Back to Multiple platform build/check report for BioC 3.21:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-01-28 11:47 -0500 (Tue, 28 Jan 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_64R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" 4659
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2025-01-21 r87610 ucrt) -- "Unsuffered Consequences" 4454
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2025-01-22 r87618) -- "Unsuffered Consequences" 4465
kjohnson3macOS 13.7.1 Venturaarm64R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" 4419
kunpeng2Linux (openEuler 22.03 LTS-SP1)aarch64R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences" 4409
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 246/2286HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.71.1  (landing page)
Ben Bolstad
Snapshot Date: 2025-01-27 13:40 -0500 (Mon, 27 Jan 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 824836d
git_last_commit_date: 2024-12-14 17:47:34 -0500 (Sat, 14 Dec 2024)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 22.03 LTS-SP1) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on kunpeng2

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: BufferedMatrix
Version: 1.71.1
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.71.1.tar.gz
StartedAt: 2025-01-28 08:48:19 -0000 (Tue, 28 Jan 2025)
EndedAt: 2025-01-28 08:48:43 -0000 (Tue, 28 Jan 2025)
EllapsedTime: 24.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.71.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2024-11-24 r87369)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.71.1’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.5.0-devel_2024-11-24/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -shared -L/home/biocbuild/R/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/R/R/lib -lR
installing to /home/biocbuild/R/R-4.5.0-devel_2024-11-24/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.345   0.017   0.348 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478192 25.6    1046321 55.9   639882 34.2
Vcells 884352  6.8    8388608 64.0  2080652 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Jan 28 08:48:37 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Jan 28 08:48:37 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x3d580460>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Jan 28 08:48:37 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Jan 28 08:48:38 2025"
> 
> ColMode(tmp2)
<pointer: 0x3d580460>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]        [,2]       [,3]        [,4]
[1,] 98.73658502 -0.57384238  1.1097330 -0.21676171
[2,] -0.70685355 -0.05337526 -0.2581994  0.08340664
[3,] -0.22646116  0.68843394  0.7342212 -0.89740138
[4,]  0.03259353  0.97946515  2.4879393 -0.82392845
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]       [,2]      [,3]       [,4]
[1,] 98.73658502 0.57384238 1.1097330 0.21676171
[2,]  0.70685355 0.05337526 0.2581994 0.08340664
[3,]  0.22646116 0.68843394 0.7342212 0.89740138
[4,]  0.03259353 0.97946515 2.4879393 0.82392845
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9366285 0.7575238 1.0534386 0.4655767
[2,] 0.8407458 0.2310309 0.5081332 0.2888021
[3,] 0.4758794 0.8297192 0.8568671 0.9473127
[4,] 0.1805368 0.9896793 1.5773203 0.9077050
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 223.10287 33.14908 36.64412 29.87253
[2,]  34.11431 27.36368 30.33953 27.97143
[3,]  29.98525 33.98563 34.30289 35.37053
[4,]  26.83796 35.87626 43.26114 34.90098
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x3d3c5410>
> exp(tmp5)
<pointer: 0x3d3c5410>
> log(tmp5,2)
<pointer: 0x3d3c5410>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 464.3594
> Min(tmp5)
[1] 52.42317
> mean(tmp5)
[1] 72.27502
> Sum(tmp5)
[1] 14455
> Var(tmp5)
[1] 852.4828
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 89.06350 69.20297 72.02897 72.51328 67.07439 70.97690 72.41568 70.80696
 [9] 70.36090 68.30667
> rowSums(tmp5)
 [1] 1781.270 1384.059 1440.579 1450.266 1341.488 1419.538 1448.314 1416.139
 [9] 1407.218 1366.133
> rowVars(tmp5)
 [1] 7862.39820   74.38876   71.17867   62.37767   92.93293   75.61868
 [7]   85.17504   87.73499   82.96540   74.15327
> rowSd(tmp5)
 [1] 88.670165  8.624892  8.436745  7.897953  9.640173  8.695900  9.229032
 [8]  9.366696  9.108535  8.611229
> rowMax(tmp5)
 [1] 464.35939  85.72407  86.15828  90.04240  85.95791  87.86185  91.23461
 [8]  89.29302  85.03118  88.03103
> rowMin(tmp5)
 [1] 59.05351 56.45256 56.49335 55.85970 52.42317 56.14386 52.69782 57.10235
 [9] 54.86795 57.32980
> 
> colMeans(tmp5)
 [1] 109.87108  69.36407  71.25745  66.28384  67.53924  75.05674  71.67881
 [8]  70.51994  73.48270  64.31367  70.04718  71.25576  70.00863  66.03127
[15]  73.78779  72.30604  70.36314  64.32280  74.53101  73.47931
> colSums(tmp5)
 [1] 1098.7108  693.6407  712.5745  662.8384  675.3924  750.5674  716.7881
 [8]  705.1994  734.8270  643.1367  700.4718  712.5576  700.0863  660.3127
[15]  737.8779  723.0604  703.6314  643.2280  745.3101  734.7931
> colVars(tmp5)
 [1] 15641.62281    73.40730    80.44975    30.05012    82.96504    59.26212
 [7]    81.82285    85.78983   103.01376    79.72074    69.06772    58.84012
[13]    29.01763    59.93834    25.52752    90.06457   120.30358    81.88011
[19]    63.58514    62.83936
> colSd(tmp5)
 [1] 125.066474   8.567806   8.969378   5.481799   9.108515   7.698190
 [7]   9.045599   9.262280  10.149570   8.928647   8.310699   7.670731
[13]   5.386801   7.741986   5.052476   9.490236  10.968299   9.048763
[19]   7.974029   7.927128
> colMax(tmp5)
 [1] 464.35939  83.77597  90.04240  73.61912  81.87255  85.66061  86.29941
 [8]  87.86185  85.72407  81.60998  86.15828  80.49368  79.40051  79.50804
[15]  80.46105  85.95791  89.29302  79.23129  88.03103  81.35120
> colMin(tmp5)
 [1] 55.85970 56.65220 61.31634 58.21886 55.80451 65.63316 59.05351 56.80017
