3806798 0.4886133 0.6341725 -2.174878
[2,] 0.07551402 -0.1961113 0.3513747 0.3806798 0.4886133 0.6341725 -2.174878
          [,22]     [,23]      [,24]     [,25]     [,26]     [,27]      [,28]
[1,] -0.1925756 0.8367004 -0.1062552 0.4051771 0.5180058 0.2002084 -0.5057912
[2,] -0.1925756 0.8367004 -0.1062552 0.4051771 0.5180058 0.2002084 -0.5057912
         [,29]     [,30]     [,31]      [,32]      [,33]    [,34]     [,35]
[1,] 0.1027445 -1.865048 -1.722692 -0.5774587 -0.6825563 1.635916 0.2961524
[2,] 0.1027445 -1.865048 -1.722692 -0.5774587 -0.6825563 1.635916 0.2961524
          [,36]     [,37]     [,38]     [,39]      [,40]      [,41]      [,42]
[1,] -0.3795157 0.4978311 0.2153973 0.5833229 -0.5114216 -0.3677082 -0.9579005
[2,] -0.3795157 0.4978311 0.2153973 0.5833229 -0.5114216 -0.3677082 -0.9579005
         [,43]     [,44]     [,45]      [,46]     [,47]     [,48]     [,49]
[1,] -0.157679 0.7297684 -2.046835 -0.2076004 0.3288371 0.2785623 0.5112448
[2,] -0.157679 0.7297684 -2.046835 -0.2076004 0.3288371 0.2785623 0.5112448
         [,50]     [,51]      [,52]     [,53]     [,54]      [,55]       [,56]
[1,] 0.3158905 -1.044063 -0.4942981 0.1275216 0.6337695 -0.4608638 -0.08554652
[2,] 0.3158905 -1.044063 -0.4942981 0.1275216 0.6337695 -0.4608638 -0.08554652
         [,57]     [,58]      [,59]    [,60]      [,61]      [,62]    [,63]
[1,] 0.1306382 0.4207794 -0.8127612 -1.28152 -0.4798177 -0.9145811 1.984475
[2,] 0.1306382 0.4207794 -0.8127612 -1.28152 -0.4798177 -0.9145811 1.984475
          [,64]     [,65]     [,66]      [,67]    [,68]     [,69]     [,70]
[1,] -0.7869869 -0.212472 0.4897719 -0.2407862 1.059065 0.1124878 0.6708027
[2,] -0.7869869 -0.212472 0.4897719 -0.2407862 1.059065 0.1124878 0.6708027
          [,71]      [,72]     [,73]     [,74]    [,75]     [,76]      [,77]
[1,] 0.03450268 -0.7342974 -1.995571 0.1717236 1.086556 0.2199486 -0.1745715
[2,] 0.03450268 -0.7342974 -1.995571 0.1717236 1.086556 0.2199486 -0.1745715
         [,78]      [,79]     [,80]    [,81]       [,82]     [,83]     [,84]
[1,] 0.1819569 -0.1990718 -0.494644 1.266271 -0.05263479 -1.177853 -0.415236
[2,] 0.1819569 -0.1990718 -0.494644 1.266271 -0.05263479 -1.177853 -0.415236
         [,85]       [,86]      [,87]      [,88]    [,89]     [,90]     [,91]
[1,] 0.0639541 -0.06515462 -0.7325089 -0.7262232 1.048752 -1.884572 -1.202842
[2,] 0.0639541 -0.06515462 -0.7325089 -0.7262232 1.048752 -1.884572 -1.202842
         [,92]    [,93]     [,94]     [,95]      [,96]    [,97]     [,98]
[1,] 0.4744667 1.657325 0.3939629 -1.534886 -0.1859927 1.348244 0.9537505
[2,] 0.4744667 1.657325 0.3939629 -1.534886 -0.1859927 1.348244 0.9537505
         [,99]    [,100]
[1,] -1.591379 0.1050909
[2,] -1.591379 0.1050909
> 
> 
> Max(tmp2)
[1] 2.441447
> Min(tmp2)
[1] -2.887542
> mean(tmp2)
[1] 0.02700643
> Sum(tmp2)
[1] 2.700643
> Var(tmp2)
[1] 1.091268
> 
> rowMeans(tmp2)
  [1]  0.44795154 -1.01401226  0.03104677  0.92500512 -0.04498879  0.16717945
  [7]  0.24739073  0.21437481  0.18556515  0.82357838 -0.22425527 -0.70959487
 [13]  0.02637858  0.34532609 -1.00311759 -0.07169367  1.01620700  1.03679147
 [19] -1.66028030 -1.06374330  0.84681260  0.59461706  1.47003248  0.05869409
 [25] -0.67311509  1.03625223 -0.31687606 -0.94071355 -0.26301352 -2.37527001
 [31] -0.74363044 -0.41540953  0.69293315  1.14280791  0.40018719  0.94831415
 [37] -0.53207783 -1.32874897 -0.63215173 -0.25015177  1.67804576  2.44144687
