Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-09-20 12:04 -0400 (Sat, 20 Sep 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4814
lconwaymacOS 12.7.1 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4603
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4547
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4553
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 253/2333HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.73.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-09-19 13:45 -0400 (Fri, 19 Sep 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 0147962
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on lconway

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.73.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
StartedAt: 2025-09-19 19:43:11 -0400 (Fri, 19 Sep 2025)
EndedAt: 2025-09-19 19:44:06 -0400 (Fri, 19 Sep 2025)
EllapsedTime: 54.4 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 Patched (2025-09-10 r88807)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.73.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.1.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.73.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.1.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.368   0.164   0.539 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 480848 25.7    1056620 56.5         NA   634462 33.9
Vcells 891079  6.8    8388608 64.0      98304  2108727 16.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Sep 19 19:43:37 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Sep 19 19:43:38 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x6000003ec000>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Sep 19 19:43:43 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Sep 19 19:43:45 2025"
> 
> ColMode(tmp2)
<pointer: 0x6000003ec000>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]        [,2]       [,3]       [,4]
[1,] 99.1238655 -0.08641705 -1.3608331 0.28892331
[2,]  0.1183883  0.16895114 -0.7704463 0.74387601
[3,] -1.6850248  0.70042700 -0.8884378 0.01097285
[4,] -1.2987452  0.22772492 -0.1535815 0.37240961
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]       [,2]      [,3]       [,4]
[1,] 99.1238655 0.08641705 1.3608331 0.28892331
[2,]  0.1183883 0.16895114 0.7704463 0.74387601
[3,]  1.6850248 0.70042700 0.8884378 0.01097285
[4,]  1.2987452 0.22772492 0.1535815 0.37240961
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
         [,1]      [,2]      [,3]      [,4]
[1,] 9.956097 0.2939678 1.1665475 0.5375159
[2,] 0.344076 0.4110367 0.8777507 0.8624825
[3,] 1.298085 0.8369152 0.9425698 0.1047514
[4,] 1.139625 0.4772053 0.3918948 0.6102537
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 223.68483 28.02609 38.02631 30.66408
[2,]  28.55915 29.27932 34.54795 34.36870
[3,]  39.66588 34.06958 35.31414 26.05849
[4,]  37.69500 29.99978 29.07253 31.47495
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x6000003e4000>
> exp(tmp5)
<pointer: 0x6000003e4000>
> log(tmp5,2)
<pointer: 0x6000003e4000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 465.5707
> Min(tmp5)
[1] 52.80811
> mean(tmp5)
[1] 72.70458
> Sum(tmp5)
[1] 14540.92
> Var(tmp5)
[1] 851.7843
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 91.22128 69.15102 69.03983 69.67177 71.06261 74.31496 70.22579 70.89987
 [9] 69.93846 71.52019
> rowSums(tmp5)
 [1] 1824.426 1383.020 1380.797 1393.435 1421.252 1486.299 1404.516 1417.997
 [9] 1398.769 1430.404
> rowVars(tmp5)
 [1] 7846.03057   54.32056   88.78082   64.69308   60.91069   68.38884
 [7]  105.88029   57.77888   98.04462   53.47130
> rowSd(tmp5)
 [1] 88.577822  7.370248  9.422357  8.043201  7.804530  8.269754 10.289815
 [8]  7.601242  9.901748  7.312408
> rowMax(tmp5)
 [1] 465.57068  78.29356  88.16015  83.92142  86.56180  86.10412  89.20754
 [8]  88.29803  87.10835  82.90910
> rowMin(tmp5)
 [1] 58.33264 53.82222 52.80811 56.60337 59.60981 58.32972 55.17510 60.31765
 [9] 54.66031 59.82625
> 
> colMeans(tmp5)
 [1] 113.10238  66.78340  69.05722  65.41189  69.38751  69.78265  71.70107
 [8]  72.63059  70.60747  68.20545  71.35888  66.54734  72.23432  75.15873
[15]  74.18760  69.92087  70.14227  74.32498  73.39550  70.15144
> colSums(tmp5)
 [1] 1131.0238  667.8340  690.5722  654.1189  693.8751  697.8265  717.0107
 [8]  726.3059  706.0747  682.0545  713.5888  665.4734  722.3432  751.5873
[15]  741.8760  699.2087  701.4227  743.2498  733.9550  701.5144
> colVars(tmp5)
 [1] 15443.79238    60.82288    44.70095    65.68714   107.27107    72.08494
 [7]    74.75844    50.45493    72.70072    88.79577    60.57134    47.32558
[13]    27.55344    86.19529    74.49110    99.82380    34.99416    57.46199
[19]   106.64275   101.29804
> colSd(tmp5)
 [1] 124.273056   7.798902   6.685877   8.104761  10.357175   8.490285
 [7]   8.646296   7.103164   8.526472   9.423151   7.782759   6.879359
[13]   5.249137   9.284142   8.630823   9.991186   5.915586   7.580369
[19]  10.326798  10.064693
> colMax(tmp5)
 [1] 465.57068  81.93023  79.14678  81.48548  81.84653  84.03388  80.32171
 [8]  80.65107  90.03020  84.06601  89.20754  77.70987  79.15394  88.83185
[15]  87.10835  85.77418  83.92142  84.76031  90.74486  88.29803
> colMin(tmp5)
 [1] 59.44213 58.33264 56.43173 54.23733 53.82222 58.26202 55.17510 62.76280
 [9] 60.49979 52.80811 61.87697 54.66031 61.38130 59.21878 64.93192 55.23426
[17] 62.96763 62.20116 59.26223 61.35423
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 91.22128 69.15102       NA 69.67177 71.06261 74.31496 70.22579 70.89987
 [9] 69.93846 71.52019
> rowSums(tmp5)
 [1] 1824.426 1383.020       NA 1393.435 1421.252 1486.299 1404.516 1417.997
 [9] 1398.769 1430.404
> rowVars(tmp5)
 [1] 7846.03057   54.32056   72.33377   64.69308   60.91069   68.38884
