Back to Multiple platform build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-11-22 11:38 -0500 (Sat, 22 Nov 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" 4829
lconwaymacOS 12.7.6 Montereyx86_64R Under development (unstable) (2025-10-21 r88958) -- "Unsuffered Consequences" 4603
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4567
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 252/2327HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-11-21 13:40 -0500 (Fri, 21 Nov 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.6 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for BufferedMatrix on lconway

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2025-11-21 19:52:38 -0500 (Fri, 21 Nov 2025)
EndedAt: 2025-11-21 19:53:31 -0500 (Fri, 21 Nov 2025)
EllapsedTime: 53.1 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2025-10-21 r88958)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.3 (clang-1403.0.22.14.1)’
* used SDK: ‘MacOSX11.3.1.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.3 (clang-1403.0.22.14.1)’
using SDK: ‘MacOSX11.3.1.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.6-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2025-10-21 r88958) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.320   0.142   0.479 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2025-10-21 r88958) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 481268 25.8    1058102 56.6         NA   633897 33.9
Vcells 891509  6.9    8388608 64.0      98304  2110436 16.2
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Nov 21 19:53:05 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Nov 21 19:53:05 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600000564180>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Nov 21 19:53:09 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Nov 21 19:53:11 2025"
> 
> ColMode(tmp2)
<pointer: 0x600000564180>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
             [,1]       [,2]        [,3]       [,4]
[1,] 1.004911e+02  1.5177829 -0.57401576 -1.2935634
[2,] 8.452885e-03 -0.9029238 -0.68492310 -0.9519212
[3,] 1.785693e+00  0.6622697 -0.58152193 -0.3586944
[4,] 7.755745e-01  0.2333498  0.02555371 -1.1225919
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
             [,1]      [,2]       [,3]      [,4]
[1,] 1.004911e+02 1.5177829 0.57401576 1.2935634
[2,] 8.452885e-03 0.9029238 0.68492310 0.9519212
[3,] 1.785693e+00 0.6622697 0.58152193 0.3586944
[4,] 7.755745e-01 0.2333498 0.02555371 1.1225919
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]      [,4]
[1,] 10.02452630 1.2319833 0.7576383 1.1373493
[2,]  0.09193957 0.9502230 0.8276008 0.9756645
[3,]  1.33629817 0.8137995 0.7625759 0.5989110
[4,]  0.88066710 0.4830629 0.1598553 1.0595244
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.73639 38.83762 33.15040 37.66706
[2,]  25.92785 35.40515 33.96093 35.70857
[3,]  40.14867 33.80026 33.20728 31.34780
[4,]  34.58225 30.06398 26.62411 36.71784
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600000524000>
> exp(tmp5)
<pointer: 0x600000524000>
> log(tmp5,2)
<pointer: 0x600000524000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 469.8407
> Min(tmp5)
[1] 53.37861
> mean(tmp5)
[1] 72.01802
> Sum(tmp5)
[1] 14403.6
> Var(tmp5)
[1] 867.5713
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 90.50863 69.45037 70.01758 68.58428 70.57348 69.61335 70.70882 71.70475
 [9] 70.72872 68.29022
> rowSums(tmp5)
 [1] 1810.173 1389.007 1400.352 1371.686 1411.470 1392.267 1414.176 1434.095
 [9] 1414.574 1365.804
> rowVars(tmp5)
 [1] 8028.84497   77.36908  100.19841   58.27996   69.82114   78.34511
 [7]   96.81598   59.70011   49.31611   57.94799
> rowSd(tmp5)
 [1] 89.603822  8.795970 10.009916  7.634131  8.355905  8.851277  9.839511
 [8]  7.726585  7.022543  7.612358
> rowMax(tmp5)
 [1] 469.84072  87.46379  89.31122  89.38954  81.90798  83.30474  87.29168
 [8]  90.55845  86.91914  82.27711
> rowMin(tmp5)
 [1] 56.11224 53.96542 53.37861 55.41459 55.99092 55.39113 54.60503 61.02950
 [9] 59.15378 54.97708
> 
> colMeans(tmp5)
 [1] 111.38275  68.61527  66.05073  72.41411  74.16319  70.11238  67.48438
 [8]  68.28176  68.87234  63.96550  73.88566  71.15024  64.44552  69.05992
[15]  70.60206  70.20225  74.54615  73.14964  73.09102  68.88554
> colSums(tmp5)
 [1] 1113.8275  686.1527  660.5073  724.1411  741.6319  701.1238  674.8438
 [8]  682.8176  688.7234  639.6550  738.8566  711.5024  644.4552  690.5992
[15]  706.0206  702.0225  745.4615  731.4964  730.9102  688.8554
> colVars(tmp5)
 [1] 15942.83981    70.86813    60.35637   105.35493    66.09482    55.19468
 [7]    81.00162    26.95187    71.49738    42.61279    24.49995    71.13558
[13]    54.12514    68.60972    60.13129   108.66935    54.82398    31.36210
[19]    59.16262   118.02593
> colSd(tmp5)
 [1] 126.264959   8.418321   7.768936  10.264255   8.129872   7.429312
 [7]   9.000090   5.191519   8.455612   6.527847   4.949742   8.434191
[13]   7.356979   8.283099   7.754437  10.424459   7.404322   5.600187
[19]   7.691724  10.863974
> colMax(tmp5)
 [1] 469.84072  80.83541  79.19435  87.29168  89.31122  81.92649  81.90798
 [8]  74.51505  82.06467  73.39422  80.53661  82.30772  75.80320  80.85412
[15]  87.46379  84.34176  89.38954  84.18374  90.55845  86.73647
> colMin(tmp5)
 [1] 53.96542 55.29100 55.41459 56.05656 62.83333 59.05591 57.33745 58.96300
 [9] 55.83805 54.72194 66.78099 60.36357 53.37861 56.11224 62.14496 54.60503
[17] 63.71014 65.64396 64.47502 53.99335
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 90.50863 69.45037 70.01758 68.58428 70.57348 69.61335 70.70882 71.70475
 [9] 70.72872       NA
> rowSums(tmp5)
 [1] 1810.173 1389.007 1400.352 1371.686 1411.470 1392.267 1414.176 1434.095
 [9] 1414.574       NA
> rowVars(tmp5)
 [1] 8028.84497   77.36908  100.19841   58.27996   69.82114   78.34511