 [43]  2.35328724  0.84568638  0.28397145 -1.40161724 -1.99405162  0.50444057
 [49] -0.42936337  0.05515716 -0.73309822  0.27179875  0.95630099 -0.58549769
 [55] -1.12876946  0.39707994 -0.07884614  0.44145081 -1.04587598 -0.22986195
 [61] -0.98078085 -0.91497973  0.29882683 -0.17186124 -0.73242597  0.83582157
 [67]  0.35696493  0.32009262  1.34970112 -0.22811405  0.54988808  0.43157375
 [73] -0.34608998  0.85554851  1.25982429  0.87017268 -0.83604397 -2.51547291
 [79]  0.38120308  0.47681628 -1.74108466  0.25906934  0.70175434  1.78976975
 [85]  0.77815994  0.40476864 -0.62263590  0.02986080  1.68883771 -0.46756940
 [91]  1.81338449 -2.06493401  1.53275792 -1.53667007 -2.88754184  1.13922975
 [97]  0.45789661  1.30620503 -0.65169159 -1.48587408
> rowSums(tmp2)
  [1]  0.44795154 -1.01401226  0.03104677  0.92500512 -0.04498879  0.16717945
  [7]  0.24739073  0.21437481  0.18556515  0.82357838 -0.22425527 -0.70959487
 [13]  0.02637858  0.34532609 -1.00311759 -0.07169367  1.01620700  1.03679147
 [19] -1.66028030 -1.06374330  0.84681260  0.59461706  1.47003248  0.05869409
 [25] -0.67311509  1.03625223 -0.31687606 -0.94071355 -0.26301352 -2.37527001
 [31] -0.74363044 -0.41540953  0.69293315  1.14280791  0.40018719  0.94831415
 [37] -0.53207783 -1.32874897 -0.63215173 -0.25015177  1.67804576  2.44144687
 [43]  2.35328724  0.84568638  0.28397145 -1.40161724 -1.99405162  0.50444057
 [49] -0.42936337  0.05515716 -0.73309822  0.27179875  0.95630099 -0.58549769
 [55] -1.12876946  0.39707994 -0.07884614  0.44145081 -1.04587598 -0.22986195
 [61] -0.98078085 -0.91497973  0.29882683 -0.17186124 -0.73242597  0.83582157
 [67]  0.35696493  0.32009262  1.34970112 -0.22811405  0.54988808  0.43157375
 [73] -0.34608998  0.85554851  1.25982429  0.87017268 -0.83604397 -2.51547291
 [79]  0.38120308  0.47681628 -1.74108466  0.25906934  0.70175434  1.78976975
 [85]  0.77815994  0.40476864 -0.62263590  0.02986080  1.68883771 -0.46756940
 [91]  1.81338449 -2.06493401  1.53275792 -1.53667007 -2.88754184  1.13922975
 [97]  0.45789661  1.30620503 -0.65169159 -1.48587408
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.44795154 -1.01401226  0.03104677  0.92500512 -0.04498879  0.16717945
  [7]  0.24739073  0.21437481  0.18556515  0.82357838 -0.22425527 -0.70959487
 [13]  0.02637858  0.34532609 -1.00311759 -0.07169367  1.01620700  1.03679147
 [19] -1.66028030 -1.06374330  0.84681260  0.59461706  1.47003248  0.05869409
 [25] -0.67311509  1.03625223 -0.31687606 -0.94071355 -0.26301352 -2.37527001
 [31] -0.74363044 -0.41540953  0.69293315  1.14280791  0.40018719  0.94831415
 [37] -0.53207783 -1.32874897 -0.63215173 -0.25015177  1.67804576  2.44144687
 [43]  2.35328724  0.84568638  0.28397145 -1.40161724 -1.99405162  0.50444057
 [49] -0.42936337  0.05515716 -0.73309822  0.27179875  0.95630099 -0.58549769
 [55] -1.12876946  0.39707994 -0.07884614  0.44145081 -1.04587598 -0.22986195
 [61] -0.98078085 -0.91497973  0.29882683 -0.17186124 -0.73242597  0.83582157
 [67]  0.35696493  0.32009262  1.34970112 -0.22811405  0.54988808  0.43157375
 [73] -0.34608998  0.85554851  1.25982429  0.87017268 -0.83604397 -2.51547291
 [79]  0.38120308  0.47681628 -1.74108466  0.25906934  0.70175434  1.78976975
 [85]  0.77815994  0.40476864 -0.62263590  0.02986080  1.68883771 -0.46756940
 [91]  1.81338449 -2.06493401  1.53275792 -1.53667007 -2.88754184  1.13922975
 [97]  0.45789661  1.30620503 -0.65169159 -1.48587408
> rowMin(tmp2)