 [9] 60.84571 55.47826 60.03571 59.83429 61.12984 52.69782 64.72250 54.86795
[17] 55.83838 52.42317 63.16917 57.32980
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 89.06350 69.20297 72.02897 72.51328       NA 70.97690 72.41568 70.80696
 [9] 70.36090 68.30667
> rowSums(tmp5)
 [1] 1781.270 1384.059 1440.579 1450.266       NA 1419.538 1448.314 1416.139
 [9] 1407.218 1366.133
> rowVars(tmp5)
 [1] 7862.39820   74.38876   71.17867   62.37767   89.25147   75.61868
 [7]   85.17504   87.73499   82.96540   74.15327
> rowSd(tmp5)
 [1] 88.670165  8.624892  8.436745  7.897953  9.447300  8.695900  9.229032
 [8]  9.366696  9.108535  8.611229
> rowMax(tmp5)
 [1] 464.35939  85.72407  86.15828  90.04240        NA  87.86185  91.23461
 [8]  89.29302  85.03118  88.03103
> rowMin(tmp5)
 [1] 59.05351 56.45256 56.49335 55.85970       NA 56.14386 52.69782 57.10235
 [9] 54.86795 57.32980
> 
> colMeans(tmp5)
 [1] 109.87108  69.36407  71.25745  66.28384  67.53924  75.05674  71.67881
 [8]  70.51994  73.48270  64.31367  70.04718  71.25576  70.00863        NA
[15]  73.78779  72.30604  70.36314  64.32280  74.53101  73.47931
> colSums(tmp5)
 [1] 1098.7108  693.6407  712.5745  662.8384  675.3924  750.5674  716.7881
 [8]  705.1994  734.8270  643.1367  700.4718  712.5576  700.0863        NA
[15]  737.8779  723.0604  703.6314  643.2280  745.3101  734.7931
> colVars(tmp5)
 [1] 15641.62281    73.40730    80.44975    30.05012    82.96504    59.26212
 [7]    81.82285    85.78983   103.01376    79.72074    69.06772    58.84012
[13]    29.01763          NA    25.52752    90.06457   120.30358    81.88011
[19]    63.58514    62.83936
> colSd(tmp5)
 [1] 125.066474   8.567806   8.969378   5.481799   9.108515   7.698190
 [7]   9.045599   9.262280  10.149570   8.928647   8.310699   7.670731
[13]   5.386801         NA   5.052476   9.490236  10.968299   9.048763
[19]   7.974029   7.927128
> colMax(tmp5)
 [1] 464.35939  83.77597  90.04240  73.61912  81.87255  85.66061  86.29941
 [8]  87.86185  85.72407  81.60998  86.15828  80.49368  79.40051        NA
[15]  80.46105  85.95791  89.29302  79.23129  88.03103  81.35120
> colMin(tmp5)
 [1] 55.85970 56.65220 61.31634 58.21886 55.80451 65.63316 59.05351 56.80017
 [9] 60.84571 55.47826 60.03571 59.83429 61.12984       NA 64.72250 54.86795
[17] 55.83838 52.42317 63.16917 57.32980
> 
> Max(tmp5,na.rm=TRUE)
[1] 464.3594
> Min(tmp5,na.rm=TRUE)
[1] 52.42317
> mean(tmp5,na.rm=TRUE)
[1] 72.36296
> Sum(tmp5,na.rm=TRUE)
[1] 14400.23
> Var(tmp5,na.rm=TRUE)
[1] 855.234
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.06350 69.20297 72.02897 72.51328 67.72165 70.97690 72.41568 70.80696
 [9] 70.36090 68.30667
> rowSums(tmp5,na.rm=TRUE)
 [1] 1781.270 1384.059 1440.579 1450.266 1286.711 1419.538 1448.314 1416.139
 [9] 1407.218 1366.133
> rowVars(tmp5,na.rm=TRUE)
 [1] 7862.39820   74.38876   71.17867   62.37767   89.25147   75.61868
 [7]   85.17504   87.73499   82.96540   74.15327
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.670165  8.624892  8.436745  7.897953  9.447300  8.695900  9.229032
 [8]  9.366696  9.108535  8.611229
> rowMax(tmp5,na.rm=TRUE)
 [1] 464.35939  85.72407  86.15828  90.04240  85.95791  87.86185  91.23461
 [8]  89.29302  85.03118  88.03103
> rowMin(tmp5,na.rm=TRUE)
 [1] 59.05351 56.45256 56.49335 55.85970 52.42317 56.14386 52.69782 57.10235
 [9] 54.86795 57.32980
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 109.87108  69.36407  71.25745  66.28384  67.53924  75.05674  71.67881
 [8]  70.51994  73.48270  64.31367  70.04718  71.25576  70.00863  67.28180
[15]  73.78779  72.30604  70.36314  64.32280  74.53101  73.47931
> colSums(tmp5,na.rm=TRUE)
 [1] 1098.7108  693.6407  712.5745  662.8384  675.3924  750.5674  716.7881
 [8]  705.1994  734.8270  643.1367  700.4718  712.5576  700.0863  605.5362
[15]  737.8779  723.0604  703.6314  643.2280  745.3101  734.7931
> colVars(tmp5,na.rm=TRUE)
 [1] 15641.62281    73.40730    80.44975    30.05012    82.96504    59.26212
 [7]    81.82285    85.78983   103.01376    79.72074    69.06772    58.84012
[13]    29.01763    49.83745    25.52752    90.06457   120.30358    81.88011
[19]    63.58514    62.83936
> colSd(tmp5,na.rm=TRUE)
 [1] 125.066474   8.567806   8.969378   5.481799   9.108515   7.698190
 [7]   9.045599   9.262280  10.149570   8.928647   8.310699   7.670731
[13]   5.386801   7.059564   5.052476   9.490236  10.968299   9.048763
[19]   7.974029   7.927128
> colMax(tmp5,na.rm=TRUE)
 [1] 464.35939  83.77597  90.04240  73.61912  81.87255  85.66061  86.29941
 [8]  87.86185  85.72407  81.60998  86.15828  80.49368  79.40051  79.50804
[15]  80.46105  85.95791  89.29302  79.23129  88.03103  81.35120
> colMin(tmp5,na.rm=TRUE)
 [1] 55.85970 56.65220 61.31634 58.21886 55.80451 65.63316 59.05351 56.80017
 [9] 60.84571 55.47826 60.03571 59.83429 61.12984 52.69782 64.72250 54.86795
[17] 55.83838 52.42317 63.16917 57.32980
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.06350 69.20297 72.02897 72.51328      NaN 70.97690 72.41568 70.80696
 [9] 70.36090 68.30667
> rowSums(tmp5,na.rm=TRUE)
 [1] 1781.270 1384.059 1440.579 1450.266    0.000 1419.538 1448.314 1416.139
 [9] 1407.218 1366.133
> rowVars(tmp5,na.rm=TRUE)
 [1] 7862.39820   74.38876   71.17867   62.37767         NA   75.61868
 [7]   85.17504   87.73499   82.96540   74.15327
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.670165  8.624892  8.436745  7.897953        NA  8.695900  9.229032
 [8]  9.366696  9.108535  8.611229
> rowMax(tmp5,na.rm=TRUE)
 [1] 464.35939  85.72407  86.15828  90.04240        NA  87.86185  91.23461
 [8]  89.29302  85.03118  88.03103
> rowMin(tmp5,na.rm=TRUE)
 [1] 59.05351 56.45256 56.49335 55.85970       NA 56.14386 52.69782 57.10235
 [9] 54.86795 57.32980
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 115.06945  67.76274  71.99921  67.11878  66.05433  75.16961  71.86233
