Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-08-09 12:09 -0400 (Sat, 09 Aug 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.2 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4818 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.5.1 (2025-06-13 ucrt) -- "Great Square Root" | 4553 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4595 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4537 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 251/2317 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
BufferedMatrix 1.73.0 (landing page) Ben Bolstad
| nebbiolo2 | Linux (Ubuntu 24.04.2 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | WARNINGS | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | WARNINGS | OK | ![]() | ||||||||
To the developers/maintainers of the BufferedMatrix package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: BufferedMatrix |
Version: 1.73.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz |
StartedAt: 2025-08-08 18:26:02 -0400 (Fri, 08 Aug 2025) |
EndedAt: 2025-08-08 18:26:19 -0400 (Fri, 08 Aug 2025) |
EllapsedTime: 16.2 seconds |
RetCode: 0 |
Status: WARNINGS |
CheckDir: BufferedMatrix.Rcheck |
Warnings: 1 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’ * using R version 4.5.1 Patched (2025-06-14 r88325) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 16.0.0 (clang-1600.0.26.6) GNU Fortran (GCC) 14.2.0 * running under: macOS Ventura 13.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK * this is package ‘BufferedMatrix’ version ‘1.73.0’ * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘BufferedMatrix’ can be installed ... WARNING Found the following significant warnings: doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses] See ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details. * used C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’ * used SDK: ‘MacOSX11.3.sdk’ * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup? 209 | $x^{power}$ elementwise of the matrix | ^ prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking compiled code ... NOTE Note: information on .o files is not available * checking sizes of PDF files under ‘inst/doc’ ... OK * checking files in ‘vignettes’ ... OK * checking examples ... NONE * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘Rcodetesting.R’ Running ‘c_code_level_tests.R’ Running ‘objectTesting.R’ Running ‘rawCalltesting.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 WARNING, 2 NOTEs See ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’ for details.
BufferedMatrix.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘BufferedMatrix’ ... ** this is package ‘BufferedMatrix’ version ‘1.73.0’ ** using staged installation ** libs using C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’ using SDK: ‘MacOSX11.3.sdk’ clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c RBufferedMatrix.c -o RBufferedMatrix.o clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses] if (!(Matrix->readonly) & setting){ ^ ~ doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first if (!(Matrix->readonly) & setting){ ^ ( ) doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning if (!(Matrix->readonly) & setting){ ^ ( ) doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function] static int sort_double(const double *a1,const double *a2){ ^ 2 warnings generated. clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c init_package.c -o init_package.o clang -arch arm64 -std=gnu2x -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R installing to /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs ** R ** inst ** byte-compile and prepare package for lazy loading Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’ Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’ Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’ Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’ Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’ Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’ ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** checking absolute paths in shared objects and dynamic libraries ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (BufferedMatrix)
BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout
R version 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1)) Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 Adding Additional Column Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 Reassigning values 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 3 Buffer Cols: 3 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Activating Row Buffer In row mode: 1 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Squaring Last Column 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 Square rooting Last Row, then turing off Row Buffer In row mode: 0 Checking on value that should be not be in column buffer2.236068 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 Single Indexing. Assign each value its square 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Resizing Buffers Smaller Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Activating Row Mode. Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 Activating ReadOnly Mode. The results of assignment is: 0 Printing matrix reversed. 900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 [[1]] [1] 0 > > proc.time() user system elapsed 0.105 0.031 0.133
BufferedMatrix.Rcheck/tests/objectTesting.Rout
R version 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > > ### this is used to control how many repetitions in something below > ### higher values result in more checks. > nreps <-100 ##20000 > > > ## test creation and some simple assignments and subsetting operations > > ## first on single elements > tmp <- createBufferedMatrix(1000,10) > > tmp[10,5] [1] 0 > tmp[10,5] <- 10 > tmp[10,5] [1] 10 > tmp[10,5] <- 12.445 > tmp[10,5] [1] 12.445 > > > > ## now testing accessing multiple elements > tmp2 <- createBufferedMatrix(10,20) > > > tmp2[3,1] <- 51.34 > tmp2[9,2] <- 9.87654 > tmp2[,1:2] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[,-(3:20)] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 51.34 0 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 > tmp2[-3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 0 > tmp2[2,1:3] [,1] [,2] [,3] [1,] 0 0 0 > tmp2[3:9,1:3] [,1] [,2] [,3] [1,] 51.34 0.00000 0 [2,] 0.00 0.00000 0 [3,] 0.00 0.00000 0 [4,] 0.00 0.00000 0 [5,] 0.00 0.00000 0 [6,] 0.00 0.00000 0 [7,] 0.00 9.87654 0 > tmp2[-4,-4] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 51.34 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0.00 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [1,] 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 > > ## now testing accessing/assigning multiple elements > tmp3 <- createBufferedMatrix(10,10) > > for (i in 1:10){ + for (j in 1:10){ + tmp3[i,j] <- (j-1)*10 + i + } + } > > tmp3[2:4,2:4] [,1] [,2] [,3] [1,] 12 22 32 [2,] 13 23 33 [3,] 14 24 34 > tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 11 21 31 11 21 31 91 1 11 1 11 21 31 [2,] 12 22 32 12 22 32 92 2 12 2 12 22 32 [3,] 13 23 33 13 23 33 93 3 13 3 13 23 33 [4,] 14 24 34 14 24 34 94 4 14 4 14 24 34 [5,] 15 25 35 15 25 35 95 5 15 5 15 25 35 [6,] 16 26 36 16 26 36 96 6 16 6 16 26 36 [7,] 17 27 37 17 27 37 97 7 17 7 17 27 37 [8,] 18 28 38 18 28 38 98 8 18 8 18 28 38 [9,] 19 