 [7]  105.88029   57.77888   98.04462   53.47130
> rowSd(tmp5)
 [1] 88.577822  7.370248  8.504926  8.043201  7.804530  8.269754 10.289815
 [8]  7.601242  9.901748  7.312408
> rowMax(tmp5)
 [1] 465.57068  78.29356        NA  83.92142  86.56180  86.10412  89.20754
 [8]  88.29803  87.10835  82.90910
> rowMin(tmp5)
 [1] 58.33264 53.82222       NA 56.60337 59.60981 58.32972 55.17510 60.31765
 [9] 54.66031 59.82625
> 
> colMeans(tmp5)
 [1] 113.10238  66.78340  69.05722  65.41189  69.38751  69.78265  71.70107
 [8]  72.63059  70.60747  68.20545  71.35888  66.54734  72.23432        NA
[15]  74.18760  69.92087  70.14227  74.32498  73.39550  70.15144
> colSums(tmp5)
 [1] 1131.0238  667.8340  690.5722  654.1189  693.8751  697.8265  717.0107
 [8]  726.3059  706.0747  682.0545  713.5888  665.4734  722.3432        NA
[15]  741.8760  699.2087  701.4227  743.2498  733.9550  701.5144
> colVars(tmp5)
 [1] 15443.79238    60.82288    44.70095    65.68714   107.27107    72.08494
 [7]    74.75844    50.45493    72.70072    88.79577    60.57134    47.32558
[13]    27.55344          NA    74.49110    99.82380    34.99416    57.46199
[19]   106.64275   101.29804
> colSd(tmp5)
 [1] 124.273056   7.798902   6.685877   8.104761  10.357175   8.490285
 [7]   8.646296   7.103164   8.526472   9.423151   7.782759   6.879359
[13]   5.249137         NA   8.630823   9.991186   5.915586   7.580369
[19]  10.326798  10.064693
> colMax(tmp5)
 [1] 465.57068  81.93023  79.14678  81.48548  81.84653  84.03388  80.32171
 [8]  80.65107  90.03020  84.06601  89.20754  77.70987  79.15394        NA
[15]  87.10835  85.77418  83.92142  84.76031  90.74486  88.29803
> colMin(tmp5)
 [1] 59.44213 58.33264 56.43173 54.23733 53.82222 58.26202 55.17510 62.76280
 [9] 60.49979 52.80811 61.87697 54.66031 61.38130       NA 64.93192 55.23426
[17] 62.96763 62.20116 59.26223 61.35423
> 
> Max(tmp5,na.rm=TRUE)
[1] 465.5707
> Min(tmp5,na.rm=TRUE)
[1] 52.80811
> mean(tmp5,na.rm=TRUE)
[1] 72.62691
> Sum(tmp5,na.rm=TRUE)
[1] 14452.76
> Var(tmp5,na.rm=TRUE)
[1] 854.8737
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.22128 69.15102 68.03350 69.67177 71.06261 74.31496 70.22579 70.89987
 [9] 69.93846 71.52019
> rowSums(tmp5,na.rm=TRUE)
 [1] 1824.426 1383.020 1292.637 1393.435 1421.252 1486.299 1404.516 1417.997
 [9] 1398.769 1430.404
> rowVars(tmp5,na.rm=TRUE)
 [1] 7846.03057   54.32056   72.33377   64.69308   60.91069   68.38884
 [7]  105.88029   57.77888   98.04462   53.47130
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.577822  7.370248  8.504926  8.043201  7.804530  8.269754 10.289815
 [8]  7.601242  9.901748  7.312408
> rowMax(tmp5,na.rm=TRUE)
 [1] 465.57068  78.29356  82.55932  83.92142  86.56180  86.10412  89.20754
 [8]  88.29803  87.10835  82.90910
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.33264 53.82222 52.80811 56.60337 59.60981 58.32972 55.17510 60.31765
 [9] 54.66031 59.82625
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 113.10238  66.78340  69.05722  65.41189  69.38751  69.78265  71.70107
 [8]  72.63059  70.60747  68.20545  71.35888  66.54734  72.23432  73.71413
[15]  74.18760  69.92087  70.14227  74.32498  73.39550  70.15144
> colSums(tmp5,na.rm=TRUE)
 [1] 1131.0238  667.8340  690.5722  654.1189  693.8751  697.8265  717.0107
 [8]  726.3059  706.0747  682.0545  713.5888  665.4734  722.3432  663.4272
[15]  741.8760  699.2087  701.4227  743.2498  733.9550  701.5144
> colVars(tmp5,na.rm=TRUE)
 [1] 15443.79238    60.82288    44.70095    65.68714   107.27107    72.08494
 [7]    74.75844    50.45493    72.70072    88.79577    60.57134    47.32558
[13]    27.55344    73.49238    74.49110    99.82380    34.99416    57.46199
[19]   106.64275   101.29804
> colSd(tmp5,na.rm=TRUE)
 [1] 124.273056   7.798902   6.685877   8.104761  10.357175   8.490285
 [7]   8.646296   7.103164   8.526472   9.423151   7.782759   6.879359
[13]   5.249137   8.572770   8.630823   9.991186   5.915586   7.580369
[19]  10.326798  10.064693
> colMax(tmp5,na.rm=TRUE)
 [1] 465.57068  81.93023  79.14678  81.48548  81.84653  84.03388  80.32171
 [8]  80.65107  90.03020  84.06601  89.20754  77.70987  79.15394  88.83185
[15]  87.10835  85.77418  83.92142  84.76031  90.74486  88.29803
> colMin(tmp5,na.rm=TRUE)
 [1] 59.44213 58.33264 56.43173 54.23733 53.82222 58.26202 55.17510 62.76280
 [9] 60.49979 52.80811 61.87697 54.66031 61.38130 59.21878 64.93192 55.23426
[17] 62.96763 62.20116 59.26223 61.35423
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.22128 69.15102      NaN 69.67177 71.06261 74.31496 70.22579 70.89987
 [9] 69.93846 71.52019
> rowSums(tmp5,na.rm=TRUE)
 [1] 1824.426 1383.020    0.000 1393.435 1421.252 1486.299 1404.516 1417.997
 [9] 1398.769 1430.404
> rowVars(tmp5,na.rm=TRUE)
 [1] 7846.03057   54.32056         NA   64.69308   60.91069   68.38884
 [7]  105.88029   57.77888   98.04462   53.47130
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.577822  7.370248        NA  8.043201  7.804530  8.269754 10.289815
 [8]  7.601242  9.901748  7.312408
> rowMax(tmp5,na.rm=TRUE)
 [1] 465.57068  78.29356        NA  83.92142  86.56180  86.10412  89.20754
 [8]  88.29803  87.10835  82.90910
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.33264 53.82222       NA 56.60337 59.60981 58.32972 55.17510 60.31765
 [9] 54.66031 59.82625
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 116.49605  66.32474  68.56339  66.65351  70.59178  69.39175  71.46909
 [8]  73.72702  71.73055  69.91627  72.03436  67.25407  71.46547       NaN
[15]  73.84565  69.92223  70.36344  75.67207  73.64159  69.45832
> colSums(tmp5,na.rm=TRUE)
 [1] 1048.4644  596.9227  617.0705  599.8816  635.3260  624.5258  643.2218
 [8]  663.5431  645.5749  629.2464  648.3093  605.2866  643.1892    0.0000
[15]  664.6109  629.3000  633.2710  681.0486  662.7743  625.1249
