| Back to Multiple platform build/check report for BioC 3.23: simplified long |
|
This page was generated on 2026-01-24 11:35 -0500 (Sat, 24 Jan 2026).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" | 4811 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" | 4545 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 1002/2345 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.17.2 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.17.2 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.2.tar.gz |
| StartedAt: 2026-01-23 20:28:56 -0500 (Fri, 23 Jan 2026) |
| EndedAt: 2026-01-23 20:32:22 -0500 (Fri, 23 Jan 2026) |
| EllapsedTime: 206.7 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.2.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2026-01-15 r89304)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 16.0.0 (clang-1600.0.26.6)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.2’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
FSmethod 18.916 0.980 21.140
corr_plot 18.787 0.959 20.716
var_imp 18.662 1.056 21.728
pred_ensembel 6.704 0.141 6.897
enrichfindP 0.196 0.037 10.268
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.17.2’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 119.181398
final value 93.109890
converged
Fitting Repeat 2
# weights: 103
initial value 111.320909
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 96.936624
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 102.927862
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 101.440839
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 105.260830
iter 10 value 93.772976
final value 93.772973
converged
Fitting Repeat 2
# weights: 305
initial value 94.162806
iter 10 value 89.457557
iter 20 value 89.220710
final value 89.220521
converged
Fitting Repeat 3
# weights: 305
initial value 107.257957
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 106.797516
iter 10 value 94.120733
iter 20 value 94.112586
final value 94.112570
converged
Fitting Repeat 5
# weights: 305
initial value 110.836546
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 114.571441
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 101.338774
final value 94.252920
converged
Fitting Repeat 3
# weights: 507
initial value 96.929787
iter 10 value 94.484142
iter 20 value 94.478027
final value 94.466818
converged
Fitting Repeat 4
# weights: 507
initial value 95.059559
iter 10 value 93.876129
iter 20 value 93.014415
final value 93.014368
converged
Fitting Repeat 5
# weights: 507
initial value 104.749948
iter 10 value 93.773561
final value 93.621187
converged
Fitting Repeat 1
# weights: 103
initial value 98.183593
iter 10 value 94.486489
iter 20 value 94.121075
iter 30 value 93.596606
iter 40 value 92.673444
iter 50 value 84.001168
iter 60 value 82.436097
iter 70 value 81.682891
iter 80 value 79.696565
iter 90 value 79.306955
final value 79.298725
converged
Fitting Repeat 2
# weights: 103
initial value 96.862456
iter 10 value 94.488784
iter 20 value 94.380300
iter 30 value 93.643143
iter 40 value 92.780920
iter 50 value 87.908738
iter 60 value 86.872682
iter 70 value 81.955191
iter 80 value 79.401994
iter 90 value 79.364497
iter 100 value 79.329940
final value 79.329940
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 96.512301
iter 10 value 88.006721
iter 20 value 87.577541
iter 30 value 84.200669
iter 40 value 83.881345
iter 50 value 83.864272
iter 60 value 83.861839
final value 83.861796
converged
Fitting Repeat 4
# weights: 103
initial value 97.823063
iter 10 value 94.292219
iter 20 value 92.334539
iter 30 value 91.732623
iter 40 value 89.942148
iter 50 value 89.930751
iter 60 value 89.926593
final value 89.926558
converged
Fitting Repeat 5
# weights: 103
initial value 101.203426
iter 10 value 94.502494
iter 20 value 94.453865
iter 30 value 88.990947
iter 40 value 80.594785
iter 50 value 80.242085
iter 60 value 79.945834
iter 70 value 79.768444
iter 80 value 79.510630
iter 90 value 79.332162
final value 79.325968
converged
Fitting Repeat 1
# weights: 305
initial value 111.273340
iter 10 value 95.611962
iter 20 value 90.357173
iter 30 value 89.919668