29 39 19 29 39 99 9 19 9 19 29 39 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [1,] 41 51 61 71 81 91 91 81 71 61 51 41 [2,] 42 52 62 72 82 92 92 82 72 62 52 42 [3,] 43 53 63 73 83 93 93 83 73 63 53 43 [4,] 44 54 64 74 84 94 94 84 74 64 54 44 [5,] 45 55 65 75 85 95 95 85 75 65 55 45 [6,] 46 56 66 76 86 96 96 86 76 66 56 46 [7,] 47 57 67 77 87 97 97 87 77 67 57 47 [8,] 48 58 68 78 88 98 98 88 78 68 58 48 [9,] 49 59 69 79 89 99 99 89 79 69 59 49 [,26] [,27] [,28] [,29] [1,] 31 21 11 1 [2,] 32 22 12 2 [3,] 33 23 13 3 [4,] 34 24 14 4 [5,] 35 25 15 5 [6,] 36 26 16 6 [7,] 37 27 17 7 [8,] 38 28 18 8 [9,] 39 29 19 9 > tmp3[-c(1:5),-c(6:10)] [,1] [,2] [,3] [,4] [,5] [1,] 6 16 26 36 46 [2,] 7 17 27 37 47 [3,] 8 18 28 38 48 [4,] 9 19 29 39 49 [5,] 10 20 30 40 50 > > ## assignment of whole columns > tmp3[,1] <- c(1:10*100.0) > tmp3[,1:2] <- tmp3[,1:2]*100 > tmp3[,1:2] <- tmp3[,2:1] > tmp3[,1:2] [,1] [,2] [1,] 1100 1e+04 [2,] 1200 2e+04 [3,] 1300 3e+04 [4,] 1400 4e+04 [5,] 1500 5e+04 [6,] 1600 6e+04 [7,] 1700 7e+04 [8,] 1800 8e+04 [9,] 1900 9e+04 [10,] 2000 1e+05 > > > tmp3[,-1] <- tmp3[,1:9] > tmp3[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1100 1100 1e+04 21 31 41 51 61 71 81 [2,] 1200 1200 2e+04 22 32 42 52 62 72 82 [3,] 1300 1300 3e+04 23 33 43 53 63 73 83 [4,] 1400 1400 4e+04 24 34 44 54 64 74 84 [5,] 1500 1500 5e+04 25 35 45 55 65 75 85 [6,] 1600 1600 6e+04 26 36 46 56 66 76 86 [7,] 1700 1700 7e+04 27 37 47 57 67 77 87 [8,] 1800 1800 8e+04 28 38 48 58 68 78 88 [9,] 1900 1900 9e+04 29 39 49 59 69 79 89 [10,] 2000 2000 1e+05 30 40 50 60 70 80 90 > > tmp3[,1:2] <- rep(1,10) > tmp3[,1:2] <- rep(1,20) > tmp3[,1:2] <- matrix(c(1:5),1,5) > > tmp3[,-c(1:8)] <- matrix(c(1:5),1,5) > > tmp3[1,] <- 1:10 > tmp3[1,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 > tmp3[-1,] <- c(1,2) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 2 1 2 1 2 1 2 1 2 1 [10,] 1 2 1 2 1 2 1 2 1 2 > tmp3[-c(1:8),] <- matrix(c(1:5),1,5) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 1 3 5 2 4 1 3 5 2 4 [10,] 2 4 1 3 5 2 4 1 3 5 > > > tmp3[1:2,1:2] <- 5555.04 > tmp3[-(1:2),1:2] <- 1234.56789 > > > > ## testing accessors for the directory and prefix > directory(tmp3) [1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests" > prefix(tmp3) [1] "BM" > > ## testing if we can remove these objects > rm(tmp, tmp2, tmp3) > gc() used (Mb) gc trigger (Mb) limit (Mb) max used (Mb) Ncells 480828 25.7 1056621 56.5 NA 634345 33.9 Vcells 891019 6.8 8388608 64.0 196608 2109864 16.1 > > > > > ## > ## checking reads > ## > > tmp2 <- createBufferedMatrix(10,20) > > test.sample <- rnorm(10*20) > > tmp2[1:10,1:20] <- test.sample > > test.matrix <- matrix(test.sample,10,20) > > ## testing reads > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Fri Aug 8 18:26:11 2025" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Fri Aug 8 18:26:11 2025" > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > > > RowMode(tmp2) <pointer: 0x600002d48000> > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Fri Aug 8 18:26:12 2025" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Fri Aug 8 18:26:13 2025" > > ColMode(tmp2) <pointer: 0x600002d48000> > > > > ### Now testing assignments > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + + new.data <- rnorm(20) + tmp2[which.row,] <- new.data + test.matrix[which.row,] <- new.data + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + new.data <- rnorm(10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[which.row,] <- new.data + test.matrix[which.row,]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + } > > > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(25),5,5) + tmp2[which.row,which.col] <- new.data + test.matrix[which.row,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + prev.col <- which.col + } > > > > > ### > ### > ### testing some more functions > ### > > > > ## duplication function > tmp5 <- duplicate(tmp2) > > # making sure really did copy everything. > tmp5[1,1] <- tmp5[1,1] +100.00 > > if (tmp5[1,1] == tmp2[1,1]){ + stop("Problem with duplication") + } > > > > > ### testing elementwise applying of functions > > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 100.0014642 1.6070875 1.5996832 0.8634702 [2,] -0.3697122 1.0016473 -0.2043962 -0.2360702 [3,] 0.8808726 -1.5509081 -1.6185248 -0.2259610 [4,] 0.3237660 -0.7424813 0.2200663 -0.5633120 > ewApply(tmp5,abs) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 1.9 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 100.0014642 1.6070875 1.5996832 0.8634702 [2,] 0.3697122 1.0016473 0.2043962 0.2360702 [3,] 0.8808726 1.5509081 1.6185248 0.2259610 [4,] 0.3237660 0.7424813 0.2200663 0.5633120 > ewApply(tmp5,sqrt) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 1.9 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 10.0000732 1.2677095 1.2647858 0.9292310 [2,] 0.6080396 1.0008233 0.4521019 0.4858705 [3,] 0.9385481 1.2453546 1.2722125 0.4753536 [4,] 0.5690044 0.8616735 0.4691123 0.7505411 > > my.function <- function(x,power){ + (x+5)^power + } > > ewApply(tmp5,my.function,power=2) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 1.9 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 225.00220 39.28418 39.24754 35.15578 [2,] 31.45011 36.00988 29.72542 30.09478 [3,] 35.26635 39.00445 39.34065 29.97950 [4,] 31.01381 34.35922 29.91119 33.06872 > > > > ## testing functions that elementwise transform the matrix > sqrt(tmp5) <pointer: 0x600002d4c000> > exp(tmp5) <pointer: 0x600002d4c000> > log(tmp5,2) <pointer: 0x600002d4c000> > pow(tmp5,2) > > > > > > ## testing functions that apply to entire matrix > Max(tmp5) [1] 468.3126 > Min(tmp5) [1] 53.75983 > mean(tmp5) [1] 72.47928 > Sum(tmp5) [1] 14495.86 > Var(tmp5) [1] 863.3747 > > > ## testing functions applied to rows or columns > > rowMeans(tmp5) [1] 90.25724 68.87867 72.44205 69.65357 72.54885 68.67851 68.15043 72.10908 [9] 71.41937 70.65500 > rowSums(tmp5) [1] 1805.145 1377.573 1448.841 1393.071 1450.977 1373.570 1363.009 1442.182 [9] 1428.387 1413.100 > rowVars(tmp5) [1] 8002.61104 42.83714 91.23751 80.50741 65.44376 58.71298 [7] 69.00115 71.80989 80.28131 85.76186 > rowSd(tmp5) [1] 89.457314 6.545009 9.551833 8.972592 8.089732 7.662439 8.306693 [8] 8.474071 8.959984 9.260770 > rowMax(tmp5) [1] 468.31259 83.15868 91.38515 97.34845 84.16196 83.91223 90.15448 [8] 87.56798 86.56233 90.45025 > rowMin(tmp5) [1] 53.75983 60.19930 56.78634 58.59430 58.74304 59.09983 54.22059 55.91504 [9] 56.32542 57.23739 > > colMeans(tmp5) [1] 106.99684 75.24613 72.46595 70.55576 69.43318 74.06651 69.95359 [8] 72.80397 69.03038 69.80377 71.34199 67.64307 67.47656 69.40581 [15] 67.43769 68.22892 67.18585 73.01642 73.43818 74.05498 > colSums(tmp5) [1] 1069.9684 752.4613 724.6595 705.5576 694.3318 740.6651 699.5359 [8] 728.0397 690.3038 698.0377 713.4199 676.4307 674.7656 694.0581 [15] 674.3769 682.2892 671.8585 730.1642 734.3818 740.5498 > colVars(tmp5) [1] 16142.47249 74.73419 91.94250 56.12893 39.77252 80.99908 [7] 64.07566 97.96364 41.27609 72.13006 120.87766 35.43245 [13] 74.36430 109.62223 70.62816 55.55448 94.66888 32.33638 [19] 57.86464 150.10340 > colSd(tmp5) [1] 127.053030 8.644894 9.588665 7.491924 6.306546 8.999949 [7] 8.004728 9.897658 6.424647 8.492942 10.994438 5.952517 [13] 8.623474 10.470063 8.404056 7.453487 9.729794 5.686509 [19] 7.606881 12.251669 > colMax(tmp5) [1] 468.31259 90.45025 84.12897 84.16196 83.25911 