> colVars(tmp5,na.rm=TRUE)
 [1] 17244.70002    66.05906    47.54499    56.55485   104.36435    79.37653
 [7]    83.49778    43.23773    67.59868    66.96772    63.00971    47.62232
[13]    24.34746          NA    82.48707   112.30175    38.81813    44.22987
[19]   119.29183   108.55562
> colSd(tmp5,na.rm=TRUE)
 [1] 131.319077   8.127673   6.895287   7.520296  10.215887   8.909351
 [7]   9.137712   6.575540   8.221842   8.183381   7.937865   6.900892
[13]   4.934315         NA   9.082239  10.597252   6.230420   6.650554
[19]  10.922080  10.419003
> colMax(tmp5,na.rm=TRUE)
 [1] 465.57068  81.93023  79.14678  81.48548  81.84653  84.03388  80.32171
 [8]  80.65107  90.03020  84.06601  89.20754  77.70987  77.43508      -Inf
[15]  87.10835  85.77418  83.92142  84.76031  90.74486  88.29803
> colMin(tmp5,na.rm=TRUE)
 [1] 59.44213 58.33264 56.43173 58.32972 53.82222 58.26202 55.17510 64.36284
 [9] 62.87010 59.82625 61.87697 54.66031 61.38130      Inf 64.93192 55.23426
[17] 62.96763 66.89230 59.26223 61.35423
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 266.84479 162.00982 205.08037 250.57803 260.99392 244.82554 347.80451
 [8] 273.89924 294.26895  87.89495
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 266.84479 162.00982 205.08037 250.57803 260.99392 244.82554 347.80451
 [8] 273.89924 294.26895  87.89495
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -5.684342e-14  0.000000e+00  1.136868e-13 -2.842171e-14  1.136868e-13
 [6] -2.842171e-14 -1.136868e-13 -2.842171e-14 -8.526513e-14 -1.421085e-13
[11]  0.000000e+00  0.000000e+00  0.000000e+00 -2.273737e-13  9.947598e-14
[16]  2.842171e-14  5.684342e-14  5.684342e-14 -2.842171e-14  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
6   18 
4   19 
5   11 
3   20 
4   13 
10   9 
5   10 
4   3 
7   17 
6   4 
6   9 
6   11 
10   16 
8   6 
8   10 
7   5 
10   19 
3   14 
8   17 
9   13 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.057915
> Min(tmp)
[1] -2.974063
> mean(tmp)
[1] -0.04262803
> Sum(tmp)
[1] -4.262803
> Var(tmp)
[1] 0.9103629
> 
> rowMeans(tmp)
[1] -0.04262803
> rowSums(tmp)
[1] -4.262803
> rowVars(tmp)
[1] 0.9103629
> rowSd(tmp)
[1] 0.9541294
> rowMax(tmp)
[1] 2.057915
> rowMin(tmp)
[1] -2.974063
> 
> colMeans(tmp)
  [1] -0.4702014693 -1.5142042537 -1.0474459652  1.2158974867 -0.1963730365
  [6]  1.7812716141  1.3450096809 -0.5416310362 -0.1178737295 -0.0967652783
 [11]  0.3930832376  0.2257480792  0.4511231757 -0.4402992878 -0.1722896343
 [16] -0.8688835621 -0.5615809164 -0.8804021325 -0.7395735533  0.1806514884
 [21] -0.0306942953 -0.0545088562  1.6525110303 -1.2238066062 -0.5484922879
 [26] -0.9626291188  0.5379943780  0.4066179677  1.6700919093 -0.7539178429
 [31]  0.6388903693  2.0579154075  1.7045554110  0.5461054021  0.2834834141
 [36] -1.2817258719  0.4452711157  0.9246179975 -1.0018944367 -1.0681923515
 [41]  0.5474718156 -0.4533142688 -0.0448092937 -1.2280147139 -0.5776501782
 [46]  0.9166685764  0.7608654636  0.0141607566 -0.8308830610 -1.6328874953
 [51] -1.2563131055  0.4160591961  0.6866855600 -0.0740296670  0.2637800756
 [56]  1.1466863747  0.3604593588 -0.5168057881  1.0268533007  0.0008621035
 [61]  0.0247843810  0.8261104793  0.9036048710  0.7066045561 -0.0669847301
 [66] -0.9345831045 -1.2219308010  0.5129700647 -0.4944424291 -0.6114784409
 [71] -0.3930031496 -2.0653041627 -2.9740631368 -1.2837733799  1.6473346874
 [76] -0.4771593137  0.3919544704 -1.9912530247  0.9058047577 -0.5525464663
 [81] -0.0872002205  0.5921818036 -0.8550409232  0.3990427417  1.7048779324
 [86] -1.2201752329  0.7526458347  1.4979798147 -0.9670945229 -1.0125565822
 [91]  0.4175304349  0.8752191823  0.5047854954  0.2627962872  0.5397262022
 [96]  0.5430639227 -0.1064889269 -0.7140245478 -0.6213045301 -1.0347119664
> colSums(tmp)
  [1] -0.4702014693 -1.5142042537 -1.0474459652  1.2158974867 -0.1963730365
  [6]  1.7812716141  1.3450096809 -0.5416310362 -0.1178737295 -0.0967652783
 [11]  0.3930832376  0.2257480792  0.4511231757 -0.4402992878 -0.1722896343
 [16] -0.8688835621 -0.5615809164 -0.8804021325 -0.7395735533  0.1806514884
 [21] -0.0306942953 -0.0545088562  1.6525110303 -1.2238066062 -0.5484922879
 [26] -0.9626291188  0.5379943780  0.4066179677  1.6700919093 -0.7539178429
 [31]  0.6388903693  2.0579154075  1.7045554110  0.5461054021  0.2834834141
 [36] -1.2817258719  0.4452711157  0.9246179975 -1.0018944367 -1.0681923515
 [41]  0.5474718156 -0.4533142688 -0.0448092937 -1.2280147139 -0.5776501782
 [46]  0.9166685764  0.7608654636  0.0141607566 -0.8308830610 -1.6328874953
 [51] -1.2563131055  0.4160591961  0.6866855600 -0.0740296670  0.2637800756
 [56]  1.1466863747  0.3604593588 -0.5168057881  1.0268533007  0.0008621035
 [61]  0.0247843810  0.8261104793  0.9036048710  0.7066045561 -0.0669847301
 [66] -0.9345831045 -1.2219308010  0.5129700647 -0.4944424291 -0.6114784409
 [71] -0.3930031496 -2.0653041627 -2.9740631368 -1.2837733799  1.6473346874
 [76] -0.4771593137  0.3919544704 -1.9912530247  0.9058047577 -0.5525464663
 [81] -0.0872002205  0.5921818036 -0.8550409232  0.3990427417  1.7048779324
 [86] -1.2201752329  0.7526458347  1.4979798147 -0.9670945229 -1.0125565822
 [91]  0.4175304349  0.8752191823  0.5047854954  0.2627962872  0.5397262022
 [96]  0.5430639227 -0.1064889269 -0.7140245478 -0.6213045301 -1.0347119664
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.4702014693 -1.5142042537 -1.0474459652  1.2158974867 -0.1963730365
  [6]  1.7812716141  1.3450096809 -0.5416310362 -0.1178737295 -0.0967652783
 [11]  0.3930832376  0.2257480792  0.4511231757 -0.4402992878 -0.1722896343
 [16] -0.8688835621 -0.5615809164 -0.8804021325 -0.7395735533  0.1806514884
 [21] -0.0306942953 -0.0545088562  1.6525110303 -1.2238066062 -0.5484922879
 [26] -0.9626291188  0.5379943780  0.4066179677  1.6700919093 -0.7539178429