 [7]   96.81598   59.70011   49.31611   59.47252
> rowSd(tmp5)
 [1] 89.603822  8.795970 10.009916  7.634131  8.355905  8.851277  9.839511
 [8]  7.726585  7.022543  7.711843
> rowMax(tmp5)
 [1] 469.84072  87.46379  89.31122  89.38954  81.90798  83.30474  87.29168
 [8]  90.55845  86.91914        NA
> rowMin(tmp5)
 [1] 56.11224 53.96542 53.37861 55.41459 55.99092 55.39113 54.60503 61.02950
 [9] 59.15378       NA
> 
> colMeans(tmp5)
 [1] 111.38275  68.61527  66.05073  72.41411  74.16319  70.11238  67.48438
 [8]  68.28176  68.87234  63.96550  73.88566  71.15024  64.44552  69.05992
[15]  70.60206        NA  74.54615  73.14964  73.09102  68.88554
> colSums(tmp5)
 [1] 1113.8275  686.1527  660.5073  724.1411  741.6319  701.1238  674.8438
 [8]  682.8176  688.7234  639.6550  738.8566  711.5024  644.4552  690.5992
[15]  706.0206        NA  745.4615  731.4964  730.9102  688.8554
> colVars(tmp5)
 [1] 15942.83981    70.86813    60.35637   105.35493    66.09482    55.19468
 [7]    81.00162    26.95187    71.49738    42.61279    24.49995    71.13558
[13]    54.12514    68.60972    60.13129          NA    54.82398    31.36210
[19]    59.16262   118.02593
> colSd(tmp5)
 [1] 126.264959   8.418321   7.768936  10.264255   8.129872   7.429312
 [7]   9.000090   5.191519   8.455612   6.527847   4.949742   8.434191
[13]   7.356979   8.283099   7.754437         NA   7.404322   5.600187
[19]   7.691724  10.863974
> colMax(tmp5)
 [1] 469.84072  80.83541  79.19435  87.29168  89.31122  81.92649  81.90798
 [8]  74.51505  82.06467  73.39422  80.53661  82.30772  75.80320  80.85412
[15]  87.46379        NA  89.38954  84.18374  90.55845  86.73647
> colMin(tmp5)
 [1] 53.96542 55.29100 55.41459 56.05656 62.83333 59.05591 57.33745 58.96300
 [9] 55.83805 54.72194 66.78099 60.36357 53.37861 56.11224 62.14496       NA
[17] 63.71014 65.64396 64.47502 53.99335
> 
> Max(tmp5,na.rm=TRUE)
[1] 469.8407
> Min(tmp5,na.rm=TRUE)
[1] 53.37861
> mean(tmp5,na.rm=TRUE)
[1] 72.0097
> Sum(tmp5,na.rm=TRUE)
[1] 14329.93
> Var(tmp5,na.rm=TRUE)
[1] 871.9391
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.50863 69.45037 70.01758 68.58428 70.57348 69.61335 70.70882 71.70475
 [9] 70.72872 68.00688
> rowSums(tmp5,na.rm=TRUE)
 [1] 1810.173 1389.007 1400.352 1371.686 1411.470 1392.267 1414.176 1434.095
 [9] 1414.574 1292.131
> rowVars(tmp5,na.rm=TRUE)
 [1] 8028.84497   77.36908  100.19841   58.27996   69.82114   78.34511
 [7]   96.81598   59.70011   49.31611   59.47252
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.603822  8.795970 10.009916  7.634131  8.355905  8.851277  9.839511
 [8]  7.726585  7.022543  7.711843
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.84072  87.46379  89.31122  89.38954  81.90798  83.30474  87.29168
 [8]  90.55845  86.91914  82.27711
> rowMin(tmp5,na.rm=TRUE)
 [1] 56.11224 53.96542 53.37861 55.41459 55.99092 55.39113 54.60503 61.02950
 [9] 59.15378 54.97708
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 111.38275  68.61527  66.05073  72.41411  74.16319  70.11238  67.48438
 [8]  68.28176  68.87234  63.96550  73.88566  71.15024  64.44552  69.05992
[15]  70.60206  69.81654  74.54615  73.14964  73.09102  68.88554
> colSums(tmp5,na.rm=TRUE)
 [1] 1113.8275  686.1527  660.5073  724.1411  741.6319  701.1238  674.8438
 [8]  682.8176  688.7234  639.6550  738.8566  711.5024  644.4552  690.5992
[15]  706.0206  628.3489  745.4615  731.4964  730.9102  688.8554
> colVars(tmp5,na.rm=TRUE)
 [1] 15942.83981    70.86813    60.35637   105.35493    66.09482    55.19468
 [7]    81.00162    26.95187    71.49738    42.61279    24.49995    71.13558
[13]    54.12514    68.60972    60.13129   120.57935    54.82398    31.36210
[19]    59.16262   118.02593
> colSd(tmp5,na.rm=TRUE)
 [1] 126.264959   8.418321   7.768936  10.264255   8.129872   7.429312
 [7]   9.000090   5.191519   8.455612   6.527847   4.949742   8.434191
[13]   7.356979   8.283099   7.754437  10.980863   7.404322   5.600187
[19]   7.691724  10.863974
> colMax(tmp5,na.rm=TRUE)
 [1] 469.84072  80.83541  79.19435  87.29168  89.31122  81.92649  81.90798
 [8]  74.51505  82.06467  73.39422  80.53661  82.30772  75.80320  80.85412
[15]  87.46379  84.34176  89.38954  84.18374  90.55845  86.73647
> colMin(tmp5,na.rm=TRUE)
 [1] 53.96542 55.29100 55.41459 56.05656 62.83333 59.05591 57.33745 58.96300
 [9] 55.83805 54.72194 66.78099 60.36357 53.37861 56.11224 62.14496 54.60503
[17] 63.71014 65.64396 64.47502 53.99335
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.50863 69.45037 70.01758 68.58428 70.57348 69.61335 70.70882 71.70475
 [9] 70.72872      NaN
> rowSums(tmp5,na.rm=TRUE)
 [1] 1810.173 1389.007 1400.352 1371.686 1411.470 1392.267 1414.176 1434.095
 [9] 1414.574    0.000
> rowVars(tmp5,na.rm=TRUE)
 [1] 8028.84497   77.36908  100.19841   58.27996   69.82114   78.34511
 [7]   96.81598   59.70011   49.31611         NA
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.603822  8.795970 10.009916  7.634131  8.355905  8.851277  9.839511
 [8]  7.726585  7.022543        NA
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.84072  87.46379  89.31122  89.38954  81.90798  83.30474  87.29168
 [8]  90.55845  86.91914        NA
> rowMin(tmp5,na.rm=TRUE)
 [1] 56.11224 53.96542 53.37861 55.41459 55.99092 55.39113 54.60503 61.02950
 [9] 59.15378       NA
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 114.61671  69.48844  66.37098  73.62100  75.42207  70.79558  67.43761
 [8]  68.86380  69.25978  62.93104  73.92551  72.34875  64.73429  69.02428
[15]  70.38547       NaN  74.07188  72.65494  72.44483  70.43093
> colSums(tmp5,na.rm=TRUE)
 [1] 1031.5504  625.3960  597.3388  662.5890  678.7986  637.1602  606.9384
 [8]  619.7742  623.3380  566.3794  665.3296  651.1388  582.6086  621.2185
[15]  633.4692    0.0000  666.6469  653.8944  652.0035  633.8783
> colVars(tmp5,na.rm=TRUE)