88.48824 80.33100 [8] 91.38515 79.43011 84.40721 90.15448 76.19586 82.17028 87.29652 [15] 78.69437 84.84031 87.51112 78.26223 82.54298 97.34845 > colMin(tmp5) [1] 58.74304 59.01664 60.93562 62.39840 62.18888 62.55768 59.63222 59.37929 [9] 60.19930 61.54640 57.23739 60.92662 54.22059 53.75983 55.91504 62.27038 [17] 56.32542 63.89862 59.97452 56.78634 > > > ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default) > > > which.row <- sample(1:10,1,replace=TRUE) > which.col <- sample(1:20,1,replace=TRUE) > > tmp5[which.row,which.col] <- NA > > Max(tmp5) [1] NA > Min(tmp5) [1] NA > mean(tmp5) [1] NA > Sum(tmp5) [1] NA > Var(tmp5) [1] NA > > rowMeans(tmp5) [1] 90.25724 68.87867 72.44205 69.65357 NA 68.67851 68.15043 72.10908 [9] 71.41937 70.65500 > rowSums(tmp5) [1] 1805.145 1377.573 1448.841 1393.071 NA 1373.570 1363.009 1442.182 [9] 1428.387 1413.100 > rowVars(tmp5) [1] 8002.61104 42.83714 91.23751 80.50741 66.92944 58.71298 [7] 69.00115 71.80989 80.28131 85.76186 > rowSd(tmp5) [1] 89.457314 6.545009 9.551833 8.972592 8.181041 7.662439 8.306693 [8] 8.474071 8.959984 9.260770 > rowMax(tmp5) [1] 468.31259 83.15868 91.38515 97.34845 NA 83.91223 90.15448 [8] 87.56798 86.56233 90.45025 > rowMin(tmp5) [1] 53.75983 60.19930 56.78634 58.59430 NA 59.09983 54.22059 55.91504 [9] 56.32542 57.23739 > > colMeans(tmp5) [1] 106.99684 75.24613 72.46595 70.55576 69.43318 74.06651 69.95359 [8] 72.80397 69.03038 69.80377 71.34199 67.64307 67.47656 69.40581 [15] 67.43769 NA 67.18585 73.01642 73.43818 74.05498 > colSums(tmp5) [1] 1069.9684 752.4613 724.6595 705.5576 694.3318 740.6651 699.5359 [8] 728.0397 690.3038 698.0377 713.4199 676.4307 674.7656 694.0581 [15] 674.3769 NA 671.8585 730.1642 734.3818 740.5498 > colVars(tmp5) [1] 16142.47249 74.73419 91.94250 56.12893 39.77252 80.99908 [7] 64.07566 97.96364 41.27609 72.13006 120.87766 35.43245 [13] 74.36430 109.62223 70.62816 NA 94.66888 32.33638 [19] 57.86464 150.10340 > colSd(tmp5) [1] 127.053030 8.644894 9.588665 7.491924 6.306546 8.999949 [7] 8.004728 9.897658 6.424647 8.492942 10.994438 5.952517 [13] 8.623474 10.470063 8.404056 NA 9.729794 5.686509 [19] 7.606881 12.251669 > colMax(tmp5) [1] 468.31259 90.45025 84.12897 84.16196 83.25911 88.48824 80.33100 [8] 91.38515 79.43011 84.40721 90.15448 76.19586 82.17028 87.29652 [15] 78.69437 NA 87.51112 78.26223 82.54298 97.34845 > colMin(tmp5) [1] 58.74304 59.01664 60.93562 62.39840 62.18888 62.55768 59.63222 59.37929 [9] 60.19930 61.54640 57.23739 60.92662 54.22059 53.75983 55.91504 NA [17] 56.32542 63.89862 59.97452 56.78634 > > Max(tmp5,na.rm=TRUE) [1] 468.3126 > Min(tmp5,na.rm=TRUE) [1] 53.75983 > mean(tmp5,na.rm=TRUE) [1] 72.44846 > Sum(tmp5,na.rm=TRUE) [1] 14417.24 > Var(tmp5,na.rm=TRUE) [1] 867.5442 > > rowMeans(tmp5,na.rm=TRUE) [1] 90.25724 68.87867 72.44205 69.65357 72.22972 68.67851 68.15043 72.10908 [9] 71.41937 70.65500 > rowSums(tmp5,na.rm=TRUE) [1] 1805.145 1377.573 1448.841 1393.071 1372.365 1373.570 1363.009 1442.182 [9] 1428.387 1413.100 > rowVars(tmp5,na.rm=TRUE) [1] 8002.61104 42.83714 91.23751 80.50741 66.92944 58.71298 [7] 69.00115 71.80989 80.28131 85.76186 > rowSd(tmp5,na.rm=TRUE) [1] 89.457314 6.545009 9.551833 8.972592 8.181041 7.662439 8.306693 [8] 8.474071 8.959984 9.260770 > rowMax(tmp5,na.rm=TRUE) [1] 468.31259 83.15868 91.38515 97.34845 84.16196 83.91223 90.15448 [8] 87.56798 86.56233 90.45025 > rowMin(tmp5,na.rm=TRUE) [1] 53.75983 60.19930 56.78634 58.59430 58.74304 59.09983 54.22059 55.91504 [9] 56.32542 57.23739 > > colMeans(tmp5,na.rm=TRUE) [1] 106.99684 75.24613 72.46595 70.55576 69.43318 74.06651 69.95359 [8] 72.80397 69.03038 69.80377 71.34199 67.64307 67.47656 69.40581 [15] 67.43769 67.07520 67.18585 73.01642 73.43818 74.05498 > colSums(tmp5,na.rm=TRUE) [1] 1069.9684 752.4613 724.6595 705.5576 694.3318 740.6651 699.5359 [8] 728.0397 690.3038 698.0377 713.4199 676.4307 674.7656 694.0581 [15] 674.3769 603.6768 671.8585 730.1642 734.3818 740.5498 > colVars(tmp5,na.rm=TRUE) [1] 16142.47249 74.73419 91.94250 56.12893 39.77252 80.99908 [7] 64.07566 97.96364 41.27609 72.13006 120.87766 35.43245 [13] 74.36430 109.62223 70.62816 47.52429 94.66888 32.33638 [19] 57.86464 150.10340 > colSd(tmp5,na.rm=TRUE) [1] 127.053030 8.644894 9.588665 7.491924 6.306546 8.999949 [7] 8.004728 9.897658 6.424647 8.492942 10.994438 5.952517 [13] 8.623474 10.470063 8.404056 6.893786 9.729794 5.686509 [19] 7.606881 12.251669 > colMax(tmp5,na.rm=TRUE) [1] 468.31259 90.45025 84.12897 84.16196 83.25911 88.48824 80.33100 [8] 91.38515 79.43011 84.40721 90.15448 76.19586 82.17028 87.29652 [15] 78.69437 84.84031 87.51112 78.26223 82.54298 97.34845 > colMin(tmp5,na.rm=TRUE) [1] 58.74304 59.01664 60.93562 62.39840 62.18888 62.55768 59.63222 59.37929 [9] 60.19930 61.54640 57.23739 60.92662 54.22059 53.75983 55.91504 62.27038 [17] 56.32542 63.89862 59.97452 56.78634 > > # now set an entire row to NA > > tmp5[which.row,] <- NA > rowMeans(tmp5,na.rm=TRUE) [1] 90.25724 68.87867 72.44205 69.65357 NaN 68.67851 68.15043 72.10908 [9] 71.41937 70.65500 > rowSums(tmp5,na.rm=TRUE) [1] 1805.145 1377.573 1448.841 1393.071 0.000 1373.570 1363.009 1442.182 [9] 1428.387 1413.100 > rowVars(tmp5,na.rm=TRUE) [1] 8002.61104 42.83714 91.23751 80.50741 NA 58.71298 [7] 69.00115 71.80989 80.28131 85.76186 > rowSd(tmp5,na.rm=TRUE) [1] 89.457314 6.545009 9.551833 8.972592 NA 7.662439 8.306693 [8] 8.474071 8.959984 9.260770 > rowMax(tmp5,na.rm=TRUE) [1] 468.31259 83.15868 91.38515 97.34845 NA 83.91223 90.15448 [8] 87.56798 86.56233 90.45025 > rowMin(tmp5,na.rm=TRUE) [1] 53.75983 60.19930 56.78634 58.59430 NA 59.09983 54.22059 55.91504 [9] 56.32542 57.23739 > > > # now set an entire col to NA > > > tmp5[,which.col] <- NA > colMeans(tmp5,na.rm=TRUE) [1] 112.35837 76.08839 71.17005 69.04396 68.75035 74.24648 71.10040 [8] 72.92200 69.39804 70.72125 71.12653 66.82075 67.53173 68.09283 [15] 66.80042 NaN 66.55173 74.02951 72.57634 73.02658 > colSums(tmp5,na.rm=TRUE) [1] 1011.2253 684.7955 640.5305 621.3956 618.7532 668.2184 639.9036 [8] 656.2980 624.5823 636.4913 640.1388 601.3867 607.7855 612.8355 [15] 601.2038 0.0000 598.9656 666.2656 653.1871 657.2392 > colVars(tmp5,na.rm=TRUE) [1] 17836.88868 76.09509 84.54277 37.43272 39.49875 90.75956 [7] 57.28922 110.05236 44.91494 71.67631 135.46508 32.25412 [13] 83.62559 103.93093 74.88790 NA 101.97884 24.83200 [19] 56.74160 156.96825 > colSd(tmp5,na.rm=TRUE) [1] 133.554815 8.723250 9.194714 6.118228 6.284803 9.526781 [7] 7.568964 10.490584 6.701861 8.466186 11.638947 5.679271 [13] 9.144703 10.194652 8.653779 NA 10.098457 4.983171 [19] 7.532702 12.528697 > colMax(tmp5,na.rm=TRUE) [1] 468.31259 90.45025 83.91223 79.35594 83.25911 88.48824 80.33100 [8] 91.38515 79.43011 84.40721 90.15448 76.19586 82.17028 87.29652 [15] 78.69437 -Inf 87.51112 78.26223 82.54298 97.34845 > colMin(tmp5,na.rm=TRUE) [1] 62.88207 59.01664 60.93562 62.39840 62.18888 62.55768 59.74453 59.37929 [9] 60.19930 62.10980 57.23739 60.92662 54.22059 53.75983 55.91504 Inf [17] 56.32542 65.79783 59.97452 56.78634 > > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 3 > which.col <- 1 > cat(which.row," ",which.col,"\n") 3 1 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > rowVars(tmp5,na.rm=TRUE) [1] 200.4849 123.9424 188.5390 351.1705 133.8972 202.8356 258.2218 242.6645 [9] 215.4383 234.0362 > apply(copymatrix,1,var,na.rm=TRUE) [1] 200.4849 123.9424 188.5390 351.1705 133.8972 202.8356 258.2218 242.6645 [9] 