 [31]  0.6388903693  2.0579154075  1.7045554110  0.5461054021  0.2834834141
 [36] -1.2817258719  0.4452711157  0.9246179975 -1.0018944367 -1.0681923515
 [41]  0.5474718156 -0.4533142688 -0.0448092937 -1.2280147139 -0.5776501782
 [46]  0.9166685764  0.7608654636  0.0141607566 -0.8308830610 -1.6328874953
 [51] -1.2563131055  0.4160591961  0.6866855600 -0.0740296670  0.2637800756
 [56]  1.1466863747  0.3604593588 -0.5168057881  1.0268533007  0.0008621035
 [61]  0.0247843810  0.8261104793  0.9036048710  0.7066045561 -0.0669847301
 [66] -0.9345831045 -1.2219308010  0.5129700647 -0.4944424291 -0.6114784409
 [71] -0.3930031496 -2.0653041627 -2.9740631368 -1.2837733799  1.6473346874
 [76] -0.4771593137  0.3919544704 -1.9912530247  0.9058047577 -0.5525464663
 [81] -0.0872002205  0.5921818036 -0.8550409232  0.3990427417  1.7048779324
 [86] -1.2201752329  0.7526458347  1.4979798147 -0.9670945229 -1.0125565822
 [91]  0.4175304349  0.8752191823  0.5047854954  0.2627962872  0.5397262022
 [96]  0.5430639227 -0.1064889269 -0.7140245478 -0.6213045301 -1.0347119664
> colMin(tmp)
  [1] -0.4702014693 -1.5142042537 -1.0474459652  1.2158974867 -0.1963730365
  [6]  1.7812716141  1.3450096809 -0.5416310362 -0.1178737295 -0.0967652783
 [11]  0.3930832376  0.2257480792  0.4511231757 -0.4402992878 -0.1722896343
 [16] -0.8688835621 -0.5615809164 -0.8804021325 -0.7395735533  0.1806514884
 [21] -0.0306942953 -0.0545088562  1.6525110303 -1.2238066062 -0.5484922879
 [26] -0.9626291188  0.5379943780  0.4066179677  1.6700919093 -0.7539178429
 [31]  0.6388903693  2.0579154075  1.7045554110  0.5461054021  0.2834834141
 [36] -1.2817258719  0.4452711157  0.9246179975 -1.0018944367 -1.0681923515
 [41]  0.5474718156 -0.4533142688 -0.0448092937 -1.2280147139 -0.5776501782
 [46]  0.9166685764  0.7608654636  0.0141607566 -0.8308830610 -1.6328874953
 [51] -1.2563131055  0.4160591961  0.6866855600 -0.0740296670  0.2637800756
 [56]  1.1466863747  0.3604593588 -0.5168057881  1.0268533007  0.0008621035
 [61]  0.0247843810  0.8261104793  0.9036048710  0.7066045561 -0.0669847301
 [66] -0.9345831045 -1.2219308010  0.5129700647 -0.4944424291 -0.6114784409
 [71] -0.3930031496 -2.0653041627 -2.9740631368 -1.2837733799  1.6473346874
 [76] -0.4771593137  0.3919544704 -1.9912530247  0.9058047577 -0.5525464663
 [81] -0.0872002205  0.5921818036 -0.8550409232  0.3990427417  1.7048779324
 [86] -1.2201752329  0.7526458347  1.4979798147 -0.9670945229 -1.0125565822
 [91]  0.4175304349  0.8752191823  0.5047854954  0.2627962872  0.5397262022
 [96]  0.5430639227 -0.1064889269 -0.7140245478 -0.6213045301 -1.0347119664
> colMedians(tmp)
  [1] -0.4702014693 -1.5142042537 -1.0474459652  1.2158974867 -0.1963730365
  [6]  1.7812716141  1.3450096809 -0.5416310362 -0.1178737295 -0.0967652783
 [11]  0.3930832376  0.2257480792  0.4511231757 -0.4402992878 -0.1722896343
 [16] -0.8688835621 -0.5615809164 -0.8804021325 -0.7395735533  0.1806514884
 [21] -0.0306942953 -0.0545088562  1.6525110303 -1.2238066062 -0.5484922879
 [26] -0.9626291188  0.5379943780  0.4066179677  1.6700919093 -0.7539178429
 [31]  0.6388903693  2.0579154075  1.7045554110  0.5461054021  0.2834834141
 [36] -1.2817258719  0.4452711157  0.9246179975 -1.0018944367 -1.0681923515
 [41]  0.5474718156 -0.4533142688 -0.0448092937 -1.2280147139 -0.5776501782
 [46]  0.9166685764  0.7608654636  0.0141607566 -0.8308830610 -1.6328874953
 [51] -1.2563131055  0.4160591961  0.6866855600 -0.0740296670  0.2637800756
 [56]  1.1466863747  0.3604593588 -0.5168057881  1.0268533007  0.0008621035
 [61]  0.0247843810  0.8261104793  0.9036048710  0.7066045561 -0.0669847301
 [66] -0.9345831045 -1.2219308010  0.5129700647 -0.4944424291 -0.6114784409
 [71] -0.3930031496 -2.0653041627 -2.9740631368 -1.2837733799  1.6473346874
 [76] -0.4771593137  0.3919544704 -1.9912530247  0.9058047577 -0.5525464663
 [81] -0.0872002205  0.5921818036 -0.8550409232  0.3990427417  1.7048779324
 [86] -1.2201752329  0.7526458347  1.4979798147 -0.9670945229 -1.0125565822
 [91]  0.4175304349  0.8752191823  0.5047854954  0.2627962872  0.5397262022
 [96]  0.5430639227 -0.1064889269 -0.7140245478 -0.6213045301 -1.0347119664
> colRanges(tmp)
           [,1]      [,2]      [,3]     [,4]      [,5]     [,6]    [,7]
[1,] -0.4702015 -1.514204 -1.047446 1.215897 -0.196373 1.781272 1.34501
[2,] -0.4702015 -1.514204 -1.047446 1.215897 -0.196373 1.781272 1.34501
          [,8]       [,9]       [,10]     [,11]     [,12]     [,13]      [,14]
[1,] -0.541631 -0.1178737 -0.09676528 0.3930832 0.2257481 0.4511232 -0.4402993
[2,] -0.541631 -0.1178737 -0.09676528 0.3930832 0.2257481 0.4511232 -0.4402993
          [,15]      [,16]      [,17]      [,18]      [,19]     [,20]
[1,] -0.1722896 -0.8688836 -0.5615809 -0.8804021 -0.7395736 0.1806515
[2,] -0.1722896 -0.8688836 -0.5615809 -0.8804021 -0.7395736 0.1806515
          [,21]       [,22]    [,23]     [,24]      [,25]      [,26]     [,27]
[1,] -0.0306943 -0.05450886 1.652511 -1.223807 -0.5484923 -0.9626291 0.5379944
[2,] -0.0306943 -0.05450886 1.652511 -1.223807 -0.5484923 -0.9626291 0.5379944
        [,28]    [,29]      [,30]     [,31]    [,32]    [,33]     [,34]
[1,] 0.406618 1.670092 -0.7539178 0.6388904 2.057915 1.704555 0.5461054
[2,] 0.406618 1.670092 -0.7539178 0.6388904 2.057915 1.704555 0.5461054
         [,35]     [,36]     [,37]    [,38]     [,39]     [,40]     [,41]
[1,] 0.2834834 -1.281726 0.4452711 0.924618 -1.001894 -1.068192 0.5474718
[2,] 0.2834834 -1.281726 0.4452711 0.924618 -1.001894 -1.068192 0.5474718
          [,42]       [,43]     [,44]      [,45]     [,46]     [,47]      [,48]
[1,] -0.4533143 -0.04480929 -1.228015 -0.5776502 0.9166686 0.7608655 0.01416076
[2,] -0.4533143 -0.04480929 -1.228015 -0.5776502 0.9166686 0.7608655 0.01416076