 [1] 17818.03671    71.14937    66.74718   102.13783    56.52809    56.84295
 [7]    91.10221    26.50959    78.74580    35.90066    27.54458    63.86749
[13]    59.95264    77.17165    67.11994          NA    59.14649    32.52914
[19]    61.86046   105.91177
> colSd(tmp5,na.rm=TRUE)
 [1] 133.484219   8.435008   8.169895  10.106326   7.518516   7.539426
 [7]   9.544748   5.148746   8.873883   5.991716   5.248293   7.991714
[13]   7.742909   8.784740   8.192676         NA   7.690675   5.703432
[19]   7.865142  10.291344
> colMax(tmp5,na.rm=TRUE)
 [1] 469.84072  80.83541  79.19435  87.29168  89.31122  81.92649  81.90798
 [8]  74.51505  82.06467  73.39422  80.53661  82.30772  75.80320  80.85412
[15]  87.46379      -Inf  89.38954  84.18374  90.55845  86.73647
> colMin(tmp5,na.rm=TRUE)
 [1] 53.96542 55.29100 55.41459 56.05656 67.26267 59.05591 57.33745 58.96300
 [9] 55.83805 54.72194 66.78099 61.02950 53.37861 56.11224 62.14496      Inf
[17] 63.71014 65.64396 64.47502 53.99335
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 158.9123 251.9005 254.9639 289.2532 192.1531 220.2688 251.6583 207.2240
 [9] 129.4534 183.4509
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 158.9123 251.9005 254.9639 289.2532 192.1531 220.2688 251.6583 207.2240
 [9] 129.4534 183.4509
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -8.526513e-14  8.526513e-14  5.684342e-14  8.526513e-14  0.000000e+00
 [6]  8.526513e-14 -4.263256e-14  0.000000e+00  8.526513e-14  0.000000e+00
[11]  8.526513e-14 -1.136868e-13  1.136868e-13  2.842171e-14  0.000000e+00
[16]  2.842171e-14  1.136868e-13  5.684342e-14  1.136868e-13 -7.105427e-15
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
3   1 
3   13 
3   20 
8   17 
6   12 
3   2 
9   11 
3   10 
8   11 
8   4 
7   18 
5   4 
2   14 
4   2 
1   5 
5   11 
1   16 
2   1 
8   6 
2   1 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.86998
> Min(tmp)
[1] -2.537715
> mean(tmp)
[1] -0.08752544
> Sum(tmp)
[1] -8.752544
> Var(tmp)
[1] 1.257494
> 
> rowMeans(tmp)
[1] -0.08752544
> rowSums(tmp)
[1] -8.752544
> rowVars(tmp)
[1] 1.257494
> rowSd(tmp)
[1] 1.121381
> rowMax(tmp)
[1] 2.86998
> rowMin(tmp)
[1] -2.537715
> 
> colMeans(tmp)
  [1]  0.061008215 -0.309738066 -0.911656865 -0.727595589 -0.010508252
  [6]  0.878722621 -2.033393827  0.004552393 -0.504984213  1.276035117
 [11] -1.517587679 -1.056259671 -0.733781033 -1.351337238 -0.023608110
 [16]  1.656402792  0.292845223  0.479777881  0.697078727  0.983536282
 [21] -1.219481048  1.705511041 -1.617917065 -0.101641197  0.856881385
 [26] -0.018081289 -0.556935013 -0.501822979  0.914381185 -1.019067382
 [31] -0.559775096 -0.675456895 -1.407880665 -0.723854581  1.351500401
 [36]  1.896049035  1.929054588  1.244896848  1.953291458 -0.014264711
 [41]  0.121525177 -1.952890293  0.701444039  0.207196513  0.158001560
 [46]  0.138972257 -1.076510305  1.809829403 -0.562184215 -2.537715254
 [51]  0.669224397  0.015370724  1.320027407 -0.736431250 -0.179437909
 [56] -1.891064274 -0.314102035  0.066317450 -1.905362828  0.003257189
 [61]  0.918886704  0.606020422  1.434640187 -1.110144480 -1.725424847
 [66]  1.029124159 -0.628000387 -1.158823921 -0.338013959  2.869980050
 [71] -1.554700511 -2.068220434 -1.151213128 -0.061121949 -1.509932518
 [76] -1.277043279 -1.652007259  1.937133265  1.729874376  0.903688744
 [81]  0.351118684 -0.700192536 -0.717916433 -0.483694773  1.761875160
 [86]  1.436517428 -0.538413065  0.382136712  0.988099262  0.051769978
 [91] -0.992602066 -0.390010931 -0.186667098 -0.447862282  0.569867694
 [96] -0.955126428  0.159752051 -0.395755316  0.582617654 -1.063122984
> colSums(tmp)
  [1]  0.061008215 -0.309738066 -0.911656865 -0.727595589 -0.010508252
  [6]  0.878722621 -2.033393827  0.004552393 -0.504984213  1.276035117
 [11] -1.517587679 -1.056259671 -0.733781033 -1.351337238 -0.023608110
 [16]  1.656402792  0.292845223  0.479777881  0.697078727  0.983536282
 [21] -1.219481048  1.705511041 -1.617917065 -0.101641197  0.856881385
 [26] -0.018081289 -0.556935013 -0.501822979  0.914381185 -1.019067382
 [31] -0.559775096 -0.675456895 -1.407880665 -0.723854581  1.351500401
 [36]  1.896049035  1.929054588  1.244896848  1.953291458 -0.014264711
 [41]  0.121525177 -1.952890293  0.701444039  0.207196513  0.158001560
 [46]  0.138972257 -1.076510305  1.809829403 -0.562184215 -2.537715254
 [51]  0.669224397  0.015370724  1.320027407 -0.736431250 -0.179437909
 [56] -1.891064274 -0.314102035  0.066317450 -1.905362828  0.003257189
 [61]  0.918886704  0.606020422  1.434640187 -1.110144480 -1.725424847
 [66]  1.029124159 -0.628000387 -1.158823921 -0.338013959  2.869980050
 [71] -1.554700511 -2.068220434 -1.151213128 -0.061121949 -1.509932518
 [76] -1.277043279 -1.652007259  1.937133265  1.729874376  0.903688744
 [81]  0.351118684 -0.700192536 -0.717916433 -0.483694773  1.761875160
 [86]  1.436517428 -0.538413065  0.382136712  0.988099262  0.051769978
 [91] -0.992602066 -0.390010931 -0.186667098 -0.447862282  0.569867694
 [96] -0.955126428  0.159752051 -0.395755316  0.582617654 -1.063122984
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.061008215 -0.309738066 -0.911656865 -0.727595589 -0.010508252
  [6]  0.878722621 -2.033393827  0.004552393 -0.504984213  1.276035117
 [11] -1.517587679 -1.056259671 -0.733781033 -1.351337238 -0.023608110
 [16]  1.656402792  0.292845223  0.479777881  0.697078727  0.983536282
 [21] -1.219481048  1.705511041 -1.617917065 -0.101641197  0.856881385
 [26] -0.018081289 -0.556935013 -0.501822979  0.914381185 -1.019067382
 [31] -0.559775096 -0.675456895 -1.407880665 -0.723854581  1.351500401
 [36]  1.896049035  1.929054588  1.244896848  1.953291458 -0.014264711
 [41]  0.121525177 -1.952890293  0.701444039  0.207196513  0.158001560
 [46]  0.138972257 -1.076510305  1.809829403 -0.562184215 -2.537715254
 [51]  0.669224397  0.015370724  1.320027407 -0.736431250 -0.179437909