  [1]  0.44795154 -1.01401226  0.03104677  0.92500512 -0.04498879  0.16717945
  [7]  0.24739073  0.21437481  0.18556515  0.82357838 -0.22425527 -0.70959487
 [13]  0.02637858  0.34532609 -1.00311759 -0.07169367  1.01620700  1.03679147
 [19] -1.66028030 -1.06374330  0.84681260  0.59461706  1.47003248  0.05869409
 [25] -0.67311509  1.03625223 -0.31687606 -0.94071355 -0.26301352 -2.37527001
 [31] -0.74363044 -0.41540953  0.69293315  1.14280791  0.40018719  0.94831415
 [37] -0.53207783 -1.32874897 -0.63215173 -0.25015177  1.67804576  2.44144687
 [43]  2.35328724  0.84568638  0.28397145 -1.40161724 -1.99405162  0.50444057
 [49] -0.42936337  0.05515716 -0.73309822  0.27179875  0.95630099 -0.58549769
 [55] -1.12876946  0.39707994 -0.07884614  0.44145081 -1.04587598 -0.22986195
 [61] -0.98078085 -0.91497973  0.29882683 -0.17186124 -0.73242597  0.83582157
 [67]  0.35696493  0.32009262  1.34970112 -0.22811405  0.54988808  0.43157375
 [73] -0.34608998  0.85554851  1.25982429  0.87017268 -0.83604397 -2.51547291
 [79]  0.38120308  0.47681628 -1.74108466  0.25906934  0.70175434  1.78976975
 [85]  0.77815994  0.40476864 -0.62263590  0.02986080  1.68883771 -0.46756940
 [91]  1.81338449 -2.06493401  1.53275792 -1.53667007 -2.88754184  1.13922975
 [97]  0.45789661  1.30620503 -0.65169159 -1.48587408
> 
> colMeans(tmp2)
[1] 0.02700643
> colSums(tmp2)
[1] 2.700643
> colVars(tmp2)
[1] 1.091268
> colSd(tmp2)
[1] 1.044638
> colMax(tmp2)
[1] 2.441447
> colMin(tmp2)
[1] -2.887542
> colMedians(tmp2)
[1] 0.1763723
> colRanges(tmp2)
          [,1]
[1,] -2.887542
[2,]  2.441447
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.10491476 -3.17121650 -4.52066362  6.07217000 -1.63815714 -0.33403498
 [7] -3.68075250 -8.13624690  2.71104947  0.09240305
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.9323707
[2,] -1.0381550
[3,] -0.4504646
[4,]  0.9378082
[5,]  2.4748809
> 
> rowApply(tmp,sum)
 [1] -3.3494976  5.1120919  0.1833353 -2.7600343 -0.6874066  1.8552277
 [7]  0.4389865 -6.7061167 -5.9175368 -0.6695836
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    5    8    2    3   10    8    4    1    7    10
 [2,]    4    4    8    2    9    3    1   10    3     1
 [3,]    8    3    3    5    8    2    6    9    2     6
 [4,]    9   10    5   10    1    6    8    4    8     9
 [5,]   10    5    4    4    5    9    9    6    1     2
 [6,]    3    1    9    8    6    5    7    3   10     4
 [7,]    7    2   10    6    3    1    3    7    4     7
 [8,]    2    6    1    1    2    4    5    8    5     3
 [9,]    1    7    7    7    7    7   10    2    9     8
[10,]    6    9    6    9    4   10    2    5    6     5
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.28839100  2.50352790 -4.36123306 -1.34706858  0.72911738 -2.45182737
 [7] -0.91106773  0.28397894  4.27927883  4.32301423  0.23589289  0.27367571
[13] -1.57736152 -0.24273665 -0.05708077 -2.39301558 -3.85391909 -3.76094256
[19]  1.19659156 -0.96266921
> colApply(tmp,quantile)[,1]
             [,1]
[1,] -1.629776862
[2,] -1.051763427
[3,] -0.002770704
[4,]  1.119873691
[5,]  1.852828300
> 
> rowApply(tmp,sum)
[1] -2.5000184  4.1750568 -3.2200242 -5.6833085 -0.5771594
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   17   19    3    5   10
[2,]   15   16   16   14    8
[3,]    4    9   10    3    2
[4,]   14    1   13   20    3
[5,]    5    6   20    9   15
> 
> 
> as.matrix(tmp)
             [,1]       [,2]       [,3]        [,4]       [,5]       [,6]