          [,49]     [,50]     [,51]     [,52]     [,53]       [,54]     [,55]
[1,] -0.8308831 -1.632887 -1.256313 0.4160592 0.6866856 -0.07402967 0.2637801
[2,] -0.8308831 -1.632887 -1.256313 0.4160592 0.6866856 -0.07402967 0.2637801
        [,56]     [,57]      [,58]    [,59]        [,60]      [,61]     [,62]
[1,] 1.146686 0.3604594 -0.5168058 1.026853 0.0008621035 0.02478438 0.8261105
[2,] 1.146686 0.3604594 -0.5168058 1.026853 0.0008621035 0.02478438 0.8261105
         [,63]     [,64]       [,65]      [,66]     [,67]     [,68]      [,69]
[1,] 0.9036049 0.7066046 -0.06698473 -0.9345831 -1.221931 0.5129701 -0.4944424
[2,] 0.9036049 0.7066046 -0.06698473 -0.9345831 -1.221931 0.5129701 -0.4944424
          [,70]      [,71]     [,72]     [,73]     [,74]    [,75]      [,76]
[1,] -0.6114784 -0.3930031 -2.065304 -2.974063 -1.283773 1.647335 -0.4771593
[2,] -0.6114784 -0.3930031 -2.065304 -2.974063 -1.283773 1.647335 -0.4771593
         [,77]     [,78]     [,79]      [,80]       [,81]     [,82]      [,83]
[1,] 0.3919545 -1.991253 0.9058048 -0.5525465 -0.08720022 0.5921818 -0.8550409
[2,] 0.3919545 -1.991253 0.9058048 -0.5525465 -0.08720022 0.5921818 -0.8550409
         [,84]    [,85]     [,86]     [,87]   [,88]      [,89]     [,90]
[1,] 0.3990427 1.704878 -1.220175 0.7526458 1.49798 -0.9670945 -1.012557
[2,] 0.3990427 1.704878 -1.220175 0.7526458 1.49798 -0.9670945 -1.012557
         [,91]     [,92]     [,93]     [,94]     [,95]     [,96]      [,97]
[1,] 0.4175304 0.8752192 0.5047855 0.2627963 0.5397262 0.5430639 -0.1064889
[2,] 0.4175304 0.8752192 0.5047855 0.2627963 0.5397262 0.5430639 -0.1064889
          [,98]      [,99]    [,100]
[1,] -0.7140245 -0.6213045 -1.034712
[2,] -0.7140245 -0.6213045 -1.034712
> 
> 
> Max(tmp2)
[1] 2.499937
> Min(tmp2)
[1] -2.463065
> mean(tmp2)
[1] -0.02571508
> Sum(tmp2)
[1] -2.571508
> Var(tmp2)
[1] 0.8048735
> 
> rowMeans(tmp2)
  [1] -0.26193008 -0.12676950 -0.87692521  0.15307323 -0.08773901 -1.30856831
  [7] -0.08469593  0.20166926 -0.19859254 -0.07650910  1.22429350 -0.50994878
 [13] -0.05428564  0.44268891 -0.21973098 -1.18575019 -0.17449359 -1.42798305
 [19] -0.76888394 -0.29768597  1.52594862  0.45006441 -0.07540414 -0.15871989
 [25]  0.08598743  1.70693780 -2.46306510 -0.41989447  0.73358036  0.62870026
 [31]  0.41381220  0.95227433  0.95424655  0.07289352  0.69820873 -0.32308702
 [37]  0.48502039  0.18344700 -0.49927940  1.11219289 -1.48187762  0.05303622
 [43]  1.65136586 -1.24141630  0.37932793 -0.48549161  0.82655236  0.89192778
 [49]  0.02368033 -0.80374500 -0.05633468  0.16642795  0.12662658 -1.77689758
 [55]  0.68593220 -0.49083977 -0.69073340  0.23540912 -0.69202753 -0.32368618
 [61] -0.19116434  1.43755892 -0.29852673 -0.89289930  1.31953759 -0.39814993
 [67] -1.86008204 -1.16216189  0.47013769 -1.67158329  0.36703311  0.09360412
 [73] -0.59972979 -0.24659448 -0.37593419  0.92285989  0.42275334 -0.58534443
 [79]  1.74692648 -0.04328080  0.47901474 -0.47508137  0.82881720 -1.00919021
 [85]  0.16837115  0.15013609 -0.48478576  0.44448065 -1.35370685  2.49993681
 [91] -0.06224366  0.77686358 -0.40417510  0.72686401 -1.77258372  0.14097380
 [97]  0.02171914  0.93349018  1.70103779 -1.75874066
> rowSums(tmp2)
  [1] -0.26193008 -0.12676950 -0.87692521  0.15307323 -0.08773901 -1.30856831
  [7] -0.08469593  0.20166926 -0.19859254 -0.07650910  1.22429350 -0.50994878
 [13] -0.05428564  0.44268891 -0.21973098 -1.18575019 -0.17449359 -1.42798305
 [19] -0.76888394 -0.29768597  1.52594862  0.45006441 -0.07540414 -0.15871989
 [25]  0.08598743  1.70693780 -2.46306510 -0.41989447  0.73358036  0.62870026
 [31]  0.41381220  0.95227433  0.95424655  0.07289352  0.69820873 -0.32308702
 [37]  0.48502039  0.18344700 -0.49927940  1.11219289 -1.48187762  0.05303622
 [43]  1.65136586 -1.24141630  0.37932793 -0.48549161  0.82655236  0.89192778
 [49]  0.02368033 -0.80374500 -0.05633468  0.16642795  0.12662658 -1.77689758
 [55]  0.68593220 -0.49083977 -0.69073340  0.23540912 -0.69202753 -0.32368618
 [61] -0.19116434  1.43755892 -0.29852673 -0.89289930  1.31953759 -0.39814993
 [67] -1.86008204 -1.16216189  0.47013769 -1.67158329  0.36703311  0.09360412
 [73] -0.59972979 -0.24659448 -0.37593419  0.92285989  0.42275334 -0.58534443
 [79]  1.74692648 -0.04328080  0.47901474 -0.47508137  0.82881720 -1.00919021
 [85]  0.16837115  0.15013609 -0.48478576  0.44448065 -1.35370685  2.49993681
 [91] -0.06224366  0.77686358 -0.40417510  0.72686401 -1.77258372  0.14097380
 [97]  0.02171914  0.93349018  1.70103779 -1.75874066
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.26193008 -0.12676950 -0.87692521  0.15307323 -0.08773901 -1.30856831
  [7] -0.08469593  0.20166926 -0.19859254 -0.07650910  1.22429350 -0.50994878
 [13] -0.05428564  0.44268891 -0.21973098 -1.18575019 -0.17449359 -1.42798305
 [19] -0.76888394 -0.29768597  1.52594862  0.45006441 -0.07540414 -0.15871989
 [25]  0.08598743  1.70693780 -2.46306510 -0.41989447  0.73358036  0.62870026
 [31]  0.41381220  0.95227433  0.95424655  0.07289352  0.69820873 -0.32308702
 [37]  0.48502039  0.18344700 -0.49927940  1.11219289 -1.48187762  0.05303622
 [43]  1.65136586 -1.24141630  0.37932793 -0.48549161  0.82655236  0.89192778
 [49]  0.02368033 -0.80374500 -0.05633468  0.16642795  0.12662658 -1.77689758
 [55]  0.68593220 -0.49083977 -0.69073340  0.23540912 -0.69202753 -0.32368618
 [61] -0.19116434  1.43755892 -0.29852673 -0.89289930  1.31953759 -0.39814993
 [67] -1.86008204 -1.16216189  0.47013769 -1.67158329  0.36703311  0.09360412
 [73] -0.59972979 -0.24659448 -0.37593419  0.92285989  0.42275334 -0.58534443
 [79]  1.74692648 -0.04328080  0.47901474 -0.47508137  0.82881720 -1.00919021
 [85]  0.16837115  0.15013609 -0.48478576  0.44448065 -1.35370685  2.49993681
 [91] -0.06224366  0.77686358 -0.40417510  0.72686401 -1.77258372  0.14097380