 [56] -1.891064274 -0.314102035  0.066317450 -1.905362828  0.003257189
 [61]  0.918886704  0.606020422  1.434640187 -1.110144480 -1.725424847
 [66]  1.029124159 -0.628000387 -1.158823921 -0.338013959  2.869980050
 [71] -1.554700511 -2.068220434 -1.151213128 -0.061121949 -1.509932518
 [76] -1.277043279 -1.652007259  1.937133265  1.729874376  0.903688744
 [81]  0.351118684 -0.700192536 -0.717916433 -0.483694773  1.761875160
 [86]  1.436517428 -0.538413065  0.382136712  0.988099262  0.051769978
 [91] -0.992602066 -0.390010931 -0.186667098 -0.447862282  0.569867694
 [96] -0.955126428  0.159752051 -0.395755316  0.582617654 -1.063122984
> colMin(tmp)
  [1]  0.061008215 -0.309738066 -0.911656865 -0.727595589 -0.010508252
  [6]  0.878722621 -2.033393827  0.004552393 -0.504984213  1.276035117
 [11] -1.517587679 -1.056259671 -0.733781033 -1.351337238 -0.023608110
 [16]  1.656402792  0.292845223  0.479777881  0.697078727  0.983536282
 [21] -1.219481048  1.705511041 -1.617917065 -0.101641197  0.856881385
 [26] -0.018081289 -0.556935013 -0.501822979  0.914381185 -1.019067382
 [31] -0.559775096 -0.675456895 -1.407880665 -0.723854581  1.351500401
 [36]  1.896049035  1.929054588  1.244896848  1.953291458 -0.014264711
 [41]  0.121525177 -1.952890293  0.701444039  0.207196513  0.158001560
 [46]  0.138972257 -1.076510305  1.809829403 -0.562184215 -2.537715254
 [51]  0.669224397  0.015370724  1.320027407 -0.736431250 -0.179437909
 [56] -1.891064274 -0.314102035  0.066317450 -1.905362828  0.003257189
 [61]  0.918886704  0.606020422  1.434640187 -1.110144480 -1.725424847
 [66]  1.029124159 -0.628000387 -1.158823921 -0.338013959  2.869980050
 [71] -1.554700511 -2.068220434 -1.151213128 -0.061121949 -1.509932518
 [76] -1.277043279 -1.652007259  1.937133265  1.729874376  0.903688744
 [81]  0.351118684 -0.700192536 -0.717916433 -0.483694773  1.761875160
 [86]  1.436517428 -0.538413065  0.382136712  0.988099262  0.051769978
 [91] -0.992602066 -0.390010931 -0.186667098 -0.447862282  0.569867694
 [96] -0.955126428  0.159752051 -0.395755316  0.582617654 -1.063122984
> colMedians(tmp)
  [1]  0.061008215 -0.309738066 -0.911656865 -0.727595589 -0.010508252
  [6]  0.878722621 -2.033393827  0.004552393 -0.504984213  1.276035117
 [11] -1.517587679 -1.056259671 -0.733781033 -1.351337238 -0.023608110
 [16]  1.656402792  0.292845223  0.479777881  0.697078727  0.983536282
 [21] -1.219481048  1.705511041 -1.617917065 -0.101641197  0.856881385
 [26] -0.018081289 -0.556935013 -0.501822979  0.914381185 -1.019067382
 [31] -0.559775096 -0.675456895 -1.407880665 -0.723854581  1.351500401
 [36]  1.896049035  1.929054588  1.244896848  1.953291458 -0.014264711
 [41]  0.121525177 -1.952890293  0.701444039  0.207196513  0.158001560
 [46]  0.138972257 -1.076510305  1.809829403 -0.562184215 -2.537715254
 [51]  0.669224397  0.015370724  1.320027407 -0.736431250 -0.179437909
 [56] -1.891064274 -0.314102035  0.066317450 -1.905362828  0.003257189
 [61]  0.918886704  0.606020422  1.434640187 -1.110144480 -1.725424847
 [66]  1.029124159 -0.628000387 -1.158823921 -0.338013959  2.869980050
 [71] -1.554700511 -2.068220434 -1.151213128 -0.061121949 -1.509932518
 [76] -1.277043279 -1.652007259  1.937133265  1.729874376  0.903688744
 [81]  0.351118684 -0.700192536 -0.717916433 -0.483694773  1.761875160
 [86]  1.436517428 -0.538413065  0.382136712  0.988099262  0.051769978
 [91] -0.992602066 -0.390010931 -0.186667098 -0.447862282  0.569867694
 [96] -0.955126428  0.159752051 -0.395755316  0.582617654 -1.063122984
> colRanges(tmp)
           [,1]       [,2]       [,3]       [,4]        [,5]      [,6]
[1,] 0.06100821 -0.3097381 -0.9116569 -0.7275956 -0.01050825 0.8787226
[2,] 0.06100821 -0.3097381 -0.9116569 -0.7275956 -0.01050825 0.8787226
          [,7]        [,8]       [,9]    [,10]     [,11]    [,12]     [,13]
[1,] -2.033394 0.004552393 -0.5049842 1.276035 -1.517588 -1.05626 -0.733781
[2,] -2.033394 0.004552393 -0.5049842 1.276035 -1.517588 -1.05626 -0.733781
         [,14]       [,15]    [,16]     [,17]     [,18]     [,19]     [,20]
[1,] -1.351337 -0.02360811 1.656403 0.2928452 0.4797779 0.6970787 0.9835363
[2,] -1.351337 -0.02360811 1.656403 0.2928452 0.4797779 0.6970787 0.9835363
         [,21]    [,22]     [,23]      [,24]     [,25]       [,26]     [,27]
[1,] -1.219481 1.705511 -1.617917 -0.1016412 0.8568814 -0.01808129 -0.556935
[2,] -1.219481 1.705511 -1.617917 -0.1016412 0.8568814 -0.01808129 -0.556935
         [,28]     [,29]     [,30]      [,31]      [,32]     [,33]      [,34]
[1,] -0.501823 0.9143812 -1.019067 -0.5597751 -0.6754569 -1.407881 -0.7238546
[2,] -0.501823 0.9143812 -1.019067 -0.5597751 -0.6754569 -1.407881 -0.7238546
      [,35]    [,36]    [,37]    [,38]    [,39]       [,40]     [,41]    [,42]
[1,] 1.3515 1.896049 1.929055 1.244897 1.953291 -0.01426471 0.1215252 -1.95289
[2,] 1.3515 1.896049 1.929055 1.244897 1.953291 -0.01426471 0.1215252 -1.95289
        [,43]     [,44]     [,45]     [,46]    [,47]    [,48]      [,49]
[1,] 0.701444 0.2071965 0.1580016 0.1389723 -1.07651 1.809829 -0.5621842
[2,] 0.701444 0.2071965 0.1580016 0.1389723 -1.07651 1.809829 -0.5621842
         [,50]     [,51]      [,52]    [,53]      [,54]      [,55]     [,56]
[1,] -2.537715 0.6692244 0.01537072 1.320027 -0.7364312 -0.1794379 -1.891064
[2,] -2.537715 0.6692244 0.01537072 1.320027 -0.7364312 -0.1794379 -1.891064
         [,57]      [,58]     [,59]       [,60]     [,61]     [,62]   [,63]
[1,] -0.314102 0.06631745 -1.905363 0.003257189 0.9188867 0.6060204 1.43464
[2,] -0.314102 0.06631745 -1.905363 0.003257189 0.9188867 0.6060204 1.43464
         [,64]     [,65]    [,66]      [,67]     [,68]     [,69]   [,70]
[1,] -1.110144 -1.725425 1.029124 -0.6280004 -1.158824 -0.338014 2.86998
[2,] -1.110144 -1.725425 1.029124 -0.6280004 -1.158824 -0.338014 2.86998