[1,]  1.119873691  0.5765662 -1.1020081  0.17152763 -0.8749343 -1.3810846
[2,]  1.852828300  1.3015118  0.2950009 -2.49064294 -0.2732184 -0.9528277
[3,] -1.051763427  0.6258049 -0.2557344  0.02943735  1.7307005 -1.3382487
[4,] -1.629776862  0.2792748 -1.9551944  2.27413651 -0.3371125  0.9245242
[5,] -0.002770704 -0.2796298 -1.3432969 -1.33152713  0.4836821  0.2958094
           [,7]       [,8]       [,9]     [,10]      [,11]      [,12]
[1,]  1.4249903  2.2187558 -0.8645712 1.5960043 -1.8763546 -0.6772093
[2,] -1.1491144 -1.2272796  0.7859616 1.9219802  1.6266801  1.0122379
[3,] -0.1297129 -0.2283608  1.0441092 0.3437967 -0.5442064  0.7769458
[4,] -1.5798502 -0.1352486  1.8226966 0.2961789 -0.2871252 -2.0405462
[5,]  0.5226195 -0.3438878  1.4910826 0.1650541  1.3168990  1.2022475
           [,13]      [,14]      [,15]        [,16]      [,17]       [,18]
[1,] -0.03611766  0.8109847 -0.2348582 -0.415436328 -0.3806258 -0.84662132
[2,]  0.29961626 -0.1589636  1.3271702  0.254203183 -2.0183878  0.29539692
[3,] -0.50297542 -0.8026585  0.8161174 -1.051014766 -0.9333872 -1.37956930
[4,]  0.02875015 -0.5141340 -2.7974672 -0.009054661  0.6951895 -1.75104498
[5,] -1.36663485  0.4220348  0.8319570 -1.171713008 -1.2167078 -0.07910388
          [,19]      [,20]
[1,]  0.1685066 -1.8974061
[2,]  1.0419490  0.4309549
[3,]  0.1503285 -0.5196328
[4,] -0.5290934  1.5615889
[5,]  0.3649008 -0.5381742
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  642  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  557  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1      col2       col3      col4       col5       col6      col7
row1 -0.4808504 -2.307581 -0.1192709 0.7503933 -0.7913159 0.07240687 0.5557779
           col8      col9     col10      col11     col12    col13    col14
row1 -0.7286116 -1.465923 0.4889326 -0.6998811 -1.413469 1.432853 0.437835
          col15    col16     col17     col18     col19    col20
row1 -0.3166311 1.340681 -1.366706 0.7614685 0.7714342 0.371263
> tmp[,"col10"]
          col10
row1  0.4889326
row2 -1.0488608
row3 -0.7358426
row4  1.5013799
row5  2.0204626
> tmp[c("row1","row5"),]
           col1      col2       col3       col4       col5       col6      col7
row1 -0.4808504 -2.307581 -0.1192709  0.7503933 -0.7913159 0.07240687 0.5557779
row5 -0.1553795 -1.283899  1.2971419 -0.2467032  3.7465791 0.69264240 0.4688482
           col8       col9     col10      col11      col12     col13
row1 -0.7286116 -1.4659227 0.4889326 -0.6998811 -1.4134694  1.432853
row5  1.4950499  0.2463705 2.0204626 -1.3183101  0.6181784 -1.119562
           col14      col15    col16      col17      col18     col19      col20
row1  0.43783503 -0.3166311 1.340681 -1.3667064 0.76146848 0.7714342  0.3712630
row5 -0.08103479 -0.2406802 1.103993  0.7462396 0.03629838 0.8346927 -0.4938863
> tmp[,c("col6","col20")]
            col6      col20
row1  0.07240687  0.3712630
row2  0.19248522 -2.2538981
row3 -0.67886024  0.8775025
row4 -0.99424969  0.2095481
row5  0.69264240 -0.4938863
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 0.07240687  0.3712630
row5 0.69264240 -0.4938863
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2    col3     col4    col5     col6     col7     col8
row1 51.05768 48.59394 49.1916 51.89644 49.4801 106.2613 49.94767 48.69724
         col9    col10    col11   col12    col13    col14    col15    col16
row1 51.25569 47.75985 49.56437 49.3603 49.48003 49.02069 49.09366 50.22339