iter 40 value 87.925659
iter 50 value 86.047974
iter 60 value 81.256826
iter 70 value 80.900286
iter 80 value 80.649745
iter 90 value 80.365248
iter 100 value 80.078227
final value 80.078227
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 115.269279
iter 10 value 94.457169
iter 20 value 93.696918
iter 30 value 93.571067
iter 40 value 91.692231
iter 50 value 89.053007
iter 60 value 85.587336
iter 70 value 83.876284
iter 80 value 82.717602
iter 90 value 80.635524
iter 100 value 79.619270
final value 79.619270
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.620867
iter 10 value 94.616302
iter 20 value 86.679339
iter 30 value 83.317891
iter 40 value 82.424874
iter 50 value 81.255921
iter 60 value 80.800470
iter 70 value 80.510280
iter 80 value 79.949230
iter 90 value 79.481023
iter 100 value 79.223395
final value 79.223395
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.198758
iter 10 value 94.462677
iter 20 value 87.519456
iter 30 value 85.137538
iter 40 value 84.042713
iter 50 value 83.833454
iter 60 value 83.755017
iter 70 value 83.591886
iter 80 value 82.439963
iter 90 value 81.333683
iter 100 value 80.994149
final value 80.994149
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 108.443330
iter 10 value 85.654772
iter 20 value 84.038514
iter 30 value 83.687826
iter 40 value 82.233338
iter 50 value 80.281345
iter 60 value 79.367036
iter 70 value 79.056662
iter 80 value 78.883999
iter 90 value 78.804358
iter 100 value 78.515070
final value 78.515070
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 109.179038
iter 10 value 94.542327
iter 20 value 85.630286
iter 30 value 84.054557
iter 40 value 82.974417
iter 50 value 82.507552
iter 60 value 81.685738
iter 70 value 80.478492
iter 80 value 79.802170
iter 90 value 79.724188
iter 100 value 79.643382
final value 79.643382
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.826460
iter 10 value 87.981178
iter 20 value 87.308931
iter 30 value 86.322403
iter 40 value 83.754876
iter 50 value 79.672459
iter 60 value 79.235886
iter 70 value 78.624442
iter 80 value 78.443502
iter 90 value 78.306490
iter 100 value 78.242934
final value 78.242934
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 122.745251
iter 10 value 96.127488
iter 20 value 92.768876
iter 30 value 85.587639
iter 40 value 84.277649
iter 50 value 83.507963
iter 60 value 83.304033
iter 70 value 83.062306
iter 80 value 79.801342
iter 90 value 78.285922
iter 100 value 78.175074
final value 78.175074
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 126.232171
iter 10 value 93.985024
iter 20 value 84.535071
iter 30 value 81.293930
iter 40 value 79.952052
iter 50 value 79.414865
iter 60 value 79.144967
iter 70 value 79.121283
iter 80 value 78.978306
iter 90 value 78.651821
iter 100 value 78.568188
final value 78.568188
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.679155
iter 10 value 93.759250
iter 20 value 84.161853
iter 30 value 83.621189
iter 40 value 81.547664
iter 50 value 81.199393
iter 60 value 81.103619
iter 70 value 80.795364
iter 80 value 80.296773
iter 90 value 79.973754
iter 100 value 78.676749
final value 78.676749
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.322360
final value 94.356118
converged
Fitting Repeat 2
# weights: 103
initial value 103.246761
iter 10 value 85.701297
iter 20 value 82.894216
iter 30 value 82.888411
iter 40 value 82.886935
iter 40 value 82.886934
iter 40 value 82.886934
final value 82.886934
converged
Fitting Repeat 3
# weights: 103
initial value 95.215483
iter 10 value 85.193961
iter 20 value 85.041705
iter 30 value 85.035424
iter 40 value 84.817291
final value 84.817275
converged
Fitting Repeat 4
# weights: 103
initial value 96.297825
final value 94.485797
converged
Fitting Repeat 5
# weights: 103
initial value 98.500448
final value 94.485810
converged
Fitting Repeat 1
# weights: 305
initial value 95.744108
iter 10 value 94.489365
iter 20 value 90.220941
iter 30 value 82.639173
iter 40 value 82.590728
iter 50 value 82.590037
iter 60 value 81.495196
iter 70 value 79.149465
iter 80 value 79.110262
iter 90 value 79.110204
final value 79.109915