215.4383 234.0362 > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 1 > which.col <- 3 > cat(which.row," ",which.col,"\n") 1 3 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE) [1] -8.526513e-14 -5.684342e-14 1.421085e-13 1.705303e-13 -5.684342e-14 [6] 1.136868e-13 -8.526513e-14 1.278977e-13 -8.526513e-14 2.842171e-13 [11] -1.136868e-13 -3.126388e-13 -1.705303e-13 1.136868e-13 1.421085e-13 [16] -8.526513e-14 -2.842171e-14 -5.684342e-14 5.684342e-14 -2.842171e-14 > > > > > > > > > > > ## making sure these things agree > ## > ## first when there is no NA > > > > agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){ + + if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){ + stop("No agreement in Max") + } + + + if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){ + stop("No agreement in Min") + } + + + if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){ + + cat(Sum(buff.matrix,na.rm=TRUE),"\n") + cat(sum(r.matrix,na.rm=TRUE),"\n") + cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n") + + stop("No agreement in Sum") + } + + if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){ + stop("No agreement in mean") + } + + + if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){ + stop("No agreement in Var") + } + + + + if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowMeans") + } + + + if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colMeans") + } + + + if(any(abs(rowSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in rowSums") + } + + + if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colSums") + } + + ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when + ### computing variance + my.Var <- function(x,na.rm=FALSE){ + if (all(is.na(x))){ + return(NA) + } else { + var(x,na.rm=na.rm) + } + + } + + if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + + if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + + if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMedian") + } + + if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colRanges") + } + + + + } > > > > > > > > > > for (rep in 1:20){ + copymatrix <- matrix(rnorm(200,150,15),10,20) + + tmp5[1:10,1:20] <- copymatrix + + + agree.checks(tmp5,copymatrix) + + ## now lets assign some NA values and check agreement + + which.row <- sample(1:10,1,replace=TRUE) + which.col <- sample(1:20,1,replace=TRUE) + + cat(which.row," ",which.col,"\n") + + tmp5[which.row,which.col] <- NA + copymatrix[which.row,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ## make an entire row NA + tmp5[which.row,] <- NA + copymatrix[which.row,] <- NA + + + agree.checks(tmp5,copymatrix) + + ### also make an entire col NA + tmp5[,which.col] <- NA + copymatrix[,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ### now make 1 element non NA with NA in the rest of row and column + + tmp5[which.row,which.col] <- rnorm(1,150,15) + copymatrix[which.row,which.col] <- tmp5[which.row,which.col] + + agree.checks(tmp5,copymatrix) + } 1 9 4 16 10 4 2 18 5 15 6 1 8 2 3 13 10 10 1 9 5 1 2 19 7 12 9 12 7 14 7 12 7 6 1 19 2 4 6 5 There were 50 or more warnings (use warnings() to see the first 50) > > > ### now test 1 by n and n by 1 matrix > > > err.tol <- 1e-12 > > rm(tmp5) > > dataset1 <- rnorm(100) > dataset2 <- rnorm(100) > > tmp <- createBufferedMatrix(1,100) > tmp[1,] <- dataset1 > > tmp2 <- createBufferedMatrix(100,1) > tmp2[,1] <- dataset2 > > > > > > Max(tmp) [1] 1.852135 > Min(tmp) [1] -1.921533 > mean(tmp) [1] -0.1161794 > Sum(tmp) [1] -11.61794 > Var(tmp) [1] 0.817211 > > rowMeans(tmp) [1] -0.1161794 > rowSums(tmp) [1] -11.61794 > rowVars(tmp) [1] 0.817211 > rowSd(tmp) [1] 0.9039973 > rowMax(tmp) [1] 1.852135 > rowMin(tmp) [1] -1.921533 > > colMeans(tmp) [1] -1.10528616 -0.24893385 -0.99546208 0.53789655 0.38431943 -0.67220112 [7] 0.36889344 1.00057394 -0.51360067 -1.12158854 -0.86728627 1.74330451 [13] -0.48220276 1.02588218 -1.57772901 -0.82110143 -0.92442588 -0.77910675 [19] -0.87170635 0.77858203 -0.05947173 0.08985041 -1.44972016 1.29796471 [25] -0.37799433 0.34374546 0.97370309 0.75059359 -0.54369136 -0.37708175 [31] 1.50765636 1.85213480 -1.92153303 -0.06479913 -1.61433588 -0.93417735 [37] -1.24518420 -1.40166152 -0.47291374 -0.02952225 -0.90771400 -0.18891755 [43] 0.18341810 0.56101364 1.11638339 -0.41561981 -1.44812784 -1.29409770 [49] -0.32161145 -1.28260608 -0.33532641 0.84635682 -0.30675718 1.61843358 [55] 0.63706886 0.23358022 0.10043721 -0.26527208 0.07512154 0.94192352 [61] -0.54451929 -0.84763418 0.28648782 -0.80705767 1.39145697 1.11243559 [67] 0.30571710 -1.23970740 1.83659614 -0.04100032 0.15272063 0.01414587 [73] -1.17318695 -0.20248345 -0.92530176 0.91471328 -0.97154825 1.52247787 [79] -0.15697367 0.73845110 0.66146016 -1.28909430 0.07482165 0.05152398 [85] -0.53673868 -0.66282400 -1.47257499 0.70803278 -0.38302119 -0.44676757 [91] -0.42142856 1.51199866 -0.08327751 0.89555650 -1.03413560 0.93094498 [97] -0.04331888 -0.68658534 -0.94475713 -0.54361625 > colSums(tmp) [1] -1.10528616 -0.24893385 -0.99546208 0.53789655 0.38431943 -0.67220112 [7] 0.36889344 1.00057394 -0.51360067 -1.12158854 -0.86728627 1.74330451 [13] -0.48220276 1.02588218 -1.57772901 -0.82110143 -0.92442588 -0.77910675 [19] -0.87170635 0.77858203 -0.05947173 0.08985041 -1.44972016 1.29796471 [25] -0.37799433 0.34374546 0.97370309 0.75059359 -0.54369136 -0.37708175 [31] 1.50765636 1.85213480 -1.92153303 -0.06479913 -1.61433588 -0.93417735 [37] -1.24518420 -1.40166152 -0.47291374 -0.02952225 -0.90771400 -0.18891755 [43] 0.18341810 0.56101364 1.11638339 -0.41561981 -1.44812784 -1.29409770 [49] -0.32161145 -1.28260608 -0.33532641 0.84635682 -0.30675718 1.61843358 [55] 0.63706886 0.23358022 0.10043721 -0.26527208 0.07512154 0.94192352 [61] -0.54451929 -0.84763418 0.28648782 -0.80705767 1.39145697 1.11243559 [67] 0.30571710 -1.23970740 1.83659614 -0.04100032 0.15272063 0.01414587 [73] -1.17318695 -0.20248345 -0.92530176 0.91471328 -0.97154825 1.52247787 [79] -0.15697367 0.73845110 0.66146016 -1.28909430 0.07482165 0.05152398 [85] -0.53673868 -0.66282400 -1.47257499 0.70803278 -0.38302119 -0.44676757 [91] -0.42142856 1.51199866 -0.08327751 0.89555650 -1.03413560 0.93094498 [97] -0.04331888 -0.68658534 -0.94475713 -0.54361625 > colVars(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colSd(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colMax(tmp) [1] -1.10528616 -0.24893385 -0.99546208 0.53789655 0.38431943 -0.67220112 [7] 0.36889344 1.00057394 -0.51360067 -1.12158854 -0.86728627 1.74330451 [13] -0.48220276 1.02588218 -1.57772901 -0.82110143 -0.92442588 -0.77910675 [19] -0.87170635 0.77858203 -0.05947173 0.08985041 -1.44972016 1.29796471 [25] -0.37799433 0.34374546 0.97370309 0.75059359 -0.54369136 -0.37708175 [31] 1.50765636 1.85213480 -1.92153303 -0.06479913 -1.61433588 -0.93417735 [37] -1.24518420 -1.40166152 -0.47291374 -0.02952225 -0.90771400 -0.18891755 [43] 0.18341810 0.56101364 1.11638339 -0.41561981 -1.44812784 -1.29409770 [49] -0.32161145 -1.28260608 -0.33532641 0.84635682 -0.30675718 1.61843358 [55] 0.63706886 0.23358022 0.10043721 -0.26527208 0.07512154 0.94192352 [61] -0.54451929 -0.84763418 0.28648782 -0.80705767 1.39145697 1.11243559 [67] 0.30571710 -1.23970740 1.83659614 -0.04100032 0.15272063 0.01414587 [73] -1.17318695 -0.20248345 -0.92530176 0.91471328 -0.97154825 1.52247787 [79] -0.15697367 0.73845110 0.66146016 -1.28909430 0.07482165 0.05152398 [85] -0.53673868 -0.66282400 -1.47257499 0.70803278 -0.38302119 -0.44676757 [91] -0.42142856 1.51199866 -0.08327751 0.89555650 -1.03413560 0.93094498 [97] -0.04331888 -0.68658534 -0.94475713 -0.54361625 > colMin(tmp) [1] -1.10528616 -0.24893385 -0.99546208 0.53789655 0.38431943 -0.67220112 [7] 0.36889344 1.00057394 -0.51360067 -1.12158854 -0.86728627 1.74330451 [13] -0.48220276 1.02588218 -1.57772901 -0.82110143 -0.92442588 -0.77910675 [19] -0.87170635 0.77858203 -0.05947173 0.08985041 -1.44972016 1.29796471 [25] -0.37799433 0.34374546 0.97370309 0.75059359 -0.54369136 -0.37708175 [31] 1.50765636 1.85213480 -1.92153303 -0.06479913 -1.61433588 -0.93417735 [37] -1.24518420 -1.40166152 -0.47291374 -0.02952225 -0.90771400 -0.18891755 [43] 0.18341810 0.56101364 1.11638339 -0.41561981 -1.44812784 -1.29409770 [49] -0.32161145 -1.28260608 -0.33532641 0.84635682 -0.30675718 1.61843358 [55] 0.63706886 0.23358022 0.10043721 -0.26527208 0.07512154 0.94192352 [61] -0.54451929 -0.84763418 0.28648782 -0.80705767 1.39145697 1.11243559 [67] 0.30571710 -1.23970740 1.83659614 -0.04100032 0.15272063 0.01414587 [73] -1.17318695 -0.20248345 -0.92530176 0.91471328 -0.97154825 1.52247787 [79] -0.15697367 0.73845110 0.66146016 -1.28909430 0.07482165 0.05152398 [85] -0.53673868 -0.66282400 -1.47257499 0.70803278 -0.38302119 -0.44676757 [91] -0.42142856 1.51199866 -0.08327751 0.89555650 -1.03413560 0.93094498 [97] -0.04331888 -0.68658534 -0.94475713 -0.54361625 > colMedians(tmp) [1] -1.10528616 -0.24893385 -0.99546208 0.53789655 0.38431943 -0.67220112 [7] 0.36889344 1.00057394 -0.51360067 -1.12158854 -0.86728627 1.74330451 [13] -0.48220276 1.02588218 -1.57772901 -0.82110143 -0.92442588 -0.77910675 [19] -0.87170635 0.77858203 -0.05947173 0.08985041 -1.44972016 1.29796471 [25] -0.37799433 0.34374546 0.97370309 0.75059359 -0.54369136 -0.37708175 [31] 1.50765636 1.85213480 -1.92153303 -0.06479913 -1.61433588 -0.93417735 [37] -1.24518420 -1.40166152 -0.47291374 -0.02952225 -0.90771400 -0.18891755 [43] 0.18341810 0.56101364 1.11638339 -0.41561981 -1.44812784 -1.29409770 [49] -0.32161145 -1.28260608 -0.33532641 0.84635682 -0.30675718 1.61843358 [55] 0.63706886 0.23358022 0.10043721 -0.26527208 0.07512154 0.94192352 [61] -0.54451929 -0.84763418 0.28648782 -0.80705767 1.39145697 1.11243559 [67] 0.30571710 -1.23970740 1.83659614 -0.04100032 0.15272063 0.01414587 [73] -1.17318695 -0.20248345 -0.92530176 0.91471328 -0.97154825 1.52247787 [79] -0.15697367 0.73845110 0.66146016 -1.28909430 0.07482165 0.05152398 [85] -0.53673868 -0.66282400 -1.47257499 0.70803278 -0.38302119 -0.44676757 [91] -0.42142856 1.51199866 -0.08327751 0.89555650 -1.03413560 0.93094498 [97] -0.04331888 -0.68658534 -0.94475713 -0.54361625 > colRanges(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] -1.105286 -0.2489338 -0.9954621 0.5378966 0.3843194 -0.6722011 0.3688934 [2,] -1.105286 -0.2489338 -0.9954621 0.5378966 0.3843194 -0.6722011 0.3688934 [,8] [,9] [,10] [,11] [,12] [,13] [,14] [1,] 1.000574 -0.5136007 -1.121589 -0.8672863 1.743305 -0.4822028 1.025882 [2,] 1.000574 -0.5136007 -1.121589 -0.8672863 1.743305 -0.4822028 1.025882 [,15] [,16] [,17] [,18] [,19] [,20] [,21] [1,] -1.577729 -0.8211014 -0.9244259 -0.7791068 -0.8717063 0.778582 -0.05947173 [2,] -1.577729 -0.8211014 -0.9244259 -0.7791068 -0.8717063 0.778582 -0.05947173 [,22] [,23] [,24] [,25] [,26] [,27] [,28] [1,] 0.08985041 -1.44972 1.297965 -0.3779943 0.3437455 0.9737031 0.7505936 [2,] 0.08985041 -1.44972 1.297965 -0.3779943 0.3437455 0.9737031 0.7505936 [,29] [,30] [,31] [,32] [,33] [,34] [,35] [1,] -0.5436914 -0.3770818 1.507656 1.852135 -1.921533 -0.06479913 -1.614336 [2,] -0.5436914 -0.3770818 1.507656 1.852135 -1.921533 -0.06479913 -1.614336 [,36] [,37] [,38] [,39] [,40] [,41] [,42] [1,] -0.9341774 -1.245184 -1.401662 -0.4729137 -0.02952225 -0.907714 -0.1889176 [2,] -0.9341774 -1.245184 -1.401662 -0.4729137 -0.02952225 -0.907714 -0.1889176 [,43] [,44] [,45] [,46] [,47] [,48] [,49] [1,] 0.1834181 0.5610136 1.116383 -0.4156198 -1.448128 -1.294098 -0.3216114 [2,] 0.1834181 0.5610136 1.116383 -0.4156198 -1.448128 -1.294098 -0.3216114 [,50] [,51] [,52] [,53] [,54] [,55] [,56] [1,] -1.282606 -0.3353264 0.8463568 -0.3067572 1.618434 0.6370689 0.2335802 [2,] -1.282606 -0.3353264 0.8463568 -0.3067572 1.618434 0.6370689 0.2335802 [,57] [,58] [,59] [,60] [,61] [,62] [,63] [1,] 0.1004372 -0.2652721 0.07512154 0.9419235 -0.5445193 -0.8476342 0.2864878 [2,] 0.1004372 -0.2652721 0.07512154 0.9419235 -0.5445193 -0.8476342 0.2864878 [,64] [,65] [,66] [,67] [,68] [,69] [,70] [1,] -0.8070577 1.391457 1.112436 0.3057171 -1.239707 1.836596 -0.04100032 [2,] -0.8070577 1.391457 1.112436 0.3057171 -1.239707 1.836596 -0.04100032 [,71] [,72] [,73] [,74] [,75] [,76] [,77] [1,] 0.1527206 0.01414587 -1.173187 -0.2024834 -0.9253018 0.9147133 -0.9715482 [2,] 0.1527206 0.01414587 -1.173187 -0.2024834 -0.9253018 0.9147133 -0.9715482 [,78] [,79] [,80] [,81] [,82] [,83] [,84] [1,] 1.522478 -0.1569737 0.7384511 0.6614602 -1.289094 0.07482165 0.05152398 [2,] 1.522478 -0.1569737 0.7384511 0.6614602 -1.289094 0.07482165 0.05152398 [,85] [,86] [,87] [,88] [,89] [,90] [,91] [1,] -0.5367387 -0.662824 -1.472575 0.7080328 -0.3830212 -0.4467676 -0.4214286 [2,] -0.5367387 -0.662824 -1.472575 0.7080328 -0.3830212 -0.4467676 -0.4214286 [,92] [,93] [,94] [,95] [,96] [,97] [,98] [1,] 1.511999 -0.08327751 0.8955565 -1.034136 0.930945 -0.04331888 -0.6865853 [2,] 1.511999 -0.08327751 0.8955565 -1.034136 0.930945 -0.04331888 -0.6865853 [,99] [,100] [1,] -0.9447571 -0.5436162 [2,] -0.9447571 -0.5436162 > > > Max(tmp2) [1] 2.364709 > Min(tmp2) [1] -2.578426 > mean(tmp2) [1] -0.05178713 > Sum(tmp2) [1] -5.178713 > Var(tmp2) [1] 1.135099 > > rowMeans(tmp2) [1] -1.64473136 0.15015848 2.28520361 0.96897283 0.60836413 -1.55981003 [7] 0.86008440 -0.42425095 0.32021260 -1.02998775 0.26028352 -1.28730635 [13] 0.89397059 0.93210021 -0.02146455 -0.22020824 -2.57842629 -1.83764774 [19] -2.06566366 0.13515456 -0.86180791 0.33730684 -0.94834485 -0.90670600 [25] -0.81505007 0.60878898 0.81794245 -0.18862886 1.18820137 0.16638211 [31] 0.52828601 -1.44449058 1.35289160 0.95545293 -0.72475336 1.09783040 [37] 0.29535645 -1.67793667 0.67677113 -0.85536491 1.71072590 1.55599304 [43] -1.30880854 -0.17575891 -0.68510628 -0.76047538 1.23797577 0.54154051 [49] -0.89295230 -0.19767162 -1.03503818 -0.33894775 0.49303086 -0.84529838 [55] -1.23690894 -1.38673306 -0.34221539 0.29948467 -0.18739862 0.44337767 [61] 1.51564995 -0.08843894 -0.69604551 -0.58139166 -2.32013468 1.89738729 [67] -1.49542863 -0.91109625 0.85397678 -0.17199042 -0.27605430 2.36470931 [73] 0.41752648 1.02156011 0.97557518 -0.92323178 0.16010254 1.89686687 [79] -1.25600251 1.20808014 1.11591325 0.06884930 1.08417027 -0.56529421 [85] -2.33709141 0.45527033 -0.65160231 0.40249339 -0.83632613 0.80256391 [91] -0.82987048 -0.89736783 0.46481887 0.83593437 0.08543129 1.53965169 [97] 0.67992049 -0.57481228 -0.32594154 -0.52299398 > rowSums(tmp2) [1] -1.64473136 0.15015848 2.28520361 0.96897283 0.60836413 -1.55981003 [7] 0.86008440 -0.42425095 0.32021260 -1.02998775 0.26028352 -1.28730635 [13] 0.89397059 0.93210021 -0.02146455 -0.22020824 -2.57842629 -1.83764774 [19] -2.06566366 0.13515456 -0.86180791 0.33730684 -0.94834485 -0.90670600 [25] -0.81505007 0.60878898 0.81794245 -0.18862886 1.18820137 0.16638211 [31] 0.52828601 -1.44449058 1.35289160 0.95545293 -0.72475336 1.09783040 [37] 0.29535645 -1.67793667 0.67677113 -0.85536491 1.71072590 1.55599304 [43] -1.30880854 -0.17575891 -0.68510628 -0.76047538 1.23797577 0.54154051 [49] -0.89295230 -0.19767162 -1.03503818 -0.33894775 0.49303086 -0.84529838 [55] -1.23690894 -1.38673306 -0.34221539 0.29948467 -0.18739862 0.44337767 [61] 1.51564995 -0.08843894 -0.69604551 -0.58139166 -2.32013468 1.89738729 [67] -1.49542863 -0.91109625 0.85397678 -0.17199042 -0.27605430 2.36470931 [73] 0.41752648 1.02156011 0.97557518 -0.92323178 0.16010254 1.89686687 [79] -1.25600251 1.20808014 1.11591325 0.06884930 1.08417027 -0.56529421 [85] -2.33709141 0.45527033 -0.65160231 0.40249339 -0.83632613 0.80256391 [91] -0.82987048 -0.89736783 0.46481887 0.83593437 0.08543129 1.53965169 [97] 0.67992049 -0.57481228 -0.32594154 -0.52299398 > rowVars(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowSd(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowMax(tmp2) [1] -1.64473136 0.15015848 2.28520361 0.96897283 0.60836413 -1.55981003 [7] 0.86008440 -0.42425095 0.32021260 -1.02998775 0.26028352 -1.28730635 [13] 0.89397059 0.93210021 -0.02146455 -0.22020824 -2.57842629 -1.83764774 [19] -2.06566366 0.13515456 -0.86180791 0.33730684 -0.94834485 -0.90670600 [25] -0.81505007 0.60878898 0.81794245 -0.18862886 1.18820137 0.16638211 [31] 0.52828601 -1.44449058 1.35289160 0.95545293 -0.72475336 1.09783040 [37] 0.29535645 -1.67793667 0.67677113 -0.85536491 1.71072590 1.55599304 [43] -1.30880854 -0.17575891 -0.68510628 -0.76047538 1.23797577 0.54154051 [49] -0.89295230 -0.19767162 -1.03503818 -0.33894775 0.49303086 -0.84529838 [55] -1.23690894 -1.38673306 -0.34221539 0.29948467 -0.18739862 0.44337767 [61] 1.51564995 -0.08843894 -0.69604551 -0.58139166 -2.32013468 1.89738729 [67] -1.49542863 -0.91109625 0.85397678 -0.17199042 -0.27605430 2.36470931 [73] 0.41752648 1.02156011 0.97557518 -0.92323178 0.16010254 1.89686687 [79] -1.25600251 1.20808014 1.11591325 0.06884930 1.08417027 -0.56529421 [85] -2.33709141 0.45527033 -0.65160231 0.40249339 -0.83632613 0.80256391 [91] -0.82987048 -0.89736783 0.46481887 0.83593437 0.08543129 1.53965169 [97] 0.67992049 -0.57481228 -0.32594154 -0.52299398 > rowMin(tmp2) [1] -1.64473136 0.15015848 2.28520361 0.96897283 0.60836413 -1.55981003 [7] 0.86008440 -0.42425095 0.32021260 -1.02998775 0.26028352 -1.28730635 [13] 0.89397059 0.93210021 -0.02146455 -0.22020824 -2.57842629 -1.83764774 [19] -2.06566366 0.13515456 -0.86180791 0.33730684 -0.94834485 -0.90670600 [25] -0.81505007 0.60878898 0.81794245 -0.18862886 1.18820137 0.16638211 [31] 0.52828601 -1.44449058 1.35289160 0.95545293 -0.72475336 1.09783040 [37] 0.29535645 -1.67793667 0.67677113 -0.85536491 1.71072590 1.55599304 [43] -1.30880854 -0.17575891 -0.68510628 -0.76047538 1.23797577 0.54154051 [49] -0.89295230 -0.19767162 -1.03503818 -0.33894775 0.49303086 -0.84529838 [55] -1.23690894 -1.38673306 -0.34221539 0.29948467 -0.18739862 0.44337767 [61] 1.51564995 -0.08843894 -0.69604551 -0.58139166 -2.32013468 1.89738729 [67] -1.49542863 -0.91109625 0.85397678 -0.17199042 -0.27605430 2.36470931 [73] 0.41752648 1.02156011 0.97557518 -0.92323178 0.16010254 1.89686687 [79] -1.25600251 1.20808014 1.11591325 0.06884930 1.08417027 -0.56529421 [85] -2.33709141 0.45527033 -0.65160231 0.40249339 -0.83632613 0.80256391 [91] -0.82987048 -0.89736783 0.46481887 0.83593437 0.08543129 1.53965169 [97] 0.67992049 -0.57481228 -0.32594154 -0.52299398 > > colMeans(tmp2) [1] -0.05178713 > colSums(tmp2) [1] -5.178713 > colVars(tmp2) [1] 1.135099 > colSd(tmp2) [1] 1.06541 > colMax(tmp2) [1] 2.364709 > colMin(tmp2) [1] -2.578426 > colMedians(tmp2) [1] -0.05495174 > colRanges(tmp2) [,1] [1,] -2.578426 [2,] 2.364709 > > dataset1 <- matrix(dataset1,1,100) > > agree.checks(tmp,dataset1) > > dataset2 <- matrix(dataset2,100,1) > agree.checks(tmp2,dataset2) > > > tmp <- createBufferedMatrix(10,10) > > tmp[1:10,1:10] <- rnorm(100) > colApply(tmp,sum) [1] 3.2426936 -2.7857305 2.1855592 1.0279063 -0.2005323 -2.7588658 [7] -6.4981322 -2.1033582 5.2850011 1.4257814 > colApply(tmp,quantile)[,1] [,1] [1,] -0.69634008 [2,] 0.05411782 [3,] 0.17821837 [4,] 0.33133249 [5,] 2.67411844 > > rowApply(tmp,sum) [1] 3.0776404 3.2660769 -2.1556111 -0.5847245 0.7109240 -3.7924814 [7] 0.5045475 -3.3730934 0.6385628 0.5284810 > rowApply(tmp,rank)[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 4 7 7 3 10 7 6 4 5 7 [2,] 10 1 5 4 4 4 5 2 2 4 [3,] 5 8 9 2 8 9 7 3 3 9 [4,] 9 4 4 7 6 3 9 7 10 1 [5,] 8 3 8 5 5 6 8 6 9 3 [6,] 6 2 6 9 2 2 4 5 8 2 [7,] 3 6 3 10 1 1 1 1 4 8 [8,] 1 9 2 1 9 5 10 8 1 5 [9,] 2 10 10 8 7 10 2 10 6 6 [10,] 7 5 1 6 3 8 3 9 7 10 > > tmp <- createBufferedMatrix(5,20) > > tmp[1:5,1:20] <- rnorm(100) > colApply(tmp,sum) [1] -1.1175506 2.1259798 0.9979740 0.0638614 -2.0047090 2.2595125 [7] -0.6237878 4.2542993 -0.7671565 -0.5439560 1.2163787 0.9662048 [13] -1.4298363 -3.8961715 -1.7937781 5.5267377 -0.2206853 3.0757267 [19] -0.5135530 -2.6584346 > colApply(tmp,quantile)[,1] [,1] [1,] -1.3362666 [2,] -1.0209357 [3,] -0.9021177 [4,] -0.5294948 [5,] 2.6712642 > > rowApply(tmp,sum) [1] 3.6793127 5.7007368 -5.3121479 0.9733110 -0.1241562 > rowApply(tmp,rank)[1:5,] [,1] [,2] [,3] [,4] [,5] [1,] 4 3 5 9 20 [2,] 18 11 16 5 15 [3,] 16 17 13 1 17 [4,] 11 6 18 16 3 [5,] 3 18 7 2 9 > > > as.matrix(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [1,] -1.3362666 1.4008640 1.05438684 0.5838301 -1.41711818 -0.2867981 [2,] -0.9021177 0.4985027 1.06324632 -0.0933176 1.32554175 0.2063490 [3,] -1.0209357 0.2990424 -0.05631588 0.5692249 -0.32291184 -0.2068297 [4,] -0.5294948 -0.6757693 -1.91484744 0.8327469 -1.67222035 2.2813795 [5,] 2.6712642 0.6033400 0.85150414 -1.8286229 0.08199967 0.2654118 [,7] [,8] [,9] [,10] [,11] [,12] [1,] 0.7304514 1.66810938 -1.5548596 1.3828339 0.62038290 0.87606743 [2,] -0.5701992 2.36893799 0.9744824 -1.7671834 0.96335486 0.79594730 [3,] -0.5877813 -0.08560261 0.2957697 -1.6644543 0.12123780 -0.08749533 [4,] 0.7141251 -0.65307650 0.1933697 1.3699371 -0.54202523 -1.11951195 [5,] -0.9103836 0.95593103 -0.6759188 0.1349108 0.05342838 0.50119731 [,13] [,14] [,15] [,16] [,17] [,18] [1,] -0.26815569 -0.6908735 -0.1247491 1.99439989 -1.5400752 -0.3867919 [2,] -0.85676189 -1.2036990 0.6241240 -0.08519996 1.4034347 0.7142758 [3,] -1.14878153 1.2115669 -1.5874236 1.12748290 -0.1540890 0.3621568 [4,] -0.01443963 -0.3917861 -0.9218295 1.92116564 0.2520627 1.7630950 [5,] 0.85830240 -2.8213799 0.2161002 0.56888921 -0.1820185 0.6229910 [,19] [,20] [1,] 0.38372197 0.5899528 [2,] 0.01381695 0.2272018 [3,] -0.11790134 -2.2581071 [4,] -0.59455128 0.6749814 [5,] -0.19863927 -1.8924635 > > > is.BufferedMatrix(tmp) [1] TRUE > > as.BufferedMatrix(as.matrix(tmp)) BufferedMatrix object Matrix size: 5 20 Buffer size: 1 1 Directory: /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 1.9 Kilobytes. Disk usage : 800 bytes. > > > > subBufferedMatrix(tmp,1:5,1:5) BufferedMatrix object Matrix size: 5 5 Buffer size: 1 1 Directory: /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 650 bytes. Disk usage : 200 bytes. > subBufferedMatrix(tmp,,5:8) BufferedMatrix object Matrix size: 5 4 Buffer size: 1 1 Directory: /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 562 bytes. Disk usage : 160 bytes. > subBufferedMatrix(tmp,1:3,) BufferedMatrix object Matrix size: 3 20 Buffer size: 1 1 Directory: /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 1.9 Kilobytes. Disk usage : 480 bytes. > > > rm(tmp) > > > ### > ### Testing