        col17    col18    col19   col20
row1 50.34844 49.07317 50.18358 105.062
> tmp[,"col10"]
        col10
row1 47.75985
row2 30.29802
row3 30.65222
row4 29.20287
row5 49.59085
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.05768 48.59394 49.19160 51.89644 49.48010 106.2613 49.94767 48.69724
row5 49.91548 51.01503 49.13079 48.38447 50.82589 104.9724 50.05093 49.17855
         col9    col10    col11    col12    col13    col14    col15    col16
row1 51.25569 47.75985 49.56437 49.36030 49.48003 49.02069 49.09366 50.22339
row5 50.54826 49.59085 50.13814 49.74646 50.80825 51.89383 50.19249 51.81760
        col17    col18    col19    col20
row1 50.34844 49.07317 50.18358 105.0620
row5 49.78656 50.33484 50.06251 104.3687
> tmp[,c("col6","col20")]
          col6     col20
row1 106.26127 105.06200
row2  76.13298  74.66333
row3  76.25277  75.07388
row4  74.17633  74.61174
row5 104.97235 104.36874
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 106.2613 105.0620
row5 104.9724 104.3687
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 106.2613 105.0620
row5 104.9724 104.3687
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,] -1.15474779
[2,] -0.45273408
[3,]  0.05417581
[4,]  0.09332780
[5,] -0.21754562
> tmp[,c("col17","col7")]
          col17        col7
[1,]  1.2212251 -0.97412970
[2,] -1.2564805  0.15663606
[3,]  1.0139835  0.14069317
[4,] -1.2669739  1.56928807
[5,]  0.2812232  0.06233927
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,]  0.7077421  1.2021418
[2,] -0.2470061  1.2984794
[3,] -1.3212842 -0.1696371
[4,]  0.9819115  1.1450720
[5,] -0.4149729 -1.1019717
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] 0.7077421
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,]  0.7077421
[2,] -0.2470061
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]      [,2]       [,3]      [,4]      [,5]      [,6]       [,7]
row3 -1.3837544 2.2831562 -0.4271625 0.7971248 -1.137012 0.7841183 -0.5659561
row1 -0.7335311 0.7654467 -0.1879509 0.8366893 -1.006213 0.4753656  0.4149571
          [,8]      [,9]      [,10]      [,11]      [,12]      [,13]      [,14]
row3 0.9802868 -1.099794  0.8658093  0.5197643  0.6794146  1.2814038 -0.4789286
row1 0.4184969 -1.402707 -0.1730258 -2.0259739 -0.9253416 -0.4343476  0.9139917
          [,15]     [,16]     [,17]        [,18]      [,19]      [,20]
row3 -1.8422985 1.4187943 1.0376057 -0.245356262 -0.9440572  1.6860646
row1 -0.3132516 0.7783284 0.7092149 -0.002672564  0.5932637 -0.6010428
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]      [,2]      [,3]     [,4]    [,5]       [,6]      [,7]
row2 -0.4614494 -2.052865 -0.178287 1.726809 2.31388 -0.2364033 -1.919816
          [,8]       [,9]     [,10]
row2 -2.184238 0.09789347 0.3494743
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]       [,2]      [,3]      [,4]      [,5]      [,6]        [,7]
row5 0.7674978 -0.9182592 -1.247603 -1.113598 0.8125006 -0.136689 -0.03823647
          [,8]       [,9]    [,10]     [,11]     [,12]     [,13]      [,14]
row5 -1.039189 -0.2497141 -2.87945 -2.351521 -1.261746 0.7074007 -0.3205273
         [,15]     [,16]     [,17]      [,18]       [,19]     [,20]
row5 0.1499725 0.2797206 -1.367628 -0.5187362 -0.03396139 0.4905208
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x3f42ce90>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f01cc49a87"
 [2] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f026ae8ed8"