 [8]  72.04436  74.88681  63.19274  70.87489  71.52061  70.16554       NaN
[15]  73.67631  70.78917  71.97700  65.64498  75.79343  74.17334
> colSums(tmp5,na.rm=TRUE)
 [1] 1035.6251  609.8647  647.9929  604.0690  594.4890  676.5265  646.7610
 [8]  648.3992  673.9813  568.7347  637.8740  643.6855  631.4898    0.0000
[15]  663.0868  637.1025  647.7930  590.8048  682.1409  667.5601
> colVars(tmp5,na.rm=TRUE)
 [1] 17292.81658    53.73558    84.31617    25.96371    68.53009    66.52655
 [7]    91.67183    70.37023    93.71081    75.55057    69.99386    65.40602
[13]    32.36786          NA    28.57863    75.43743   106.04034    72.44828
[19]    53.60392    65.27537
> colSd(tmp5,na.rm=TRUE)
 [1] 131.502154   7.330456   9.182383   5.095460   8.278291   8.156381
 [7]   9.574541   8.388696   9.680434   8.691983   8.366233   8.087399
[13]   5.689276         NA   5.345898   8.685472  10.297589   8.511655
[19]   7.321470   8.079317
> colMax(tmp5,na.rm=TRUE)
 [1] 464.35939  75.86332  90.04240  73.61912  81.87255  85.66061  86.29941
 [8]  87.86185  85.72407  81.60998  86.15828  80.49368  79.40051      -Inf
[15]  80.46105  83.63402  89.29302  79.23129  88.03103  81.35120
> colMin(tmp5,na.rm=TRUE)
 [1] 55.85970 56.65220 61.31634 58.21886 55.80451 65.63316 59.05351 62.57765
 [9] 61.43307 55.47826 60.03571 59.83429 61.12984      Inf 64.72250 54.86795
[17] 57.70137 56.45256 65.04096 57.32980
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 216.4276 193.0020 149.9601 281.0717 323.5689 176.9881 127.7617 144.3001
 [9] 171.4332 245.9630
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 216.4276 193.0020 149.9601 281.0717 323.5689 176.9881 127.7617 144.3001
 [9] 171.4332 245.9630
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  2.842171e-14 -2.842171e-14  1.136868e-13  5.684342e-14  4.263256e-14
 [6]  0.000000e+00  0.000000e+00 -1.421085e-13 -1.421085e-13  5.684342e-14
[11]  5.684342e-14  1.136868e-13 -1.705303e-13  1.136868e-13 -1.136868e-13
[16] -2.842171e-14  2.842171e-14 -1.705303e-13  2.842171e-14 -2.273737e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
9   12 
9   9 
8   2 
1   15 
9   3 
3   5 
2   5 
3   1 
3   19 
9   8 
10   17 
7   14 
10   3 
5   4 
5   19 
6   10 
2   5 
1   6 
5   20 
2   3 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.135669
> Min(tmp)
[1] -2.048279
> mean(tmp)
[1] -0.1327499
> Sum(tmp)
[1] -13.27499
> Var(tmp)
[1] 0.7421895
> 
> rowMeans(tmp)
[1] -0.1327499
> rowSums(tmp)
[1] -13.27499
> rowVars(tmp)
[1] 0.7421895
> rowSd(tmp)
[1] 0.8615042
> rowMax(tmp)
[1] 2.135669
> rowMin(tmp)
[1] -2.048279
> 
> colMeans(tmp)
  [1] -0.0004289476  0.7464094512  0.0933725047 -0.1612423683  0.6786609637
  [6] -1.4878985449 -0.7661761863  0.9984644072  0.0404766035 -0.3080655324
 [11] -0.0408990696  0.1416400874  0.1285474533 -1.0084174903  1.5145675544
 [16] -1.4436785438  0.5520253536  0.1255912943  1.0447163230  0.2565064621
 [21]  0.6523762562  2.0824720914  0.2115179370  0.0147382339  0.0822517877
 [26] -1.0479742870  1.4729608007 -2.0482790197 -0.7385693385  0.0281733936
 [31] -0.3351158883  0.1339922055 -0.7144384444 -1.2224378666 -0.3076482573
 [36] -0.1639858363 -1.6312115122  0.0644902672  1.2612059324 -1.0632637967
 [41]  0.6754779448 -1.3593153527 -0.9409210335  0.7612213615 -1.2670629466
 [46] -0.4729628365 -0.3609845571  0.2508959171 -0.1313819893 -0.3273875188
 [51] -0.0455904358  0.2111255908 -0.9670083156 -0.4365493698  0.4594762060
 [56] -0.2949973142 -1.1185678256  1.1335239526  0.1401152076 -0.8532833023
 [61] -0.4414245752 -0.8922313328  0.4201047064 -0.9686155992 -0.0150901797
 [66] -0.9964204309  1.0782515730 -0.4345019089  1.0592946650  1.2818765146
 [71] -0.0489631969 -0.3960266922 -0.1644870399  1.0299524040 -0.6857261114
 [76] -1.0840791186 -0.9910032237  0.0088991394 -0.6579609513 -0.9174147420
 [81]  2.1356685970 -0.3454596455 -0.3037338245  1.4109078629 -1.9540525389
 [86] -1.5510494056 -0.0698715638 -1.8496794314  0.1040667344 -0.2808142677
 [91]  0.3752501492  0.5420713510  0.9126368878  0.4946172861 -0.4679860259
 [96]  0.3171056680 -1.1618606907 -0.3987051911 -0.1655392777 -0.0942457789
> colSums(tmp)
  [1] -0.0004289476  0.7464094512  0.0933725047 -0.1612423683  0.6786609637
  [6] -1.4878985449 -0.7661761863  0.9984644072  0.0404766035 -0.3080655324
 [11] -0.0408990696  0.1416400874  0.1285474533 -1.0084174903  1.5145675544
 [16] -1.4436785438  0.5520253536  0.1255912943  1.0447163230  0.2565064621
 [21]  0.6523762562  2.0824720914  0.2115179370  0.0147382339  0.0822517877
 [26] -1.0479742870  1.4729608007 -2.0482790197 -0.7385693385  0.0281733936
 [31] -0.3351158883  0.1339922055 -0.7144384444 -1.2224378666 -0.3076482573
 [36] -0.1639858363 -1.6312115122  0.0644902672  1.2612059324 -1.0632637967
 [41]  0.6754779448 -1.3593153527 -0.9409210335  0.7612213615 -1.2670629466
 [46] -0.4729628365 -0.3609845571  0.2508959171 -0.1313819893 -0.3273875188
 [51] -0.0455904358  0.2111255908 -0.9670083156 -0.4365493698  0.4594762060
 [56] -0.2949973142 -1.1185678256  1.1335239526  0.1401152076 -0.8532833023
 [61] -0.4414245752 -0.8922313328  0.4201047064 -0.9686155992 -0.0150901797
 [66] -0.9964204309  1.0782515730 -0.4345019089  1.0592946650  1.2818765146
 [71] -0.0489631969 -0.3960266922 -0.1644870399  1.0299524040 -0.6857261114
 [76] -1.0840791186 -0.9910032237  0.0088991394 -0.6579609513 -0.9174147420
 [81]  2.1356685970 -0.3454596455 -0.3037338245  1.4109078629 -1.9540525389
 [86] -1.5510494056 -0.0698715638 -1.8496794314  0.1040667344 -0.2808142677
 [91]  0.3752501492  0.5420713510  0.9126368878  0.4946172861 -0.4679860259
 [96]  0.3171056680 -1.1618606907 -0.3987051911 -0.1655392777 -0.0942457789
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.0004289476  0.7464094512  0.0933725047 -0.1612423683  0.6786609637
  [6] -1.4878985449 -0.7661761863  0.9984644072  0.0404766035 -0.3080655324
 [11] -0.0408990696  0.1416400874  0.1285474533 -1.0084174903  1.5145675544