colnames and rownames > ### > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 row1 -0.5455526 0.3857436 0.4486298 -1.259831 0.8113749 -1.170108 -0.3383317 col8 col9 col10 col11 col12 col13 col14 row1 -0.3205226 -0.1853851 1.45317 0.5159579 -1.037244 1.52722 -2.585891 col15 col16 col17 col18 col19 col20 row1 0.3705051 0.02443583 -1.570963 -0.3926672 0.8981618 0.07853726 > tmp[,"col10"] col10 row1 1.4531696 row2 -0.2517212 row3 -1.1998764 row4 -1.9046005 row5 0.4374742 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 row1 -0.5455526 0.3857436 0.4486298 -1.2598312 0.8113749 -1.1701078 row5 -0.6412820 1.6454962 -1.3843885 -0.8315351 -1.4726813 0.3519213 col7 col8 col9 col10 col11 col12 col13 row1 -0.3383317 -0.3205226 -0.1853851 1.4531696 0.5159579 -1.037244 1.52722010 row5 -0.7248236 -0.8766424 0.4652780 0.4374742 0.7018977 -1.245344 0.03768326 col14 col15 col16 col17 col18 col19 row1 -2.5858914 0.3705051 0.02443583 -1.5709628 -0.3926672 0.8981618 row5 0.3871512 -0.8929555 -0.02387452 0.3408619 -0.1619103 0.3941844 col20 row1 0.07853726 row5 -1.67143653 > tmp[,c("col6","col20")] col6 col20 row1 -1.1701078 0.07853726 row2 1.5231617 -0.41814525 row3 -0.3028315 0.30208972 row4 0.7913442 0.50219408 row5 0.3519213 -1.67143653 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 -1.1701078 0.07853726 row5 0.3519213 -1.67143653 > > > > > tmp["row1",] <- rnorm(20,mean=10) > tmp[,"col10"] <- rnorm(5,mean=30) > tmp[c("row1","row5"),] <- rnorm(40,mean=50) > tmp[,c("col6","col20")] <- rnorm(10,mean=75) > tmp[c("row1","row5"),c("col6","col20")] <- rnorm(4,mean=105) > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 col8 row1 49.43409 49.16732 48.86698 50.22835 51.34288 104.3613 50.97404 51.55653 col9 col10 col11 col12 col13 col14 col15 col16 row1 51.80756 49.89299 50.10912 48.8822 50.96732 49.51606 51.61358 49.815 col17 col18 col19 col20 row1 50.25926 51.25169 50.92398 105.7501 > tmp[,"col10"] col10 row1 49.89299 row2 30.99555 row3 30.73326 row4 29.02821 row5 49.61329 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 col7 col8 row1 49.43409 49.16732 48.86698 50.22835 51.34288 104.3613 50.97404 51.55653 row5 50.29683 48.27783 49.18942 50.10081 51.39768 104.7271 51.01140 51.31639 col9 col10 col11 col12 col13 col14 col15 col16 row1 51.80756 49.89299 50.10912 48.88220 50.96732 49.51606 51.61358 49.8150 row5 49.29834 49.61329 50.76448 50.02298 49.60210 48.91485 50.35922 49.3888 col17 col18 col19 col20 row1 50.25926 51.25169 50.92398 105.7501 row5 49.10691 51.17191 48.73926 105.6072 > tmp[,c("col6","col20")] col6 col20 row1 104.36130 105.75013 row2 74.69465 74.55396 row3 74.48854 76.07932 row4 75.26488 75.08208 row5 104.72709 105.60721 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 104.3613 105.7501 row5 104.7271 105.6072 > > > subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2] col6 col20 row1 104.3613 105.7501 row5 104.7271 105.6072 > > > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > > tmp[,"col13"] col13 [1,] 0.2082838 [2,] -1.3157251 [3,] -0.8391916 [4,] -0.7840574 [5,] -1.0382304 > tmp[,c("col17","col7")] col17 col7 [1,] 0.6258700 0.2975905 [2,] -1.3957171 0.2647646 [3,] -0.1174387 -0.5893804 [4,] -0.4984107 -0.4721048 [5,] -0.8901655 0.6687629 > > subBufferedMatrix(tmp,,c("col6","col20"))[,1:2] col6 col20 [1,] -1.1932723 -2.0707748 [2,] -1.2030120 0.8645143 [3,] -0.6358926 -0.9666592 [4,] -1.4702541 -0.3230527 [5,] -0.4152471 -0.1085762 > subBufferedMatrix(tmp,1,c("col6"))[,1] col1 [1,] -1.193272 > subBufferedMatrix(tmp,1:2,c("col6"))[,1] col6 [1,] -1.193272 [2,] -1.203012 > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > > > > subBufferedMatrix(tmp,c("row3","row1"),)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] row3 -1.0190590 -1.8376343 1.2674402 0.64350434 -0.7241566 -0.5951309 row1 0.3457765 -0.6844216 -0.1102696 0.01023801 -0.7451497 -1.2513950 [,7] [,8] [,9] [,10] [,11] [,12] row3 -0.1674098 -0.7903414 0.1346591 0.2622412 -0.28053878 0.4376924 row1 0.1403473 0.4223181 0.1812261 -0.9734902 0.03683494 1.4096127 [,13] [,14] [,15] [,16] [,17] [,18] row3 -0.3693828 0.3368256 -1.2352274 -1.062076 -0.01997133 -1.7175335 row1 0.9909320 -1.8023424 -0.4839853 -1.311678 -0.49286285 0.7292612 [,19] [,20] row3 -0.1203437 0.3841545 row1 -0.9354707 0.5008283 > subBufferedMatrix(tmp,c("row2"),1:10)[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] row2 0.06769066 -1.887099 -0.1228548 0.3220085 0.9051676 -0.09229887 [,7] [,8] [,9] [,10] row2 -0.08414202 -0.6195544 0.9499221 0.4141939 > subBufferedMatrix(tmp,c("row5"),1:20)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row5 -1.0578 -0.300956 -0.4436986 -0.9908842 -0.3201552 -0.1779308 -1.478354 [,8] [,9] [,10] [,11] [,12] [,13] [,14] row5 -0.2536665 1.440784 -1.66074 -0.2017883 1.469378 0.923828 -0.5778221 [,15] [,16] [,17] [,18] [,19] [,20] row5 0.4082385 -0.07701657 1.139442 -0.6795693 0.9165567 -1.146356 > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > colnames(tmp) <- NULL > rownames(tmp) <- NULL > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > dimnames(tmp) <- NULL > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > dimnames(tmp) <- NULL > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] NULL > > dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE))) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > > ### > ### Testing logical indexing > ### > ### > > tmp <- createBufferedMatrix(230,15) > tmp[1:230,1:15] <- rnorm(230*15) > x <-tmp[1:230,1:15] > > for (rep in 1:10){ + which.cols <- sample(c(TRUE,FALSE),15,replace=T) + which.rows <- sample(c(TRUE,FALSE),230,replace=T) + + if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){ + stop("No agreement when logical indexing\n") + } + + if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] == x[,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix cols\n") + } + if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] == x[which.rows,])){ + stop("No agreement when logical indexing in subBufferedMatrix rows\n") + } + + + if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]== x[which.rows,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n") + } + } > > > ## > ## Test the ReadOnlyMode > ## > > ReadOnlyMode(tmp) <pointer: 0x600002d58060> > is.ReadOnlyMode(tmp) [1] TRUE > > filenames(tmp) [1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f432d4b8d" [2] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f52bb386f" [3] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f17629d8" [4] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f74b524a7" [5] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f20798bcd" [6] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94fbc95063" [7] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f4dbc99a0" [8] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f1909ff3f" [9] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f5f548df0" [10] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f2832b875" [11] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f19ec1df1" [12] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f5ca1c682" [13] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94fefb051" [14] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f78209651" [15] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMe94f236cdd74" > > > ### testing coercion functions > ### > > tmp <- as(tmp,"matrix") > tmp <- as(tmp,"BufferedMatrix") > > > > ### testing whether can move storage from one location to another > > MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE) <pointer: 0x600002d587e0> > MoveStorageDirectory(tmp,getwd(),full.path=TRUE) <pointer: 0x600002d587e0> Warning message: In dir.create(new.directory) : '/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists > > > RowMode(tmp) <pointer: 0x600002d587e0> > rowMedians(tmp) [1] 0.0416239206 0.3638958011 -0.1910679075 -0.2394339314 0.7866707779 [6] -0.2075642525 -0.1635355285 0.6299474466 -0.0435391335 -0.0333157678 [11] -0.2189147713 0.1836108293 -0.1337496065 -0.4926898964 -0.4358381547 [16] 0.5886970626 0.1862397498 0.0850228679 0.6449541391 -0.5519810578 [21] -0.3399575723 0.1976473762 -0.1387023786 -0.2382578361 -0.2286090360 [26] 0.1217798893 -0.3438858691 0.6139581970 -0.1830973352 -0.3719553772 [31] -0.0803778259 -0.4998381646 -0.7173346439 0.6654098915 0.0846598424 [36] 0.3853589023 0.0207300940 -0.1138448421 -0.0076213230 0.0004499390 [41] 0.6182281975 -0.1370889315 0.3188143569 0.4177787929 0.2177999683 [46] -0.0403585815 0.2921828928 0.0771972485 0.3688041026 0.0722505495 [51] 0.2601945011 0.0126335912 0.1778690810 -0.0317965992 -0.0094141901 [56] 0.0933576375 0.1229183984 0.7259886326 0.3095775180 0.0567391850 [61] 0.0908935298 -0.0380387467 0.2092307117 -0.3188805317 0.6395679250 [66] -0.0307145698 -0.1787077091 -0.3581200686 -0.3203341287 0.3785318196 [71] -0.5295100260 -0.3638942340 -0.4322717106 0.4108386746 -0.2875715821 [76] 0.3527328346 -0.2427025470 0.1213053890 0.0071752466 0.3354012195 [81] 0.1847305716 0.4318741169 -0.2805574222 0.5234901881 0.3363583127 [86] 0.0610992857 -0.2078789473 0.0177134181 -0.0446133938 -0.2960975484 [91] -0.2685743852 -0.2263480622 -0.1059347950 -0.0433964401 -0.8960043225 [96] 0.6711974133 0.4490437363 0.0041558760 0.0660572618 -0.1630987730 [101] 0.0182291269 -0.5597889460 -0.0754167055 -0.5256883001 -0.3114476501 [106] -0.1395030977 -0.0948793963 -0.2295999239 -0.2885726614 0.2732457809 [111] -0.4087232105 0.3828871991 0.2587049220 0.0152092164 -0.7495773397 [116] -0.1877995474 -0.4880113127 -0.3517051629 -0.3726280485 -0.2890482678 [121] 0.5362729614 -0.4079674132 0.4586446342 0.1492784850 0.0377183520 [126] -0.4038725098 0.0002265111 0.1061112606 0.4932630240 0.4441894732 [131] -0.1235341743 -0.1161856474 0.3296646179 0.0452166539 0.2188481588 [136] -0.0156176711 0.0563632403 -0.6523457524 -0.0837027962 -0.5049301803 [141] 0.1364804293 0.3214834117 -0.0867911174 0.0616957512 0.4325795959 [146] 0.0560772488 -0.2948877981 0.1557670121 -0.2910148651 0.0456795088 [151] -0.0127213805 0.3093406784 0.6303060811 -0.2208256686 -0.1777343980 [156] -0.0504033248 0.1488709906 -0.2066701983 0.4387214475 -0.2264624381 [161] 0.2173147204 0.1095054668 -0.4920298522 0.3296307221 -0.0073239637 [166] 0.8994038566 -0.1100741868 0.2844155114 -0.0466790570 -0.6439128292 [171] -0.2490842315 0.2410304388 -0.1337926430 -0.0381931183 -0.0800038279 [176] 0.3217465568 0.3474521640 0.2319377955 -0.1390350897 0.1492926199 [181] 0.2177583828 -0.0799678291 -0.4695452362 0.1583118447 0.3207150000 [186] -0.3270292956 0.2319782571 -0.2828107273 -0.1464408384 -0.3545889794 [191] 0.0328189724 -0.0339662127 -0.0268749021 -0.4941912004 0.2476313998 [196] 0.0328892388 0.1278049612 -0.5272243830 -0.0006652497 0.7572983920 [201] 0.2358828521 -0.0878816861 0.2289330887 0.2682253584 0.2838916614 [206] 0.1778811464 0.1432211265 0.2507440958 0.3361993665 -0.1650466930 [211] 0.1713950791 -0.5549981799 0.1827869274 0.3552458193 -0.0177963298 [216] 0.3618859725 0.0752333803 -0.0996416560 -0.0128451299 -0.0709774283 [221] -0.1018760843 0.2662603754 -0.1626593235 0.3338274629 -0.8141357409 [226] -0.1617815117 -0.4425691956 0.0818154021 -0.1770221281 0.5577562702 > > proc.time() user system elapsed 0.630 2.994 3.766
BufferedMatrix.Rcheck/tests/rawCalltesting.Rout
R version 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > prefix <- "dbmtest" > directory <- getwd() > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x600002290780> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x600002290780> > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x600002290780> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x600002290780> > rm(P) > > #P <- .Call("R_bm_Destroy",P) > #.Call("R_bm_Destroy",P) > #.Call("R_bm_Test_C",P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 0 Buffer Rows: 1 Buffer Cols: 1 Printing Values <pointer: 0x600002298060> > .Call("R_bm_AddColumn",P) <pointer: 0x600002298060> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 1 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x600002298060> > .Call("R_bm_AddColumn",P) <pointer: 0x600002298060> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x600002298060> > rm(P) > > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x600002298240> > .Call("R_bm_AddColumn",P) <pointer: 0x600002298240> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x600002298240> > > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x600002298240> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x600002298240> > > .Call("R_bm_RowMode",P) <pointer: 0x600002298240> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x600002298240> > > .Call("R_bm_ColMode",P) <pointer: 0x600002298240> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x600002298240> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x600002298420> > .Call("R_bm_SetPrefix",P,"BufferedMatrixFile") <pointer: 0x600002298420> > .Call("R_bm_AddColumn",P) <pointer: 0x600002298420> > .Call("R_bm_AddColumn",P) <pointer: 0x600002298420> > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFileeb56189f3bb4" "BufferedMatrixFileeb5620eeb8b0" > rm(P) > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFileeb56189f3bb4" "BufferedMatrixFileeb5620eeb8b0" > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x6000022986c0> > .Call("R_bm_AddColumn",P) <pointer: 0x6000022986c0> > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x6000022986c0> > .Call("R_bm_isReadOnlyMode",P) [1] TRUE > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x6000022986c0> > .Call("R_bm_isReadOnlyMode",P) [1] FALSE > .Call("R_bm_isRowMode",P) [1] FALSE > .Call("R_bm_RowMode",P) <pointer: 0x6000022986c0> > .Call("R_bm_isRowMode",P) [1] TRUE > .Call("R_bm_ColMode",P) <pointer: 0x6000022986c0> > .Call("R_bm_isRowMode",P) [1] FALSE > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x6000022988a0> > .Call("R_bm_AddColumn",P) <pointer: 0x6000022988a0> > > .Call("R_bm_getSize",P) [1] 10 2 > .Call("R_bm_getBufferSize",P) [1] 1 1 > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x6000022988a0> > > .Call("R_bm_getBufferSize",P) [1] 5 5 > .Call("R_bm_ResizeBuffer",P,-1,5) <pointer: 0x6000022988a0> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x600002298a80> > .Call("R_bm_getValue",P,3,3) [1] 6 > > .Call("R_bm_getValue",P,100000,10000) [1] NA > .Call("R_bm_setValue",P,3,3,12345.0) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 12345.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x600002298a80> > rm(P) > > proc.time() user system elapsed 0.110 0.037 0.145
BufferedMatrix.Rcheck/tests/Rcodetesting.Rout
R version 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > Temp <- createBufferedMatrix(100) > dim(Temp) [1] 100 0 > buffer.dim(Temp) [1] 1 1 > > > proc.time() user system elapsed 0.108 0.025 0.131