converged
Fitting Repeat 2
# weights: 305
initial value 97.632063
iter 10 value 94.359530
iter 20 value 94.354955
iter 30 value 93.172833
iter 40 value 84.627944
iter 50 value 79.853273
iter 60 value 78.580710
iter 70 value 76.708975
iter 80 value 76.664258
iter 90 value 76.662321
final value 76.662133
converged
Fitting Repeat 3
# weights: 305
initial value 99.623155
iter 10 value 93.019800
iter 20 value 88.993239
iter 30 value 86.484690
iter 40 value 86.477774
iter 50 value 86.418996
iter 60 value 86.303777
iter 70 value 86.278925
iter 80 value 86.278603
iter 90 value 86.277547
iter 100 value 86.277423
final value 86.277423
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.605379
iter 10 value 94.488438
iter 20 value 94.484233
final value 94.484223
converged
Fitting Repeat 5
# weights: 305
initial value 121.270032
iter 10 value 93.534532
iter 20 value 92.796795
iter 30 value 85.708647
iter 40 value 82.619125
iter 50 value 82.507086
iter 60 value 82.504089
iter 70 value 82.489477
iter 80 value 82.466804
iter 90 value 82.296142
iter 100 value 82.293213
final value 82.293213
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.246306
iter 10 value 94.493419
iter 20 value 94.470529
iter 30 value 83.782070
iter 40 value 82.916336
iter 50 value 82.898628
iter 60 value 79.506195
iter 70 value 79.488083
iter 80 value 79.356004
iter 90 value 79.313849
iter 100 value 79.312234
final value 79.312234
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 119.288336
iter 10 value 93.118387
iter 20 value 89.119160
iter 30 value 82.889766
iter 40 value 82.887192
iter 50 value 82.860687
iter 60 value 82.859645
final value 82.859597
converged
Fitting Repeat 3
# weights: 507
initial value 106.128847
iter 10 value 94.491990
iter 20 value 94.122807
iter 30 value 83.094374
iter 40 value 82.942976
iter 50 value 82.908661
iter 60 value 82.896185
iter 70 value 82.786604
final value 82.786472
converged
Fitting Repeat 4
# weights: 507
initial value 101.599421
iter 10 value 94.362462
iter 20 value 92.769091
iter 30 value 85.052044
iter 40 value 84.935929
final value 84.930562
converged
Fitting Repeat 5
# weights: 507
initial value 100.190857
iter 10 value 94.157008
iter 20 value 94.147081
iter 30 value 93.369829
iter 40 value 90.099059
iter 50 value 90.098089
final value 90.097621
converged
Fitting Repeat 1
# weights: 103
initial value 97.253148
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 98.735367
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 94.723591
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.551964
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 95.314052
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 95.194749
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 106.257461
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 115.217689
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 101.544595
iter 10 value 91.927587
iter 20 value 86.061029
final value 86.059625
converged
Fitting Repeat 5
# weights: 305
initial value 101.835542
iter 10 value 94.527219
iter 20 value 94.434792
iter 30 value 94.422621
iter 30 value 94.422620
iter 30 value 94.422620
final value 94.422620
converged
Fitting Repeat 1
# weights: 507
initial value 113.413809
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 105.932932
final value 94.443243
converged
Fitting Repeat 3
# weights: 507
initial value 104.753674
iter 10 value 94.263158
final value 94.263149
converged
Fitting Repeat 4
# weights: 507
initial value 94.641849
iter 10 value 86.950133
iter 20 value 85.541039
iter 30 value 83.616792
iter 40 value 83.608493
iter 50 value 83.587608
iter 60 value 83.536803
iter 70 value 83.536659
final value 83.536646
converged
Fitting Repeat 5
# weights: 507
initial value 96.553518
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 98.035516
iter 10 value 94.431733
iter 20 value 93.301268
iter 30 value 87.243828
iter 40 value 84.421067
iter 50 value 84.266743
iter 60 value 82.612675
iter 70 value 82.432767
iter 80 value 82.430778
iter 80 value 82.430778
iter 80 value 82.430778
final value 82.430778
converged
Fitting Repeat 2
# weights: 103
initial value 103.910222