 [16] -1.4436785438  0.5520253536  0.1255912943  1.0447163230  0.2565064621
 [21]  0.6523762562  2.0824720914  0.2115179370  0.0147382339  0.0822517877
 [26] -1.0479742870  1.4729608007 -2.0482790197 -0.7385693385  0.0281733936
 [31] -0.3351158883  0.1339922055 -0.7144384444 -1.2224378666 -0.3076482573
 [36] -0.1639858363 -1.6312115122  0.0644902672  1.2612059324 -1.0632637967
 [41]  0.6754779448 -1.3593153527 -0.9409210335  0.7612213615 -1.2670629466
 [46] -0.4729628365 -0.3609845571  0.2508959171 -0.1313819893 -0.3273875188
 [51] -0.0455904358  0.2111255908 -0.9670083156 -0.4365493698  0.4594762060
 [56] -0.2949973142 -1.1185678256  1.1335239526  0.1401152076 -0.8532833023
 [61] -0.4414245752 -0.8922313328  0.4201047064 -0.9686155992 -0.0150901797
 [66] -0.9964204309  1.0782515730 -0.4345019089  1.0592946650  1.2818765146
 [71] -0.0489631969 -0.3960266922 -0.1644870399  1.0299524040 -0.6857261114
 [76] -1.0840791186 -0.9910032237  0.0088991394 -0.6579609513 -0.9174147420
 [81]  2.1356685970 -0.3454596455 -0.3037338245  1.4109078629 -1.9540525389
 [86] -1.5510494056 -0.0698715638 -1.8496794314  0.1040667344 -0.2808142677
 [91]  0.3752501492  0.5420713510  0.9126368878  0.4946172861 -0.4679860259
 [96]  0.3171056680 -1.1618606907 -0.3987051911 -0.1655392777 -0.0942457789
> colMin(tmp)
  [1] -0.0004289476  0.7464094512  0.0933725047 -0.1612423683  0.6786609637
  [6] -1.4878985449 -0.7661761863  0.9984644072  0.0404766035 -0.3080655324
 [11] -0.0408990696  0.1416400874  0.1285474533 -1.0084174903  1.5145675544
 [16] -1.4436785438  0.5520253536  0.1255912943  1.0447163230  0.2565064621
 [21]  0.6523762562  2.0824720914  0.2115179370  0.0147382339  0.0822517877
 [26] -1.0479742870  1.4729608007 -2.0482790197 -0.7385693385  0.0281733936
 [31] -0.3351158883  0.1339922055 -0.7144384444 -1.2224378666 -0.3076482573
 [36] -0.1639858363 -1.6312115122  0.0644902672  1.2612059324 -1.0632637967
 [41]  0.6754779448 -1.3593153527 -0.9409210335  0.7612213615 -1.2670629466
 [46] -0.4729628365 -0.3609845571  0.2508959171 -0.1313819893 -0.3273875188
 [51] -0.0455904358  0.2111255908 -0.9670083156 -0.4365493698  0.4594762060
 [56] -0.2949973142 -1.1185678256  1.1335239526  0.1401152076 -0.8532833023
 [61] -0.4414245752 -0.8922313328  0.4201047064 -0.9686155992 -0.0150901797
 [66] -0.9964204309  1.0782515730 -0.4345019089  1.0592946650  1.2818765146
 [71] -0.0489631969 -0.3960266922 -0.1644870399  1.0299524040 -0.6857261114
 [76] -1.0840791186 -0.9910032237  0.0088991394 -0.6579609513 -0.9174147420
 [81]  2.1356685970 -0.3454596455 -0.3037338245  1.4109078629 -1.9540525389
 [86] -1.5510494056 -0.0698715638 -1.8496794314  0.1040667344 -0.2808142677
 [91]  0.3752501492  0.5420713510  0.9126368878  0.4946172861 -0.4679860259
 [96]  0.3171056680 -1.1618606907 -0.3987051911 -0.1655392777 -0.0942457789
> colMedians(tmp)
  [1] -0.0004289476  0.7464094512  0.0933725047 -0.1612423683  0.6786609637
  [6] -1.4878985449 -0.7661761863  0.9984644072  0.0404766035 -0.3080655324
 [11] -0.0408990696  0.1416400874  0.1285474533 -1.0084174903  1.5145675544
 [16] -1.4436785438  0.5520253536  0.1255912943  1.0447163230  0.2565064621
 [21]  0.6523762562  2.0824720914  0.2115179370  0.0147382339  0.0822517877
 [26] -1.0479742870  1.4729608007 -2.0482790197 -0.7385693385  0.0281733936
 [31] -0.3351158883  0.1339922055 -0.7144384444 -1.2224378666 -0.3076482573
 [36] -0.1639858363 -1.6312115122  0.0644902672  1.2612059324 -1.0632637967
 [41]  0.6754779448 -1.3593153527 -0.9409210335  0.7612213615 -1.2670629466
 [46] -0.4729628365 -0.3609845571  0.2508959171 -0.1313819893 -0.3273875188
 [51] -0.0455904358  0.2111255908 -0.9670083156 -0.4365493698  0.4594762060
 [56] -0.2949973142 -1.1185678256  1.1335239526  0.1401152076 -0.8532833023
 [61] -0.4414245752 -0.8922313328  0.4201047064 -0.9686155992 -0.0150901797
 [66] -0.9964204309  1.0782515730 -0.4345019089  1.0592946650  1.2818765146
 [71] -0.0489631969 -0.3960266922 -0.1644870399  1.0299524040 -0.6857261114
 [76] -1.0840791186 -0.9910032237  0.0088991394 -0.6579609513 -0.9174147420
 [81]  2.1356685970 -0.3454596455 -0.3037338245  1.4109078629 -1.9540525389
 [86] -1.5510494056 -0.0698715638 -1.8496794314  0.1040667344 -0.2808142677
 [91]  0.3752501492  0.5420713510  0.9126368878  0.4946172861 -0.4679860259
 [96]  0.3171056680 -1.1618606907 -0.3987051911 -0.1655392777 -0.0942457789
> colRanges(tmp)
              [,1]      [,2]      [,3]       [,4]     [,5]      [,6]       [,7]
[1,] -0.0004289476 0.7464095 0.0933725 -0.1612424 0.678661 -1.487899 -0.7661762
[2,] -0.0004289476 0.7464095 0.0933725 -0.1612424 0.678661 -1.487899 -0.7661762
          [,8]      [,9]      [,10]       [,11]     [,12]     [,13]     [,14]
[1,] 0.9984644 0.0404766 -0.3080655 -0.04089907 0.1416401 0.1285475 -1.008417
[2,] 0.9984644 0.0404766 -0.3080655 -0.04089907 0.1416401 0.1285475 -1.008417
        [,15]     [,16]     [,17]     [,18]    [,19]     [,20]     [,21]
[1,] 1.514568 -1.443679 0.5520254 0.1255913 1.044716 0.2565065 0.6523763
[2,] 1.514568 -1.443679 0.5520254 0.1255913 1.044716 0.2565065 0.6523763
        [,22]     [,23]      [,24]      [,25]     [,26]    [,27]     [,28]
[1,] 2.082472 0.2115179 0.01473823 0.08225179 -1.047974 1.472961 -2.048279
[2,] 2.082472 0.2115179 0.01473823 0.08225179 -1.047974 1.472961 -2.048279
          [,29]      [,30]      [,31]     [,32]      [,33]     [,34]      [,35]
[1,] -0.7385693 0.02817339 -0.3351159 0.1339922 -0.7144384 -1.222438 -0.3076483
[2,] -0.7385693 0.02817339 -0.3351159 0.1339922 -0.7144384 -1.222438 -0.3076483
          [,36]     [,37]      [,38]    [,39]     [,40]     [,41]     [,42]
[1,] -0.1639858 -1.631212 0.06449027 1.261206 -1.063264 0.6754779 -1.359315
[2,] -0.1639858 -1.631212 0.06449027 1.261206 -1.063264 0.6754779 -1.359315
         [,43]     [,44]     [,45]      [,46]      [,47]     [,48]     [,49]