 [97]  0.02171914  0.93349018  1.70103779 -1.75874066
> rowMin(tmp2)
  [1] -0.26193008 -0.12676950 -0.87692521  0.15307323 -0.08773901 -1.30856831
  [7] -0.08469593  0.20166926 -0.19859254 -0.07650910  1.22429350 -0.50994878
 [13] -0.05428564  0.44268891 -0.21973098 -1.18575019 -0.17449359 -1.42798305
 [19] -0.76888394 -0.29768597  1.52594862  0.45006441 -0.07540414 -0.15871989
 [25]  0.08598743  1.70693780 -2.46306510 -0.41989447  0.73358036  0.62870026
 [31]  0.41381220  0.95227433  0.95424655  0.07289352  0.69820873 -0.32308702
 [37]  0.48502039  0.18344700 -0.49927940  1.11219289 -1.48187762  0.05303622
 [43]  1.65136586 -1.24141630  0.37932793 -0.48549161  0.82655236  0.89192778
 [49]  0.02368033 -0.80374500 -0.05633468  0.16642795  0.12662658 -1.77689758
 [55]  0.68593220 -0.49083977 -0.69073340  0.23540912 -0.69202753 -0.32368618
 [61] -0.19116434  1.43755892 -0.29852673 -0.89289930  1.31953759 -0.39814993
 [67] -1.86008204 -1.16216189  0.47013769 -1.67158329  0.36703311  0.09360412
 [73] -0.59972979 -0.24659448 -0.37593419  0.92285989  0.42275334 -0.58534443
 [79]  1.74692648 -0.04328080  0.47901474 -0.47508137  0.82881720 -1.00919021
 [85]  0.16837115  0.15013609 -0.48478576  0.44448065 -1.35370685  2.49993681
 [91] -0.06224366  0.77686358 -0.40417510  0.72686401 -1.77258372  0.14097380
 [97]  0.02171914  0.93349018  1.70103779 -1.75874066
> 
> colMeans(tmp2)
[1] -0.02571508
> colSums(tmp2)
[1] -2.571508
> colVars(tmp2)
[1] 0.8048735
> colSd(tmp2)
[1] 0.8971474
> colMax(tmp2)
[1] 2.499937
> colMin(tmp2)
[1] -2.463065
> colMedians(tmp2)
[1] -0.05531016
> colRanges(tmp2)
          [,1]
[1,] -2.463065
[2,]  2.499937
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  7.17466666  1.51987028  0.95633208 -4.81084964 -8.62085343  0.05186354
 [7]  3.27039581 -0.01964774  0.12789069 -1.24442141
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.5235992
[2,] -0.1196815
[3,]  0.7603219
[4,]  1.1721203
[5,]  2.1686205
> 
> rowApply(tmp,sum)
 [1] -2.1625414 -0.1342107 -3.5586459  3.3035133  1.1892309 -1.0595887
 [7]  0.9002460  5.3466138 -0.5820885 -4.8372819
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]   10    9    5    9    5    8    4   10    9     9
 [2,]    3    6   10    7    2   10    8    3    7     3
 [3,]    9    8    9    5   10    7    3    1    3     6
 [4,]    7    4    2    2    8    4    1    5    6     2
 [5,]    1    5    3    1    4    3    2    6    1     1
 [6,]    2   10    7    3    1    2    7    7   10     8
 [7,]    5    2    8    4    6    9    9    2    8    10
 [8,]    8    7    6    8    9    1    5    4    5     5
 [9,]    4    3    4    6    3    6   10    9    4     7
[10,]    6    1    1   10    7    5    6    8    2     4
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -1.27504807 -2.75070560  1.98073554 -2.37876796  3.17444296  0.01561413
 [7]  2.19593668 -2.77385873 -1.19947001  1.68597549  6.29944242 -0.33994354
[13] -1.98137346  2.06701290  5.46052407  0.70435711 -0.80651773 -3.36236244
[19]  3.05778763 -2.53199427
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.3660477
[2,] -0.7819609
[3,] -0.1716945
[4,]  0.4292753
[5,]  0.6153797
> 
> rowApply(tmp,sum)
[1]  5.445179 -2.325085  1.454441 -3.635259  6.302512
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    4    3    4   15   13
[2,]   10    2    8   11    2
[3,]   12   10   19   16    8
[4,]   15   12    1    4    6
[5,]   16   18   20   12   12
> 
> 
> as.matrix(tmp)
           [,1]       [,2]        [,3]        [,4]         [,5]       [,6]
[1,] -0.1716945  0.2022916  0.47081252  0.65377971  0.667092511  0.9763263
[2,] -1.3660477 -1.6343049 -0.03873229  0.05769705  1.007613043 -0.7728774
[3,] -0.7819609 -0.1900618  1.02538262 -1.39609184  1.071512561  0.7603875
[4,]  0.4292753 -0.1538429  0.54877491 -1.31320055 -0.001472576 -2.0340845
[5,]  0.6153797 -0.9747876 -0.02550221 -0.38095233  0.429697425  1.0858623
           [,7]       [,8]        [,9]      [,10]     [,11]      [,12]
[1,]  0.7999442 -0.0683211 -0.02224031  0.1791133 1.1199770  1.3443008
[2,]  0.4004284 -1.3480209 -0.01262725  1.2940002 0.6948310 -1.6973207
[3,]  0.7825236 -0.3051710 -0.68060317  0.3494955 0.8535471  0.6272094
[4,]  0.7991977 -0.8080492 -0.56080228 -1.3457786 1.2465695 -1.0374342
[5,] -0.5861572 -0.2442965  0.07680300  1.2091451 2.3845178  0.4233012
           [,13]      [,14]     [,15]       [,16]      [,17]       [,18]
[1,] -0.05845252  0.4896511 0.5960485 -1.12789504 -0.5057074 -0.09854835
[2,] -0.20305684  0.5768018 1.7514469  0.23140957 -0.2518374 -0.31868455
[3,] -1.09493262  0.7220983 0.3098371 -0.13396744 -1.1119428 -0.39470391
[4,]  0.12833395 -0.3443155 0.2310992  1.70993500 -0.5563448 -0.60922463
[5,] -0.75326543  0.6227771 2.5720923  0.02487503  1.6193146 -1.94120100
          [,19]      [,20]
[1,] -0.4498530  0.4485537
[2,]  0.2994083 -0.9952112
[3,]  0.5145507  0.5273318
[4,]  1.6358911 -1.5997862
[5,]  1.0577905 -0.9128823
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  649  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  563  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1       col2      col3     col4       col5       col6     col7
row1 -0.570741 -0.5536664 0.2140707 1.169098 0.02941916 -0.6631223 1.031151
           col8    col9     col10     col11     col12     col13    col14
row1 -0.8436448 -1.2648 0.7207717 0.2720536 -0.958633 0.6272726 0.415224
          col15      col16     col17     col18      col19    col20
row1 -0.6938582 -0.2566422 -1.087975 0.2759027 -0.4647207 1.247393
> tmp[,"col10"]
          col10
row1  0.7207717
row2 -1.0158841
row3 -0.7673625
row4  1.7456786
row5 -1.0935952
> tmp[c("row1","row5"),]
           col1        col2      col3       col4        col5       col6
row1 -0.5707410 -0.55366637 0.2140707  1.1690982  0.02941916 -0.6631223