 [3] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f064e6768f"
 [4] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f063bed309"
 [5] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f04bf28ebb"
 [6] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f0efa10e9" 
 [7] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f0afeb63d" 
 [8] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f074bebaa" 
 [9] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f044253e31"
[10] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f0703c307d"
[11] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f06f66e96" 
[12] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f05d15b07f"
[13] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f0156b3a7f"
[14] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f031e1b50f"
[15] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMf7f043398a65"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x3ced4aa0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x3ced4aa0>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x3ced4aa0>
> rowMedians(tmp)
  [1]  0.068329606  0.086917293  0.155901880  0.177124775  0.520704206
  [6] -0.767075353  0.257746176 -0.207037151  0.336375233 -0.178686259
 [11] -0.256818177 -0.062515122  0.035293421  0.099778654 -0.477592072
 [16] -0.158578973  0.433714067  0.118285501  0.327042679  0.339477153
 [21] -0.309331072 -0.312193671  0.078373782  0.082324836 -0.102587042
 [26] -0.012008205  0.003857970  0.270848606  0.067572769 -0.103296545
 [31]  0.160777155 -0.035988777  0.300971180  0.347001883  0.060517692
 [36] -0.513522932 -0.074852936 -0.111270277 -0.630770651 -0.043868042
 [41]  0.384117326  0.059169115 -0.587811691  0.376203805  0.044769680
 [46]  0.343019968  0.430472750 -0.075873625 -0.567377280 -0.064381763
 [51]  0.507423557  0.032978235 -0.382458224  0.083978650  0.158350509
 [56] -0.199652035 -0.564538989  0.010481822 -0.454322535 -0.049677033
 [61]  0.428947237 -0.529425239 -0.249358535  0.203766711  0.174112467
 [66]  0.275384059 -0.083193631  0.441667906 -0.346406809 -0.086023765
 [71]  0.512706332  0.141246679  0.396300815 -0.395420440  0.279786771
 [76] -0.732607735  0.306291465 -0.190040483 -0.191606420  0.573132509
 [81] -0.593139822  0.026203508  0.553315134 -0.305152827 -0.225347610
 [86]  0.073171898  0.066689066  0.208972614  0.117132707  0.067561082
 [91] -0.019538046  0.012488535 -0.140224079 -0.332298781  0.227544220
 [96]  0.487967380 -0.110055532 -0.526809860 -0.002723869  0.287984758
[101] -0.216219863  0.327522955  0.203649559  0.200709328  0.110298728
[106]  0.318610272  0.196479288  0.041373071  0.518526611 -0.398201894
[111]  0.259308165 -0.129927611  0.064884338  0.386549343  0.055040393
[116]  0.262872870  0.547034382 -0.047677259  0.344780598 -0.121118173
[121]  0.297736230 -0.326782387 -0.290600719  0.242410798  0.120763941
[126] -0.061826887 -0.162471031  0.179112012  0.197384567 -0.107128952
[131] -0.250195591 -0.338443866 -0.436265745  0.138956823  0.288293674
[136]  0.020837937  0.024488779 -0.565582764  0.008674805 -0.238352872
[141]  0.281911215 -0.804286601 -0.208959015 -0.446170927  0.468620040
[146] -0.058652201 -0.113829304 -0.366426953 -0.303595171  0.562760763
[151] -0.284023346  0.319931236 -0.456969859  0.018015993 -0.260630456
[156] -0.272667732  0.238602827 -0.175509574  0.051174233 -0.264374076
[161] -0.055684565 -0.245553239  0.073368042 -0.245871025  0.026281456