[1,] -0.940921 0.7612214 -1.267063 -0.4729628 -0.3609846 0.2508959 -0.131382
[2,] -0.940921 0.7612214 -1.267063 -0.4729628 -0.3609846 0.2508959 -0.131382
          [,50]       [,51]     [,52]      [,53]      [,54]     [,55]
[1,] -0.3273875 -0.04559044 0.2111256 -0.9670083 -0.4365494 0.4594762
[2,] -0.3273875 -0.04559044 0.2111256 -0.9670083 -0.4365494 0.4594762
          [,56]     [,57]    [,58]     [,59]      [,60]      [,61]      [,62]
[1,] -0.2949973 -1.118568 1.133524 0.1401152 -0.8532833 -0.4414246 -0.8922313
[2,] -0.2949973 -1.118568 1.133524 0.1401152 -0.8532833 -0.4414246 -0.8922313
         [,63]      [,64]       [,65]      [,66]    [,67]      [,68]    [,69]
[1,] 0.4201047 -0.9686156 -0.01509018 -0.9964204 1.078252 -0.4345019 1.059295
[2,] 0.4201047 -0.9686156 -0.01509018 -0.9964204 1.078252 -0.4345019 1.059295
        [,70]      [,71]      [,72]     [,73]    [,74]      [,75]     [,76]
[1,] 1.281877 -0.0489632 -0.3960267 -0.164487 1.029952 -0.6857261 -1.084079
[2,] 1.281877 -0.0489632 -0.3960267 -0.164487 1.029952 -0.6857261 -1.084079
          [,77]       [,78]     [,79]      [,80]    [,81]      [,82]      [,83]
[1,] -0.9910032 0.008899139 -0.657961 -0.9174147 2.135669 -0.3454596 -0.3037338
[2,] -0.9910032 0.008899139 -0.657961 -0.9174147 2.135669 -0.3454596 -0.3037338
        [,84]     [,85]     [,86]       [,87]     [,88]     [,89]      [,90]
[1,] 1.410908 -1.954053 -1.551049 -0.06987156 -1.849679 0.1040667 -0.2808143
[2,] 1.410908 -1.954053 -1.551049 -0.06987156 -1.849679 0.1040667 -0.2808143
         [,91]     [,92]     [,93]     [,94]     [,95]     [,96]     [,97]
[1,] 0.3752501 0.5420714 0.9126369 0.4946173 -0.467986 0.3171057 -1.161861
[2,] 0.3752501 0.5420714 0.9126369 0.4946173 -0.467986 0.3171057 -1.161861
          [,98]      [,99]      [,100]
[1,] -0.3987052 -0.1655393 -0.09424578
[2,] -0.3987052 -0.1655393 -0.09424578
> 
> 
> Max(tmp2)
[1] 2.668681
> Min(tmp2)
[1] -2.209345
> mean(tmp2)
[1] -0.07430676
> Sum(tmp2)
[1] -7.430676
> Var(tmp2)
[1] 0.9982058
> 
> rowMeans(tmp2)
  [1] -0.895976706  0.631671095  0.148686684 -1.148742788 -1.040407522
  [6] -0.472696621  0.721723930  0.069968134  0.535088250 -0.989208768
 [11] -0.068256489  0.836545001  0.161201394  0.377155335 -1.228280226
 [16] -0.774735335 -0.426088791 -1.024947464 -0.966309833  0.316202207
 [21] -1.359331094  1.018960953  0.522222560  0.521078029 -0.718781025
 [26] -0.006592089  0.386872820 -1.111163098 -0.778824040  1.128665338
 [31] -0.034797272  0.673088865 -0.763097203  0.211665587 -0.920309504
 [36]  2.668681495  2.111904849  0.989786966 -1.746593711  1.457989056
 [41] -0.734141986 -0.770924343 -0.412162230 -0.405641706  1.343177060
 [46] -0.662082877 -2.084514976  1.769037550 -0.773399472  1.925925657
 [51] -2.083640903 -0.581844385  1.013868963  0.369898630 -0.619608320
 [56] -2.209344629 -0.191573298 -1.318735436  0.973617146  0.740145441
 [61] -0.284503040 -0.776222529  1.521238126 -0.562379565 -0.345844431
 [66]  0.717585572 -1.219744485 -0.673841640  0.672719722 -0.900216285
 [71]  0.366218872 -0.977216644  0.060169276 -0.982498364 -0.018278860
 [76]  0.071169329  0.163565341  1.640540287  0.198727944 -0.640749081
 [81] -0.898647996 -0.228991016 -1.127105121  0.323755146  0.145809016
 [86]  0.166200572  0.798750542 -1.687701207 -0.058424113  0.777906304
 [91] -0.811837314  0.222319883 -0.494907739  0.387012597  0.102095084
 [96] -0.339088020  2.323938700 -1.651737079  1.850029791  0.437431925
> rowSums(tmp2)
  [1] -0.895976706  0.631671095  0.148686684 -1.148742788 -1.040407522
  [6] -0.472696621  0.721723930  0.069968134  0.535088250 -0.989208768
 [11] -0.068256489  0.836545001  0.161201394  0.377155335 -1.228280226
 [16] -0.774735335 -0.426088791 -1.024947464 -0.966309833  0.316202207
 [21] -1.359331094  1.018960953  0.522222560  0.521078029 -0.718781025
 [26] -0.006592089  0.386872820 -1.111163098 -0.778824040  1.128665338
 [31] -0.034797272  0.673088865 -0.763097203  0.211665587 -0.920309504
 [36]  2.668681495  2.111904849  0.989786966 -1.746593711  1.457989056
 [41] -0.734141986 -0.770924343 -0.412162230 -0.405641706  1.343177060
 [46] -0.662082877 -2.084514976  1.769037550 -0.773399472  1.925925657
 [51] -2.083640903 -0.581844385  1.013868963  0.369898630 -0.619608320
 [56] -2.209344629 -0.191573298 -1.318735436  0.973617146  0.740145441
 [61] -0.284503040 -0.776222529  1.521238126 -0.562379565 -0.345844431
 [66]  0.717585572 -1.219744485 -0.673841640  0.672719722 -0.900216285
 [71]  0.366218872 -0.977216644  0.060169276 -0.982498364 -0.018278860
 [76]  0.071169329  0.163565341  1.640540287  0.198727944 -0.640749081
 [81] -0.898647996 -0.228991016 -1.127105121  0.323755146  0.145809016
 [86]  0.166200572  0.798750542 -1.687701207 -0.058424113  0.777906304
 [91] -0.811837314  0.222319883 -0.494907739  0.387012597  0.102095084
 [96] -0.339088020  2.323938700 -1.651737079  1.850029791  0.437431925
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.895976706  0.631671095  0.148686684 -1.148742788 -1.040407522
  [6] -0.472696621  0.721723930  0.069968134  0.535088250 -0.989208768
 [11] -0.068256489  0.836545001  0.161201394  0.377155335 -1.228280226
 [16] -0.774735335 -0.426088791 -1.024947464 -0.966309833  0.316202207
 [21] -1.359331094  1.018960953  0.522222560  0.521078029 -0.718781025
 [26] -0.006592089  0.386872820 -1.111163098 -0.778824040  1.128665338
 [31] -0.034797272  0.673088865 -0.763097203  0.211665587 -0.920309504
 [36]  2.668681495  2.111904849  0.989786966 -1.746593711  1.457989056
 [41] -0.734141986 -0.770924343 -0.412162230 -0.405641706  1.343177060
 [46] -0.662082877 -2.084514976  1.769037550 -0.773399472  1.925925657
 [51] -2.083640903 -0.581844385  1.013868963  0.369898630 -0.619608320
 [56] -2.209344629 -0.191573298 -1.318735436  0.973617146  0.740145441
 [61] -0.284503040 -0.776222529  1.521238126 -0.562379565 -0.345844431