row5 -0.5836259 -0.02094405 1.5446532 -0.5372241 -0.14396480  1.5040290
          col7       col8       col9      col10     col11      col12     col13
row1  1.031151 -0.8436448 -1.2647995  0.7207717 0.2720536 -0.9586330 0.6272726
row5 -1.518312  0.9922236  0.7673996 -1.0935952 1.6770361 -0.9772034 0.5454828
          col14      col15      col16      col17      col18      col19
row1  0.4152240 -0.6938582 -0.2566422 -1.0879752  0.2759027 -0.4647207
row5 -0.1063261  0.2343672  2.1078216 -0.0570919 -0.4528007  0.4847816
         col20
row1  1.247393
row5 -0.215788
> tmp[,c("col6","col20")]
           col6       col20
row1 -0.6631223  1.24739333
row2  1.9688349 -2.91558745
row3  1.6063190  0.03867267
row4  2.5023467  0.81423216
row5  1.5040290 -0.21578798
> tmp[c("row1","row5"),c("col6","col20")]
           col6     col20
row1 -0.6631223  1.247393
row5  1.5040290 -0.215788
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.38474 51.48729 51.42518 50.66977 49.85132 104.9247 50.33148 49.52053
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.35404 50.23441 48.93446 51.66793 49.66436 49.47934 50.16672 49.50146
        col17    col18    col19    col20
row1 48.81761 49.45352 49.83179 104.1645
> tmp[,"col10"]
        col10
row1 50.23441
row2 29.51937
row3 30.11778
row4 30.14081
row5 49.50806
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.38474 51.48729 51.42518 50.66977 49.85132 104.9247 50.33148 49.52053
row5 50.71923 51.80908 49.43319 50.02576 48.01156 103.0132 49.29167 51.00804
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.35404 50.23441 48.93446 51.66793 49.66436 49.47934 50.16672 49.50146
row5 51.54044 49.50806 49.30300 49.92929 49.45389 49.75021 51.55519 52.17056
        col17    col18    col19    col20
row1 48.81761 49.45352 49.83179 104.1645
row5 49.80501 50.03813 50.09065 106.4883
> tmp[,c("col6","col20")]
          col6     col20
row1 104.92473 104.16453
row2  74.81410  75.30887
row3  75.47173  75.91495
row4  76.16156  72.83863
row5 103.01318 106.48831
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.9247 104.1645
row5 103.0132 106.4883
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.9247 104.1645
row5 103.0132 106.4883
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.5892122
[2,] -1.1233569
[3,] -0.4868520
[4,] -0.6279073
[5,]  0.8859768
> tmp[,c("col17","col7")]
           col17      col7
[1,] -0.33662702 0.5936699
[2,]  0.01636654 0.2817192
[3,] -2.03775803 1.6676477
[4,]  1.97014824 2.4051381
[5,]  0.49858745 0.3682673
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6       col20
[1,]  1.3866049 -0.05541815
[2,]  0.1846515 -1.21250687
[3,] -0.3662746 -0.58714232
[4,] -0.7701600  0.21120206
[5,] -0.2444438 -1.37352733
> subBufferedMatrix(tmp,1,c("col6"))[,1]
         col1
[1,] 1.386605
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] 1.3866049
[2,] 0.1846515
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
            [,1]      [,2]       [,3]      [,4]      [,5]      [,6]      [,7]
row3 -0.88662230 -2.141875  0.4424092 1.3618147 0.2601518 2.6018025 0.5739398
row1  0.06662611  0.449011 -0.9970888 0.1397304 0.3333300 0.4296586 1.1438981
          [,8]      [,9]    [,10]      [,11]      [,12]      [,13]    [,14]
row3 0.1738380 0.6490833 1.515044 -1.3962059 0.74734205  0.2116052 1.038319
row1 0.1874228 1.7925882 2.177262 -0.6435693 0.06654442 -0.5713216 1.035173
          [,15]     [,16]     [,17]      [,18]      [,19]     [,20]
row3 -0.5169855 -0.930696  1.231940 -0.5776176 -0.2811202 -1.246531
row1 -0.0425018 -1.119010 -1.108915  0.3770127 -2.1430169  1.096664
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
        [,1]        [,2]      [,3]       [,4]      [,5]       [,6]     [,7]
row2 1.13551 -0.06361637 0.1827135 -0.2264926 0.3007516 -0.5469244 1.066385
           [,8]        [,9]      [,10]
row2 -0.3221995 -0.02616159 -0.8066028
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]        [,2]      [,3]      [,4]       [,5]      [,6]      [,7]
row5 -0.1909125 -0.09836786 0.2037295 0.2529072 -0.8617493 0.2587244 -0.697261
         [,8]     [,9]     [,10]     [,11]     [,12]    [,13]      [,14]
row5 1.157473 0.830469 -0.273531 0.5591103 -1.122143 -1.58416 -0.4407532
         [,15]      [,16]     [,17]    [,18]    [,19]     [,20]
row5 -1.072727 -0.3241823 -2.004316 0.279475 1.517394 0.4752307
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x60000031c000>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a432057d9b"
 [2] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a467964c5" 
 [3] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a4bc6c4d5" 
 [4] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a426a481fd"
 [5] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a47a521cdc"
 [6] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a424e4ee41"
 [7] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a431d60053"
 [8] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a458af62b4"
 [9] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a4627944e8"
[10] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a479b0dda" 
[11] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a454aa671c"
[12] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a47f578ab0"
[13] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a44c526a20"
[14] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a436b58205"
[15] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMb9a4466b3252"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x6000003d8000>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x6000003d8000>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x6000003d8000>
> rowMedians(tmp)
  [1]  0.168264779 -0.352578088 -0.277211823  0.482136302 -0.595757207