         [,71]    [,72]     [,73]       [,74]     [,75]     [,76]     [,77]
[1,] -1.554701 -2.06822 -1.151213 -0.06112195 -1.509933 -1.277043 -1.652007
[2,] -1.554701 -2.06822 -1.151213 -0.06112195 -1.509933 -1.277043 -1.652007
        [,78]    [,79]     [,80]     [,81]      [,82]      [,83]      [,84]
[1,] 1.937133 1.729874 0.9036887 0.3511187 -0.7001925 -0.7179164 -0.4836948
[2,] 1.937133 1.729874 0.9036887 0.3511187 -0.7001925 -0.7179164 -0.4836948
        [,85]    [,86]      [,87]     [,88]     [,89]      [,90]      [,91]
[1,] 1.761875 1.436517 -0.5384131 0.3821367 0.9880993 0.05176998 -0.9926021
[2,] 1.761875 1.436517 -0.5384131 0.3821367 0.9880993 0.05176998 -0.9926021
          [,92]      [,93]      [,94]     [,95]      [,96]     [,97]      [,98]
[1,] -0.3900109 -0.1866671 -0.4478623 0.5698677 -0.9551264 0.1597521 -0.3957553
[2,] -0.3900109 -0.1866671 -0.4478623 0.5698677 -0.9551264 0.1597521 -0.3957553
         [,99]    [,100]
[1,] 0.5826177 -1.063123
[2,] 0.5826177 -1.063123
> 
> 
> Max(tmp2)
[1] 2.256471
> Min(tmp2)
[1] -2.279519
> mean(tmp2)
[1] -0.05199492
> Sum(tmp2)
[1] -5.199492
> Var(tmp2)
[1] 1.093829
> 
> rowMeans(tmp2)
  [1] -0.876582592 -1.118693810 -1.609648322 -0.578427934 -0.112556813
  [6]  1.305012918  0.399188115 -0.730542673  0.098433046 -0.328994810
 [11] -0.681679098 -1.286191620 -0.996520880 -0.624275173 -0.073074043
 [16] -0.965595762  1.096337042 -0.387336115 -0.173619438 -1.562837182
 [21]  0.144389131 -0.213776838 -0.447878996  0.403131963  0.916296220
 [26] -1.375048589  0.533171762  0.130855523 -2.174417011  1.428602490
 [31] -1.622556810 -0.455579273  1.305231591 -1.877241644  0.189203478
 [36] -0.733168826  0.994900278  0.557239228  0.331750829 -0.559930124
 [41] -2.279519488 -1.784818548 -0.406981398  0.291989237  2.077040762
 [46] -0.058592668 -0.742111592  1.220173819 -1.893170876 -0.665018928
 [51] -0.608100032  1.654328571 -0.429727548 -0.751983547 -1.282656625
 [56]  1.180758499  1.805009658 -0.208778443 -0.318341757  0.128367171
 [61]  0.408634094  0.086716465 -0.172708904  1.132183752  0.486847027
 [66]  0.213462661 -0.085448502  2.256470811 -0.711707816 -0.036114783
 [71] -0.417877221 -1.135974183  0.096709810  1.075015522  0.526991253
 [76] -1.362137358  0.560841059 -0.001789102 -1.289041636 -1.196922783
 [81] -0.101364800  1.157540543 -1.505568638  0.278372330  1.005914985
 [86] -1.011456187  1.393928870  1.128311062 -0.481045952  2.117845890
 [91]  2.203945407  1.126123211 -1.686515148  1.288067170  0.252063842
 [96] -0.296978810  0.955262567  1.173662525  0.634426493 -0.461613486
> rowSums(tmp2)
  [1] -0.876582592 -1.118693810 -1.609648322 -0.578427934 -0.112556813
  [6]  1.305012918  0.399188115 -0.730542673  0.098433046 -0.328994810
 [11] -0.681679098 -1.286191620 -0.996520880 -0.624275173 -0.073074043
 [16] -0.965595762  1.096337042 -0.387336115 -0.173619438 -1.562837182
 [21]  0.144389131 -0.213776838 -0.447878996  0.403131963  0.916296220
 [26] -1.375048589  0.533171762  0.130855523 -2.174417011  1.428602490
 [31] -1.622556810 -0.455579273  1.305231591 -1.877241644  0.189203478
 [36] -0.733168826  0.994900278  0.557239228  0.331750829 -0.559930124
 [41] -2.279519488 -1.784818548 -0.406981398  0.291989237  2.077040762
 [46] -0.058592668 -0.742111592  1.220173819 -1.893170876 -0.665018928
 [51] -0.608100032  1.654328571 -0.429727548 -0.751983547 -1.282656625
 [56]  1.180758499  1.805009658 -0.208778443 -0.318341757  0.128367171
 [61]  0.408634094  0.086716465 -0.172708904  1.132183752  0.486847027
 [66]  0.213462661 -0.085448502  2.256470811 -0.711707816 -0.036114783
 [71] -0.417877221 -1.135974183  0.096709810  1.075015522  0.526991253
 [76] -1.362137358  0.560841059 -0.001789102 -1.289041636 -1.196922783
 [81] -0.101364800  1.157540543 -1.505568638  0.278372330  1.005914985
 [86] -1.011456187  1.393928870  1.128311062 -0.481045952  2.117845890
 [91]  2.203945407  1.126123211 -1.686515148  1.288067170  0.252063842
 [96] -0.296978810  0.955262567  1.173662525  0.634426493 -0.461613486
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.876582592 -1.118693810 -1.609648322 -0.578427934 -0.112556813
  [6]  1.305012918  0.399188115 -0.730542673  0.098433046 -0.328994810
 [11] -0.681679098 -1.286191620 -0.996520880 -0.624275173 -0.073074043
 [16] -0.965595762  1.096337042 -0.387336115 -0.173619438 -1.562837182
 [21]  0.144389131 -0.213776838 -0.447878996  0.403131963  0.916296220
 [26] -1.375048589  0.533171762  0.130855523 -2.174417011  1.428602490
 [31] -1.622556810 -0.455579273  1.305231591 -1.877241644  0.189203478
 [36] -0.733168826  0.994900278  0.557239228  0.331750829 -0.559930124
 [41] -2.279519488 -1.784818548 -0.406981398  0.291989237  2.077040762
 [46] -0.058592668 -0.742111592  1.220173819 -1.893170876 -0.665018928
 [51] -0.608100032  1.654328571 -0.429727548 -0.751983547 -1.282656625
 [56]  1.180758499  1.805009658 -0.208778443 -0.318341757  0.128367171
 [61]  0.408634094  0.086716465 -0.172708904  1.132183752  0.486847027
 [66]  0.213462661 -0.085448502  2.256470811 -0.711707816 -0.036114783
 [71] -0.417877221 -1.135974183  0.096709810  1.075015522  0.526991253
 [76] -1.362137358  0.560841059 -0.001789102 -1.289041636 -1.196922783
 [81] -0.101364800  1.157540543 -1.505568638  0.278372330  1.005914985
 [86] -1.011456187  1.393928870  1.128311062 -0.481045952  2.117845890
 [91]  2.203945407  1.126123211 -1.686515148  1.288067170  0.252063842
 [96] -0.296978810  0.955262567  1.173662525  0.634426493 -0.461613486
> rowMin(tmp2)
  [1] -0.876582592 -1.118693810 -1.609648322 -0.578427934 -0.112556813
  [6]  1.305012918  0.399188115 -0.730542673  0.098433046 -0.328994810
 [11] -0.681679098 -1.286191620 -0.996520880 -0.624275173 -0.073074043
 [16] -0.965595762  1.096337042 -0.387336115 -0.173619438 -1.562837182
 [21]  0.144389131 -0.213776838 -0.447878996  0.403131963  0.916296220