 [66]  0.717585572 -1.219744485 -0.673841640  0.672719722 -0.900216285
 [71]  0.366218872 -0.977216644  0.060169276 -0.982498364 -0.018278860
 [76]  0.071169329  0.163565341  1.640540287  0.198727944 -0.640749081
 [81] -0.898647996 -0.228991016 -1.127105121  0.323755146  0.145809016
 [86]  0.166200572  0.798750542 -1.687701207 -0.058424113  0.777906304
 [91] -0.811837314  0.222319883 -0.494907739  0.387012597  0.102095084
 [96] -0.339088020  2.323938700 -1.651737079  1.850029791  0.437431925
> rowMin(tmp2)
  [1] -0.895976706  0.631671095  0.148686684 -1.148742788 -1.040407522
  [6] -0.472696621  0.721723930  0.069968134  0.535088250 -0.989208768
 [11] -0.068256489  0.836545001  0.161201394  0.377155335 -1.228280226
 [16] -0.774735335 -0.426088791 -1.024947464 -0.966309833  0.316202207
 [21] -1.359331094  1.018960953  0.522222560  0.521078029 -0.718781025
 [26] -0.006592089  0.386872820 -1.111163098 -0.778824040  1.128665338
 [31] -0.034797272  0.673088865 -0.763097203  0.211665587 -0.920309504
 [36]  2.668681495  2.111904849  0.989786966 -1.746593711  1.457989056
 [41] -0.734141986 -0.770924343 -0.412162230 -0.405641706  1.343177060
 [46] -0.662082877 -2.084514976  1.769037550 -0.773399472  1.925925657
 [51] -2.083640903 -0.581844385  1.013868963  0.369898630 -0.619608320
 [56] -2.209344629 -0.191573298 -1.318735436  0.973617146  0.740145441
 [61] -0.284503040 -0.776222529  1.521238126 -0.562379565 -0.345844431
 [66]  0.717585572 -1.219744485 -0.673841640  0.672719722 -0.900216285
 [71]  0.366218872 -0.977216644  0.060169276 -0.982498364 -0.018278860
 [76]  0.071169329  0.163565341  1.640540287  0.198727944 -0.640749081
 [81] -0.898647996 -0.228991016 -1.127105121  0.323755146  0.145809016
 [86]  0.166200572  0.798750542 -1.687701207 -0.058424113  0.777906304
 [91] -0.811837314  0.222319883 -0.494907739  0.387012597  0.102095084
 [96] -0.339088020  2.323938700 -1.651737079  1.850029791  0.437431925
> 
> colMeans(tmp2)
[1] -0.07430676
> colSums(tmp2)
[1] -7.430676
> colVars(tmp2)
[1] 0.9982058
> colSd(tmp2)
[1] 0.9991025
> colMax(tmp2)
[1] 2.668681
> colMin(tmp2)
[1] -2.209345
> colMedians(tmp2)
[1] -0.04661069
> colRanges(tmp2)
          [,1]
[1,] -2.209345
[2,]  2.668681
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -8.10737029  0.07701102 -2.69329026  8.09256415  2.76667008 -2.03419811
 [7]  1.78882081  0.17345490 -2.57684358 -0.38396881
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -2.1043799
[2,] -1.3365685
[3,] -1.0095372
[4,] -0.3933458
[5,]  0.8211023
> 
> rowApply(tmp,sum)
 [1] -4.3830217  4.0926701  0.3885387  2.8010826 -1.7826359 -2.6043446
 [7]  3.4891191 -4.4069520  0.4776051 -0.9692114
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    4    1    2    3    4    1    1    8    5     5
 [2,]    5   10    3    9    2   10    7    4    8     1
 [3,]    8    7    5    1    9    3    8    2    2     7
 [4,]   10    6   10    4    5    8    3   10    9     6
 [5,]    1    3    8    8    6    4    4    9    4     8
 [6,]    7    2    9   10    1    5    2    5    3     3
 [7,]    2    9    7    2    8    9   10    1   10     4
 [8,]    9    8    6    7    3    7    6    7    6     2
 [9,]    6    5    4    6    7    2    9    3    1    10
[10,]    3    4    1    5   10    6    5    6    7     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.282075 -1.242689  1.863724  3.583852 -1.789534 -1.058198  0.816807
 [8] -1.807781 -1.432439  1.029766 -3.519831  2.323916 -1.311869  1.438465
[15]  2.043080 -1.095507  3.921410 -5.130894 -1.097725 -3.517726
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.8377801
[2,] -0.6053270
[3,] -0.4385885
[4,]  0.7203055
[5,]  2.4434653
> 
> rowApply(tmp,sum)
[1]  2.09632010  1.78361727 -5.29164698 -0.09570361 -3.19368533
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   20    6   18    6    9
[2,]    8   10   15   16    1
[3,]    3   14   12   20   13
[4,]   15   18   13   15   15
[5,]    1   12    6    8   14
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]      [,4]       [,5]        [,6]
[1,]  2.4434653 -0.4937806 -1.0722401 0.6213151 -1.2570817 -0.02812249
[2,] -0.8377801  0.1574314  0.8589331 1.4128061  0.5486082 -1.47100481
[3,]  0.7203055  0.4663283  0.2764441 0.3652573 -0.7828894 -0.12466337
[4,] -0.6053270  0.9450171  1.6248168 0.8964221 -0.5070290 -0.56973211
[5,] -0.4385885 -2.3176851  0.1757706 0.2880513  0.2088580  1.13532508
           [,7]        [,8]       [,9]      [,10]      [,11]        [,12]
[1,]  1.4811676 -0.31805900 -0.5826815  1.0200873 -0.8367545  2.130291761
[2,]  1.3548639 -1.19804094  0.9071163  0.8597632 -0.8255059 -1.181009587
[3,] -1.8698207 -0.09872469  0.6559036 -2.2067891 -1.2280954 -0.182588349
[4,]  0.5900358 -0.18256592 -0.8891091  1.0142062 -0.1360604  1.548082136
[5,] -0.7394396 -0.01039086 -1.5236687  0.3424988 -0.4934151  0.009139823
          [,13]      [,14]      [,15]      [,16]      [,17]      [,18]
[1,] -0.3017173 -0.8315693  1.2591037  0.4112476  0.1871644 -0.9860955
[2,] -0.5354841  0.5805872  0.4323735 -1.4510542  1.7103623 -0.1614523
[3,] -0.7053481  1.1106377  0.6995344  1.5053950  0.4611535 -1.4603091
[4,]  1.0641055 -0.2148604 -1.1641183 -0.9936842 -0.1817531 -1.8109140
[5,] -0.8334249  0.7936698  0.8161863 -0.5674111  1.7444832 -0.7121234
           [,19]      [,20]
[1,]  0.46756744 -1.2169881
[2,]  1.61227822 -0.9901741
[3,] -3.12103807  0.2276598
[4,]  0.09008763 -0.6133234
[5,] -0.14662019 -0.9249007
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
         col1      col2     col3      col4       col5     col6      col7
row1 1.072271 -0.105415 1.246423 0.3858477 -0.2511012 -1.51183 -1.903313
          col8     col9       col10     col11    col12     col13      col14
row1 0.5180374 1.633811 -0.08681529 -1.196268 1.483666 0.3676545 -0.1322318
        col15     col16    col17     col18      col19    col20
row1 1.036194 -1.787196 1.238582 0.5000677 -0.1326037 1.183039