  [6] -0.142307147  0.200279223  0.141354333  0.395334374  0.327912839
 [11] -0.617477891  0.033022291  0.020881173  0.234232016  0.036823161
 [16] -0.190468077  0.094230135 -0.257588493  0.360276155  0.058593563
 [21] -0.424817464 -0.682506528  0.026861167 -0.190420060 -0.013488621
 [26]  0.142408068  0.526564914  0.303379857 -0.365427999  0.182736059
 [31]  0.268448600  0.335905331 -0.026854095  0.345286855  0.624337058
 [36]  0.382669248 -0.107938188 -0.398259836  0.134971997  0.351549352
 [41]  0.523152077  0.090053464  0.054623148  0.203700707 -0.513703858
 [46]  0.012568660 -0.137490500 -0.096951758  0.282849565 -0.005762483
 [51]  0.431842837  0.067014503  0.309310538  0.285331494  0.223276180
 [56]  0.018286103 -0.216690407 -0.150670906 -0.230896835 -0.397129500
 [61]  0.395999818  0.197207806 -0.145176069  0.493264743  0.096018445
 [66] -0.444500776  0.154859806 -0.396371876 -0.610670641 -0.001618696
 [71] -0.129800652  0.242234691  0.058949671  0.276890429 -0.119979634
 [76] -0.155452762  0.537584302  0.107286672  0.195599808  0.007154170
 [81]  0.013023349  0.186921909  0.114973905  0.161919285 -0.386196494
 [86]  0.123405318  0.412957596 -0.113136437  0.786259190 -0.286242490
 [91]  0.293702733 -0.247813818 -0.986891187  0.374857425 -0.171098834
 [96] -0.114096111 -0.063009180  0.419729957  0.276279217  0.481550547
[101] -0.294531789  0.505735195 -0.473447704 -0.031021880  0.162207701
[106]  0.454642459  0.766973825  0.405263569  0.482806539  0.358885256
[111]  0.223139172  0.342576459  0.037792826  0.164296668  0.307497324
[116]  0.062654191 -0.293937304  0.007219336  0.037365171 -0.287347136
[121] -0.075015048  0.239186511  0.199422347 -0.174394233 -0.114910226
[126] -0.331694847 -0.476221049  0.343023829 -0.403639002  0.073882579
[131] -0.099924799  0.500305386  0.144920271  0.396869431  0.219839640
[136] -0.155622465 -0.006896515  0.160821223  0.008267811  0.381778279
[141]  0.018121488  0.513046749  0.104620265 -0.210679165  0.555911121
[146]  0.382458126 -0.150523493  0.315759976 -0.360425442 -0.257745130
[151]  0.314879379  0.253705382 -0.290706817 -0.426170256 -0.110421420
[156]  0.012620553 -0.309668881  0.023011449  0.069986501  0.134407648
[161]  0.374261524  0.600053404  0.007341958 -0.235163389  0.192437090
[166]  0.289422367  0.492152425  0.557984222 -0.115206641 -0.217891988
[171] -0.115175588  0.361222997 -0.291021020 -0.525757771 -0.166858417
[176]  0.345702895 -0.030221369  0.262529513  0.237606924  0.600520099
[181] -0.171755161 -0.672334673  0.102641606  0.104584912 -0.104003980
[186]  0.414469647  0.250101539  0.102298379  0.284311707  0.093882400
[191] -0.137177244  0.158754901 -0.155831345 -0.052166514 -0.194010251
[196]  0.292924358  0.023315966 -0.527305760 -0.049824331 -0.102030387
[201] -0.162112560 -0.157314518  0.296762687 -0.273949223  0.218696663
[206]  0.410563983  0.017170655 -0.052696097 -0.238710212  0.288651584
[211] -0.104753458 -0.381728729  0.553679340 -0.150220620 -0.507142159
[216]  0.564202516 -0.445376679  0.225012490  0.450042879 -0.095359767
[221]  0.425853663 -0.157959094 -0.416678648  0.136900418 -0.133435366
[226] -0.342571174 -0.478389693 -0.311485748  0.139913891  0.427832328
> 
> proc.time()
   user  system elapsed 
  2.772  16.365  19.846 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002184000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002184000>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002184000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600002184000>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600002198000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002198000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600002198000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002198000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002198000>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002198180>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002198180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002198180>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600002198180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002198180>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600002198180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002198180>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600002198180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002198180>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002194000>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600002194000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002194000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002194000>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilebf683c8c37e7" "BufferedMatrixFilebf687675fe53"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilebf683c8c37e7" "BufferedMatrixFilebf687675fe53"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000021d00c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000021d00c0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6000021d00c0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6000021d00c0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x6000021d00c0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x6000021d00c0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000021f8180>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000021f8180>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000021f8180>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x6000021f8180>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000021f8300>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000021f8300>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.345   0.150   0.487 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.377   0.100   0.470 

Example timings