[166] -0.012922702  0.151128312 -0.021679622 -0.294432791  0.078289929
[171] -0.237219911 -0.081326347  0.245595466 -0.097077800  0.205452011
[176]  0.226612453 -0.237265151  0.170088170 -0.465205366  0.703682993
[181]  0.342676231  0.023352826  0.021955347 -0.007546683  0.318945862
[186] -0.133363946  0.465272004 -0.611240750 -0.375433030  0.774704419
[191] -0.006382562  0.174950204 -0.277980309  0.450934163  0.021245906
[196]  0.470630349 -0.019630175  0.471001753  0.242688851  0.578793725
[201] -0.148698387 -0.096797366  0.010576312  0.009070905  0.389940883
[206] -0.228078997 -0.268337338  0.590100444  0.043773481  0.266321260
[211]  0.037891236 -0.082527510 -0.057140425 -0.030849513 -0.371995178
[216]  0.583838254 -0.250930453 -0.013553400  0.339053244  0.023048768
[221] -0.164859401  0.414064356 -0.320408758  0.524005944  0.368359697
[226]  0.301439420 -0.059855121 -0.009062322 -0.255403951  0.059110086
> 
> proc.time()
   user  system elapsed 
  1.969   0.757   2.748 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2da3c460>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2da3c460>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2da3c460>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x2da3c460>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x2d015450>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2d015450>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x2d015450>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2d015450>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x2d015450>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x2f443ea0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2f443ea0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x2f443ea0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x2f443ea0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x2f443ea0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x2f443ea0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x2f443ea0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x2f443ea0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x2f443ea0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x2ce8ae50>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x2ce8ae50>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2ce8ae50>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2ce8ae50>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilef995224dd1c6" "BufferedMatrixFilef995719b304a"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilef995224dd1c6" "BufferedMatrixFilef995719b304a"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x2f3d2670>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2f3d2670>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x2f3d2670>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x2f3d2670>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x2f3d2670>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x2f3d2670>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x2f420820>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2f420820>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x2f420820>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x2f420820>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2d4086e0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2d4086e0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.344   0.038   0.367 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.339   0.028   0.350 

Example timings