> tmp[,"col10"]
           col10
row1 -0.08681529
row2  0.95557966
row3  0.83169163
row4  0.24515804
row5  1.27645920
> tmp[c("row1","row5"),]
           col1       col2       col3      col4       col5       col6
row1  1.0722710 -0.1054150  1.2464226 0.3858477 -0.2511012 -1.5118296
row5 -0.9998216 -0.1959044 -0.1045173 0.9323576  2.2247577 -0.2573657
           col7      col8      col9       col10      col11      col12     col13
row1 -1.9033133 0.5180374 1.6338106 -0.08681529 -1.1962684  1.4836661 0.3676545
row5 -0.7046143 1.1145043 0.7452813  1.27645920  0.8902384 -0.3692328 1.4994765
          col14    col15     col16     col17      col18      col19      col20
row1 -0.1322318 1.036194 -1.787196  1.238582  0.5000677 -0.1326037  1.1830387
row5  0.7364460 0.162418  0.855980 -0.679186 -0.3558738  0.9304754 -0.4611562
> tmp[,c("col6","col20")]
           col6       col20
row1 -1.5118296  1.18303873
row2  0.4902889  0.08279873
row3 -0.5088856  0.90321188
row4  1.1678623  0.63571064
row5 -0.2573657 -0.46115617
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -1.5118296  1.1830387
row5 -0.2573657 -0.4611562
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6    col7     col8
row1 50.82295 47.85644 52.00861 49.23301 50.05328 105.0395 49.9623 49.37079
         col9    col10    col11    col12    col13    col14    col15    col16
row1 48.60035 50.61392 49.85449 51.57673 49.90112 49.58816 51.04218 50.36848
        col17    col18    col19    col20
row1 50.72852 49.23282 50.71888 105.6532
> tmp[,"col10"]
        col10
row1 50.61392
row2 29.89725
row3 29.42537
row4 30.14573
row5 50.55459
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.82295 47.85644 52.00861 49.23301 50.05328 105.0395 49.96230 49.37079
row5 48.64341 50.41102 48.48985 47.71063 50.41696 104.3175 50.09845 51.50363
         col9    col10    col11    col12    col13    col14    col15    col16
row1 48.60035 50.61392 49.85449 51.57673 49.90112 49.58816 51.04218 50.36848
row5 50.50429 50.55459 48.05389 50.42543 51.25872 52.25516 50.44219 48.97981
        col17    col18    col19    col20
row1 50.72852 49.23282 50.71888 105.6532
row5 52.42787 49.76632 49.17745 105.9211
> tmp[,c("col6","col20")]
          col6     col20
row1 105.03948 105.65321
row2  76.03265  74.89473
row3  77.11290  74.97974
row4  74.84428  73.75872
row5 104.31748 105.92114
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.0395 105.6532
row5 104.3175 105.9211
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.0395 105.6532
row5 104.3175 105.9211
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
            col13
[1,] -2.070465471
[2,] -0.173841244
[3,] -0.565889072
[4,]  0.878452785
[5,]  0.002856792
> tmp[,c("col17","col7")]
           col17       col7
[1,]  1.01147700 -0.3287663
[2,] -0.77413408  0.2165522
[3,]  0.07414977  0.9501054
[4,]  0.34174882 -0.2287671
[5,] -0.81124449 -0.4529837
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -1.8004727 -0.6185686
[2,] -1.3585083  0.4000045
[3,] -0.2172795  0.8874348
[4,]  0.7666254 -1.1015002
[5,]  1.1174500 -0.9660798
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -1.800473
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] -1.800473
[2,] -1.358508
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]       [,2]      [,3]       [,4]       [,5]      [,6]       [,7]
row3 0.5290688 -0.1075075 -1.450196 -0.1147926 -0.6283376 -1.078341 -0.9879742
row1 0.2454342 -1.2656683  0.439793  2.4589891  0.3585043 -1.082603  0.2226799
          [,8]       [,9]     [,10]     [,11]      [,12]      [,13]      [,14]
row3  1.128511 -1.2796427 0.1141409 0.8900175 -0.3764523 -1.1722733 -1.1982415
row1 -1.154213  0.3822543 0.6139303 0.9142945 -0.8379036  0.2145429 -0.8134425
         [,15]      [,16]     [,17]      [,18]       [,19]      [,20]
row3 -1.067943  1.4487860 1.0396510 -0.6412555 -0.08922372 -0.6372335
row1 -1.328874 -0.2522487 0.8436028 -0.2351242 -0.21711575 -1.7033325
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]      [,2]       [,3]       [,4]     [,5]      [,6]     [,7]
row2 0.9082019 0.9397012 -0.3482129 -0.2551052 1.214071 0.1140067 1.342562
            [,8]       [,9]     [,10]
row2 -0.05706505 -0.7676127 0.2513084
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]       [,2]     [,3]      [,4]      [,5]     [,6]      [,7]
row5 -0.2695358 -0.1168094 1.012982 0.5871479 -1.900237 1.506304 0.3089775
          [,8]     [,9]     [,10]   [,11]     [,12]     [,13]      [,14]
row5 -1.546566 1.166467 0.7478632 -0.4162 0.5112119 0.6246701 -0.6103889
          [,15]     [,16]    [,17]     [,18]       [,19]       [,20]
row5 -0.1119384 -1.714782 -1.87761 -2.218926 -0.04982813 -0.04972314
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x3e782710>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba233d6375"
 [2] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba38f3f506"
 [3] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba542e3494"
 [4] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba66fcc012"
 [5] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba3db4f965"
 [6] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba6ec4ddcf"
 [7] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba72370215"
 [8] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba1f2c23a7"
 [9] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba73c2129e"
[10] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba5ec9e333"
[11] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba602cfb8f"
[12] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba2c75f9b7"
[13] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba3f44a57" 
[14] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfbafcd65e8" 
[15] "/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM1acfba23a089d8"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x3d4ada60>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x3d4ada60>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x3d4ada60>