 [26] -1.375048589  0.533171762  0.130855523 -2.174417011  1.428602490
 [31] -1.622556810 -0.455579273  1.305231591 -1.877241644  0.189203478
 [36] -0.733168826  0.994900278  0.557239228  0.331750829 -0.559930124
 [41] -2.279519488 -1.784818548 -0.406981398  0.291989237  2.077040762
 [46] -0.058592668 -0.742111592  1.220173819 -1.893170876 -0.665018928
 [51] -0.608100032  1.654328571 -0.429727548 -0.751983547 -1.282656625
 [56]  1.180758499  1.805009658 -0.208778443 -0.318341757  0.128367171
 [61]  0.408634094  0.086716465 -0.172708904  1.132183752  0.486847027
 [66]  0.213462661 -0.085448502  2.256470811 -0.711707816 -0.036114783
 [71] -0.417877221 -1.135974183  0.096709810  1.075015522  0.526991253
 [76] -1.362137358  0.560841059 -0.001789102 -1.289041636 -1.196922783
 [81] -0.101364800  1.157540543 -1.505568638  0.278372330  1.005914985
 [86] -1.011456187  1.393928870  1.128311062 -0.481045952  2.117845890
 [91]  2.203945407  1.126123211 -1.686515148  1.288067170  0.252063842
 [96] -0.296978810  0.955262567  1.173662525  0.634426493 -0.461613486
> 
> colMeans(tmp2)
[1] -0.05199492
> colSums(tmp2)
[1] -5.199492
> colVars(tmp2)
[1] 1.093829
> colSd(tmp2)
[1] 1.045863
> colMax(tmp2)
[1] 2.256471
> colMin(tmp2)
[1] -2.279519
> colMedians(tmp2)
[1] -0.09340665
> colRanges(tmp2)
          [,1]
[1,] -2.279519
[2,]  2.256471
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  4.78775841 -5.59255564  1.00499691  1.67547282 -3.26650821  3.18487501
 [7]  0.62086575 -2.04596639 -0.03579767 -3.23242346
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.6166803
[2,] -0.2907810
[3,]  0.7902064
[4,]  1.3607517
[5,]  1.8632616
> 
> rowApply(tmp,sum)
 [1] -0.66056823  2.88272285  0.04374878  1.48033616  0.41422667 -1.13726869
 [7]  1.86041537 -4.41589306 -1.83874837 -1.52825394
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    3   10    6   10    9    4    9    2    8     9
 [2,]    1    6    8    6    3    3    4    4    1     2
 [3,]    4    5    2    8    6    8    8    7    6     7
 [4,]    9    3   10    5    7    7    2    8    2     6
 [5,]    7    4    3    3   10    1    3   10    7     1
 [6,]    6    7    5    9    8    9    6    5    4     5
 [7,]    2    8    4    4    4    6    7    9   10     3
 [8,]    8    1    9    7    5   10    1    1    5     4
 [9,]   10    9    1    1    1    5   10    3    9     8
[10,]    5    2    7    2    2    2    5    6    3    10
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  2.1619325  0.4872117 -2.6720476 -2.3439565  2.7352484 -0.6593420
 [7] -0.6936869 -2.1913372 -2.0986062  0.2160324  0.3283782  1.6079536
[13] -0.6566439 -2.2354760  1.5534422  3.5626364 -0.5589895 -0.9766906
[19] -0.5591899  0.2615205
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -0.73783547
[2,] -0.01852282
[3,]  0.05739837
[4,]  1.28120502
[5,]  1.57968737
> 
> rowApply(tmp,sum)
[1] -5.558222 -2.437449  1.622809  1.065205  2.576047
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   20   13    9    5   17
[2,]   13    2   19   17    6
[3,]    4   10    5   15    2
[4,]   10    9    1   12    5
[5,]   12   19   10   11   18
> 
> 
> as.matrix(tmp)
            [,1]         [,2]        [,3]        [,4]        [,5]        [,6]
[1,]  1.57968737 -0.001742193 -1.20259388 -0.20404728 -0.01416306 -0.06629178
[2,]  0.05739837 -1.485152375 -0.05593291 -0.09556824  1.40108786  0.11355629
[3,] -0.01852282  1.239427055 -0.75709016 -1.64735422  0.03090369  0.45778003
[4,] -0.73783547  0.927314861  0.14435388  0.02210595  0.01575832 -0.56063470
[5,]  1.28120502 -0.192635680 -0.80078452 -0.41909270  1.30166155 -0.60375180
           [,7]        [,8]       [,9]      [,10]       [,11]      [,12]
[1,] -0.8913061 -0.68230306 -1.1034758  0.6632082  0.29077178 0.05513791
[2,]  0.3630991 -2.08572988 -0.4177584  0.4163031 -0.98786850 0.03804846
[3,]  0.4830333  0.81362665  0.4490863  0.5925634 -0.30131170 0.82044206
[4,] -0.7870457 -0.15001183 -0.8667183 -0.7353403  1.38168403 0.34138513
[5,]  0.1385325 -0.08691909 -0.1597399 -0.7207019 -0.05489746 0.35294002
           [,13]       [,14]      [,15]      [,16]      [,17]      [,18]
[1,] -1.27443624  0.14799333 -0.4489677 0.86287941 -1.8712980  0.7077900
[2,]  0.01718327  0.33468909 -0.1873487 1.87350162 -0.3210806 -0.8957496
[3,] -0.84261302 -0.03245563 -0.8643718 0.15281074  2.1170845 -1.4232312
[4,]  0.09280205 -0.95607041  2.9308677 0.05842069 -0.6299436 -0.1437127
[5,]  1.35042001 -1.72963234  0.1232628 0.61502398  0.1462481  0.7782129
          [,19]       [,20]
[1,] -1.7883763 -0.31668845
[2,] -1.2653764  0.74524911
[3,] -0.3444666  0.69746817
[4,]  1.5135630 -0.79573773
[5,]  1.3254664 -0.06877061
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  650  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  563  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1      col2      col3      col4     col5      col6       col7
row1 -0.1824281 0.6961465 0.9236393 -1.290198 1.649106 0.6568116 -0.4064678
          col8      col9     col10    col11     col12    col13     col14
row1 0.1855575 0.1455787 -1.285565 1.154543 0.2996051 1.295587 0.1016681
         col15      col16    col17     col18      col19      col20
row1 0.6577943 -0.8618272 1.421479 -1.193589 -0.4188951 -0.6876381
> tmp[,"col10"]
          col10
row1 -1.2855651
row2  0.2238583
row3  1.2918690
row4  1.8555815
row5 -1.6251206
> tmp[c("row1","row5"),]
           col1       col2      col3      col4      col5      col6       col7
row1 -0.1824281  0.6961465 0.9236393 -1.290198 1.6491062 0.6568116 -0.4064678
row5  0.1440286 -0.2706574 1.0563507  1.196400 0.7034354 0.1718508  1.5622462
           col8      col9     col10      col11      col12     col13      col14
row1  0.1855575 0.1455787 -1.285565 1.15454265  0.2996051 1.2955872  0.1016681
row5 -0.8321797 0.6216897 -1.625121 0.01311033 -1.0280458 0.5675707 -1.3746569