iter 10 value 94.441814
iter 20 value 86.255925
iter 30 value 84.790806
iter 40 value 84.293928
iter 50 value 84.271567
final value 84.271513
converged
Fitting Repeat 3
# weights: 103
initial value 98.543998
iter 10 value 94.473449
iter 20 value 94.296216
iter 30 value 94.289663
iter 40 value 89.588017
iter 50 value 87.857359
iter 60 value 87.060940
iter 70 value 86.286955
iter 80 value 84.712802
iter 90 value 83.993874
iter 100 value 83.580223
final value 83.580223
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 96.282192
iter 10 value 94.507254
iter 20 value 94.485343
iter 30 value 94.347845
iter 40 value 93.395179
iter 50 value 87.524726
iter 60 value 87.072836
iter 70 value 86.858300
final value 86.846126
converged
Fitting Repeat 5
# weights: 103
initial value 96.206278
iter 10 value 94.219461
iter 20 value 91.241120
iter 30 value 87.443721
iter 40 value 86.306662
iter 50 value 85.877832
iter 60 value 85.579107
final value 85.579010
converged
Fitting Repeat 1
# weights: 305
initial value 106.507575
iter 10 value 94.519983
iter 20 value 94.471003
iter 30 value 91.729738
iter 40 value 86.700760
iter 50 value 84.127311
iter 60 value 82.914391
iter 70 value 82.445908
iter 80 value 82.352741
iter 90 value 82.347458
iter 100 value 82.310936
final value 82.310936
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 113.014690
iter 10 value 94.487163
iter 20 value 92.990717
iter 30 value 89.752690
iter 40 value 87.403359
iter 50 value 87.268984
iter 60 value 86.861504
iter 70 value 86.833852
iter 80 value 84.122978
iter 90 value 81.773505
iter 100 value 81.455502
final value 81.455502
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 104.269790
iter 10 value 94.345693
iter 20 value 89.868346
iter 30 value 87.374386
iter 40 value 86.545704
iter 50 value 85.932677
iter 60 value 85.652254
iter 70 value 85.083506
iter 80 value 82.396796
iter 90 value 81.680040
iter 100 value 81.621940
final value 81.621940
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.015762
iter 10 value 94.621656
iter 20 value 91.094249
iter 30 value 87.685176
iter 40 value 85.628504
iter 50 value 83.476628
iter 60 value 82.693021
iter 70 value 81.981817
iter 80 value 81.385720
iter 90 value 80.792413
iter 100 value 80.731666
final value 80.731666
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.727924
iter 10 value 94.534295
iter 20 value 89.195559
iter 30 value 87.429447
iter 40 value 87.302953
iter 50 value 87.235892
iter 60 value 85.720119
iter 70 value 84.758615
iter 80 value 82.740558
iter 90 value 81.384084
iter 100 value 81.281097
final value 81.281097
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.866735
iter 10 value 95.581120
iter 20 value 94.882180
iter 30 value 93.581135
iter 40 value 89.078061
iter 50 value 86.281538
iter 60 value 85.746486
iter 70 value 84.499027
iter 80 value 82.108176
iter 90 value 81.611171
iter 100 value 81.064237
final value 81.064237
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 114.784851
iter 10 value 94.456556
iter 20 value 92.119983
iter 30 value 86.769575
iter 40 value 86.545593
iter 50 value 86.273586
iter 60 value 85.446181
iter 70 value 83.124494
iter 80 value 82.121509
iter 90 value 81.427102
iter 100 value 81.118317
final value 81.118317
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.117488
iter 10 value 94.219782
iter 20 value 90.866425
iter 30 value 86.095183
iter 40 value 84.591683
iter 50 value 83.169307
iter 60 value 82.336230
iter 70 value 81.245943
iter 80 value 81.015181
iter 90 value 80.953877
iter 100 value 80.750622
final value 80.750622
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.169441
iter 10 value 93.156668
iter 20 value 87.076201
iter 30 value 85.783056
iter 40 value 84.592632
iter 50 value 84.358635
iter 60 value 84.255365
iter 70 value 83.962585
iter 80 value 83.032923
iter 90 value 82.164076
iter 100 value 81.623526
final value 81.623526
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 119.236363
iter 10 value 94.383305
iter 20 value 87.159874
iter 30 value 85.790084
iter 40 value 84.659350
iter 50 value 83.115082
iter 60 value 81.277582