> rowMedians(tmp)
  [1] -0.335460166 -0.412566483 -0.116394814  0.239505341 -0.122218451
  [6]  0.020165171  0.667059755 -0.194571545  0.341068678 -0.119468711
 [11] -0.180201196  0.026760952 -0.197644451  0.268478562  0.276855932
 [16] -0.234360247 -0.120340372 -0.194553974  0.562809154  0.248684257
 [21]  0.404311640 -0.079910983  0.503938067  0.217638701 -0.097252560
 [26]  0.210227325 -0.656826948 -0.114720134  0.043765670 -0.050281665
 [31] -0.139116586  0.043398166 -0.033104705  0.136613559  0.069896628
 [36]  0.843463194 -0.247151261  0.549188745 -0.258748017 -0.797803744
 [41]  0.210143149  0.052866064 -0.443964193 -0.456581562  0.229161898
 [46] -0.198253321 -0.173525820  0.267778556  0.377402594 -0.339916431
 [51] -0.114580879  0.093378135  0.511016648 -0.393206679  0.052872672
 [56]  0.405333185 -0.597082627  0.200386532  0.152689880 -0.271831289
 [61] -0.152325793 -0.329623012  0.038832873 -0.538952714 -0.292304673
 [66] -0.307892577  0.059617878 -0.354963196 -0.538759673  0.499098897
 [71] -0.082045615  0.356548031 -0.079784931 -0.267903875  0.355919425
 [76] -0.486225200 -0.146074590 -0.259107248 -0.400383726  0.533103398
 [81]  0.005434760 -0.099969056 -0.165114190 -0.008287003 -0.253645273
 [86] -0.603278708  0.473287306 -0.067693394 -0.201082904 -0.423659446
 [91] -0.178519012 -0.344859794 -0.097038394  0.168630422 -0.047186037
 [96] -0.027331146  0.252527364 -0.006271842 -0.445779984  0.322320409
[101] -0.253259074 -0.190896072 -0.452135299 -0.248944684  0.305502287
[106]  0.135616329 -0.101111688  0.192607245 -0.069006773 -0.401410279
[111]  0.178525513  0.351062977  0.910194826 -0.079547811 -0.051946305
[116]  0.210904723 -0.024064183  0.107164519 -0.131153006  0.316185223
[121]  0.125590719 -0.115877218 -0.373316028  0.051044629 -0.210594410
[126] -0.090875607  0.383343602  0.642298313  0.443930580 -0.185170818
[131] -0.515698924 -0.181688664 -0.144411530  0.243040927 -0.138881389
[136] -0.209557786 -0.507736623  0.328704574  0.293636347 -0.088161120
[141] -0.661470200  0.047670412  0.073737133  0.199595327  0.449194399
[146] -0.016776202 -0.195947621  0.170047412 -0.151835651  0.391032261
[151]  0.210459821 -0.259105616  0.239840027 -0.169661257 -0.168733888
[156]  0.016282662 -0.213691675  0.319865720 -0.392933558  0.097327483
[161] -0.246260423 -0.131719781  0.374999526  0.239013100 -0.577509900
[166]  0.262904530 -0.224862973 -0.161540186  0.295707371  0.399447638
[171]  0.698257399 -0.363963232 -0.448522997  0.058174259 -0.281591372
[176] -0.095190842 -0.052086916 -0.256236007  0.291498760 -0.391719434
[181] -0.019977671 -0.206307460  0.703010033  0.395386404  0.161570450
[186] -0.045954403  0.340479145  0.086042035  0.301009687 -0.264291340
[191] -0.407800250 -0.158907623  0.374336491  0.123432860  0.200468126
[196] -0.186699618  0.204365931 -0.568913067  0.153166414 -0.601643053
[201]  0.286159165 -0.167586030  0.528374683  0.173935409  0.210591159
[206]  0.690520881 -0.324688047  0.080372757 -0.221420493  0.088548464
[211]  0.110795885  0.183032507 -0.582321349 -0.261793877 -0.059834468
[216]  0.167490989 -0.099178571 -0.116559564 -0.177874185  0.183886045
[221] -0.134591057  0.015107553 -0.268719959  0.160061619  0.506599485
[226]  0.015037731  0.351906495  0.062213644  0.331435178 -0.152084048
> 
> proc.time()
   user  system elapsed 
  1.790   0.884   2.701 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0xbf3e460>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0xbf3e460>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0xbf3e460>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0xbf3e460>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0xb517450>
> .Call("R_bm_AddColumn",P)
<pointer: 0xb517450>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0xb517450>
> .Call("R_bm_AddColumn",P)
<pointer: 0xb517450>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0xb517450>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0xd945ea0>
> .Call("R_bm_AddColumn",P)
<pointer: 0xd945ea0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0xd945ea0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0xd945ea0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0xd945ea0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0xd945ea0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0xd945ea0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0xd945ea0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0xd945ea0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0xb38ce50>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0xb38ce50>
> .Call("R_bm_AddColumn",P)
<pointer: 0xb38ce50>
> .Call("R_bm_AddColumn",P)
<pointer: 0xb38ce50>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile1acfe06b083a8b" "BufferedMatrixFile1acfe07878f80f"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile1acfe06b083a8b" "BufferedMatrixFile1acfe07878f80f"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0xd8d4670>
> .Call("R_bm_AddColumn",P)
<pointer: 0xd8d4670>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0xd8d4670>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0xd8d4670>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0xd8d4670>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0xd8d4670>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0xd922820>
> .Call("R_bm_AddColumn",P)
<pointer: 0xd922820>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0xd922820>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0xd922820>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0xb90a6e0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0xb90a6e0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.327   0.038   0.351 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.316   0.044   0.346 

Example timings