          col15      col16    col17     col18      col19      col20
row1  0.6577943 -0.8618272 1.421479 -1.193589 -0.4188951 -0.6876381
row5 -0.2864332 -0.3057551 1.005862  0.164840  0.1405992 -0.1028723
> tmp[,c("col6","col20")]
           col6      col20
row1  0.6568116 -0.6876381
row2 -0.8722449  0.8235871
row3  0.4637188  0.6839619
row4 -0.5907938 -1.5122406
row5  0.1718508 -0.1028723
> tmp[c("row1","row5"),c("col6","col20")]
          col6      col20
row1 0.6568116 -0.6876381
row5 0.1718508 -0.1028723
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.25108 48.10944 48.90397 48.57105 49.92168 102.9451 48.80517 49.78465
         col9    col10    col11   col12   col13    col14    col15    col16
row1 51.28633 48.32617 48.68815 49.5505 49.7946 52.35976 50.51721 48.97948
        col17    col18    col19    col20
row1 50.35162 49.42628 49.68516 106.0067
> tmp[,"col10"]
        col10
row1 48.32617
row2 27.94202
row3 29.97658
row4 31.23004
row5 50.01083
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.25108 48.10944 48.90397 48.57105 49.92168 102.9451 48.80517 49.78465
row5 47.76456 50.88709 47.90194 49.56623 53.36955 104.2347 51.11799 50.39923
         col9    col10    col11    col12    col13    col14    col15    col16
row1 51.28633 48.32617 48.68815 49.55050 49.79460 52.35976 50.51721 48.97948
row5 49.94833 50.01083 49.09318 50.49466 50.61943 49.19213 48.61408 50.91202
        col17    col18    col19    col20
row1 50.35162 49.42628 49.68516 106.0067
row5 51.87694 51.34753 50.28111 105.8862
> tmp[,c("col6","col20")]
          col6     col20
row1 102.94506 106.00672
row2  75.58615  73.75966
row3  75.13088  76.09367
row4  75.35118  74.43125
row5 104.23466 105.88615
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 102.9451 106.0067
row5 104.2347 105.8862
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 102.9451 106.0067
row5 104.2347 105.8862
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  1.9772915
[2,] -0.9397083
[3,]  0.6025928
[4,]  1.2712040
[5,]  0.1010626
> tmp[,c("col17","col7")]
           col17        col7
[1,] -0.70839452  0.71158002
[2,] -0.22993560  0.55909958
[3,]  0.41652575  0.81951385
[4,] -0.06029521 -0.82098039
[5,] -0.99403701 -0.09911757
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -1.1048538  0.6231920
[2,]  0.5217086 -1.1380837
[3,]  0.1152221  0.3727455
[4,] -0.5041066 -0.8927188
[5,]  1.0017741 -0.2605673
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -1.104854
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -1.1048538
[2,]  0.5217086
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]       [,2]        [,3]      [,4]       [,5]       [,6]
row3 -1.369675 -0.9636540  0.22787056 -0.897190  0.4081166  1.2822949
row1 -1.377860  0.4268304 -0.02409263 -3.875451 -0.4067534 -0.3658402
            [,7]       [,8]       [,9]      [,10]       [,11]     [,12]
row3 -0.09621672 -2.2985322 -1.4477807 -0.3004109 -0.05023413 -1.398383
row1  2.23596115 -0.9368141 -0.7358339 -0.3740853  1.10299473 -1.042066
          [,13]     [,14]    [,15]      [,16]      [,17]      [,18]      [,19]
row3 -1.3622406 -1.867473 2.302360 -0.5024111 -1.8514385 -0.7337705 -0.5022484
row1  0.6846575 -1.123008 1.173475  0.3536716  0.8437272  0.5014603  1.4092182
          [,20]
row3  0.6229783
row1 -0.1422962
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]       [,2]       [,3]       [,4]       [,5]        [,6]
row2 -2.390079 -0.6049721 0.08812916 -0.2560074 -0.4030332 -0.08052444
           [,7]      [,8]      [,9]       [,10]
row2 -0.6813124 0.4011981 -0.565399 -0.02393763
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]     [,2]     [,3]      [,4]      [,5]     [,6]      [,7]
row5 0.1310568 2.058402 -1.87912 0.3200109 0.6268807 1.038141 -0.583288
           [,8]      [,9]    [,10]     [,11]     [,12]     [,13]    [,14]
row5 -0.5192869 0.6045812 1.080433 0.1110678 0.7683981 0.7303819 1.146253
         [,15]     [,16]      [,17]     [,18]      [,19]      [,20]
row5 0.8693915 0.1005248 -0.1610669 -1.380354 -0.4879497 -0.6698651
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600000528000>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f964e7d9397"
 [2] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f961664c6c3"
 [3] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f96323537b1"
 [4] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f9643db5f37"
 [5] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f96774836ae"
 [6] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f9625fe16b0"
 [7] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f964c83904c"
 [8] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f96517694d2"
 [9] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f96402490c6"
[10] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f96209cd810"
[11] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f96192d132a"
[12] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f965e45374f"
[13] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f96123253e3"
[14] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f962621656a"
[15] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM9f965a8925b4"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x600000538060>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x600000538060>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x600000538060>
> rowMedians(tmp)
  [1] -9.873091e-02 -6.665218e-01 -1.932003e-01 -1.408043e-01  3.052051e-01
  [6]  3.774038e-02  5.604736e-02  1.681327e-01  6.460368e-01 -1.463023e-01
 [11] -4.027939e-01  1.306648e-01 -1.728521e-01  3.551487e-02 -3.200909e-02
 [16] -5.206351e-02 -3.198540e-01  3.620751e-01  2.361547e-01  4.787376e-01
 [21] -1.914771e-01  2.685468e-01 -1.463995e-01 -1.524472e-01 -4.303186e-01
 [26]  1.662016e-01 -5.941662e-01  2.404737e-01  2.200116e-01 -4.009623e-01
 [31]  6.690103e-02 -1.213506e-01  1.866471e-01 -1.891695e-01  3.370153e-02
 [36]  2.702255e-01 -1.007152e-01  1.368835e-01  8.440026e-01  2.122912e-01
 [41] -1.862916e-02 -3.830806e-01 -1.953322e-01 -5.146012e-02 -7.103403e-01
 [46]  3.193476e-01 -4.797998e-01  5.466233e-01 -4.733194e-01  2.950400e-01
 [51] -3.607794e-01 -9.224426e-02 -2.577859e-01  2.349294e-01 -1.433078e-01
 [56] -1.393575e-01 -2.543964e-01  4.074908e-01  5.486901e-01  2.938251e-01
 [61] -1.267114e-01  3.336678e-01  2.917699e-01  1.357132e-01 -2.245944e-01
 [66] -2.202808e-02  1.155785e-01  6.523086e-01  1.977262e-01  2.523114e-01
 [71] -2.622122e-01 -5.475804e-01  3.794434e-01  3.715916e-01 -2.239840e-03
 [76]  1.687459e-01 -4.020620e-01 -3.473691e-01 -9.950562e-02 -3.722290e-01
 [81] -4.491538e-01  2.402836e-01 -4.497340e-01 -3.437099e-01 -4.065731e-01
 [86] -3.874009e-01 -2.942776e-01  1.422502e-01  2.220824e-01 -6.723850e-02
 [91] -2.580550e-01  7.667703e-02 -8.323984e-01 -2.659685e-01  4.996852e-02
 [96]  5.026026e-01  5.523725e-02  3.365545e-01 -4.938717e-02  8.195349e-02
[101]  3.419481e-01  6.243962e-01  2.720620e-01  2.572377e-02  2.291197e-01
[106]  4.011179e-01 -1.316071e-01 -2.441083e-01  2.016238e-01  4.228962e-01
[111]  1.573325e-01 -1.333051e-01  3.009926e-01  4.395932e-01  6.269777e-03
[116] -6.752412e-01 -1.291586e-01 -2.201282e-02 -2.249168e-01  3.441958e-01
[121] -2.003968e-01  3.346484e-01  1.349866e-01 -7.444028e-02  8.244920e-02
[126] -1.057477e-01  3.929436e-02  1.074099e-01 -5.020343e-01  1.353502e-01
[131]  1.312771e-01 -2.393276e-05 -3.419862e-01  3.115212e-02 -3.324050e-01
[136] -1.710377e-01  2.589323e-01  3.498219e-01  6.744935e-01 -3.717673e-01
[141]  5.447050e-02  3.857561e-01  2.617707e-01 -3.973918e-01  6.284997e-01
[146] -6.995707e-02  3.029467e-01  1.574141e-01  2.146944e-01 -2.619628e-02
[151] -2.757445e-01  1.770788e-01 -2.790754e-01 -4.337670e-01  2.560169e-01
[156]  2.801904e-01 -4.091178e-01 -9.738623e-02  2.364939e-01  5.364821e-02
[161]  1.284744e-01  1.819690e-01 -1.566016e-01 -8.665733e-02  4.763752e-01
[166] -1.865514e-01  4.459072e-01  2.301324e-01  3.596315e-02  8.408091e-02
[171] -4.893390e-01  1.992010e-01  2.949233e-01 -1.710484e-01 -1.993185e-01
[176]  2.050973e-01  1.357814e-01 -1.097410e-01  1.174866e-01  1.348966e-01
[181]  2.016491e-01 -3.173094e-01  9.331291e-02  2.240977e-01 -1.247893e-01
[186] -2.900751e-01 -1.969368e-01 -1.549552e-01  2.184175e-01  1.856425e-01
[191]  9.293662e-02  2.409414e-01  1.435800e-01  3.941747e-01 -1.743364e-01
[196]  3.943912e-01  1.590167e-01  1.133887e-01  8.392730e-02 -4.872098e-01
[201]  3.408990e-01  2.813281e-01  4.290268e-02 -2.699602e-01 -2.341708e-01
[206]  6.138410e-01  2.083508e-01 -1.361561e-01 -9.747282e-02 -5.033847e-02
[211]  3.999756e-02 -9.559536e-03  2.467506e-02  1.464999e-01 -1.493666e-01
[216]  2.540425e-01  1.150279e-01 -6.305164e-02  5.072643e-01  3.386050e-01
[221] -1.881232e-01 -3.194779e-01  8.199890e-02 -1.069159e-01  3.228205e-02
[226]  2.855144e-01 -4.536951e-01 -2.559407e-01  4.507586e-02 -4.605018e-01
> 
> proc.time()
   user  system elapsed 
  2.670  14.730  17.815 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2025-10-21 r88958) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000025c8000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000025c8000>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000025c8000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x6000025c8000>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x6000025b0000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000025b0000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x6000025b0000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000025b0000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000025b0000>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000025b8000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000025b8000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000025b8000>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000025b8000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000025b8000>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x6000025b8000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000025b8000>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x6000025b8000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000025b8000>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000025bc000>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x6000025bc000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000025bc000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000025bc000>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilea48016aa1b9e" "BufferedMatrixFilea48079fb2db1"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilea48016aa1b9e" "BufferedMatrixFilea48079fb2db1"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000025bc240>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000025bc240>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6000025bc240>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6000025bc240>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x6000025bc240>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x6000025bc240>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000025c0300>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000025c0300>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000025c0300>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x6000025c0300>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000025c0480>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000025c0480>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.316   0.159   0.486 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2025-10-21 r88958) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.314   0.096   0.431 

Example timings