iter 70 value 80.742140
iter 80 value 80.651827
iter 90 value 80.578534
iter 100 value 80.376252
final value 80.376252
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.724157
iter 10 value 89.332790
iter 20 value 88.673974
iter 30 value 88.094239
iter 40 value 88.088619
iter 50 value 88.088469
iter 60 value 88.087479
final value 88.087392
converged
Fitting Repeat 2
# weights: 103
initial value 104.083580
iter 10 value 93.218885
iter 20 value 93.218257
final value 93.184128
converged
Fitting Repeat 3
# weights: 103
initial value 95.844620
final value 94.485795
converged
Fitting Repeat 4
# weights: 103
initial value 95.876832
final value 94.485693
converged
Fitting Repeat 5
# weights: 103
initial value 97.384403
iter 10 value 94.485883
final value 94.484235
converged
Fitting Repeat 1
# weights: 305
initial value 100.762098
iter 10 value 91.981110
iter 20 value 91.683089
iter 30 value 91.497997
iter 40 value 91.496742
iter 50 value 91.495174
iter 60 value 91.493861
iter 60 value 91.493861
final value 91.493861
converged
Fitting Repeat 2
# weights: 305
initial value 99.098858
iter 10 value 94.488804
iter 20 value 94.484218
iter 30 value 94.265574
iter 40 value 94.263179
iter 50 value 85.366651
iter 60 value 83.341637
iter 70 value 80.628401
iter 80 value 80.564011
iter 90 value 80.470555
iter 100 value 80.430151
final value 80.430151
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.579663
iter 10 value 94.488649
iter 20 value 93.218864
iter 30 value 88.277493
iter 40 value 85.977840
final value 85.977715
converged
Fitting Repeat 4
# weights: 305
initial value 97.642409
iter 10 value 94.448215
iter 20 value 94.443914
iter 30 value 94.438318
iter 40 value 88.515430
iter 50 value 86.497693
iter 60 value 85.979900
final value 85.978404
converged
Fitting Repeat 5
# weights: 305
initial value 95.164434
iter 10 value 94.489087
iter 20 value 94.343481
iter 30 value 94.278484
final value 94.263390
converged
Fitting Repeat 1
# weights: 507
initial value 101.386778
iter 10 value 94.451276
iter 20 value 94.443657
iter 30 value 94.432869
iter 40 value 92.827274
iter 50 value 86.509788
iter 60 value 86.122011
iter 70 value 86.101312
iter 80 value 85.628127
iter 90 value 82.994106
iter 100 value 80.971839
final value 80.971839
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.811472
iter 10 value 94.492143
iter 20 value 94.471621
iter 30 value 86.788892
iter 40 value 84.712375
iter 50 value 83.459765
iter 60 value 83.176023
iter 70 value 83.068596
final value 83.066528
converged
Fitting Repeat 3
# weights: 507
initial value 122.408613
iter 10 value 94.492112
iter 20 value 94.367314
iter 30 value 89.034876
iter 40 value 83.510875
iter 50 value 79.841401
iter 60 value 79.461908
iter 70 value 79.433767
iter 80 value 79.426813
iter 90 value 79.425537
iter 100 value 79.425254
final value 79.425254
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 99.919733
iter 10 value 94.492533
iter 20 value 94.426400
iter 30 value 87.418656
iter 40 value 85.926393
iter 50 value 85.427224
iter 60 value 82.249880
iter 70 value 80.736535
iter 80 value 80.656800
iter 90 value 80.367356
iter 100 value 79.698886
final value 79.698886
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 102.987584
iter 10 value 94.492636
iter 20 value 94.482578
iter 30 value 87.378808
iter 40 value 86.111061
iter 50 value 84.115196
iter 60 value 83.144496
iter 70 value 83.089381
iter 80 value 83.087915
iter 90 value 83.087828
iter 100 value 83.087642
final value 83.087642
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.102930
final value 94.052911
converged
Fitting Repeat 2
# weights: 103
initial value 103.985199
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 99.114785
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 104.630831
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 100.789321
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 97.258639
iter 10 value 94.052053
iter 20 value 94.050161
final value 94.050155
converged
Fitting Repeat 2
# weights: 305
initial value 107.103158
final value 93.582418
converged
Fitting Repeat 3
# weights: 305
initial value 97.116727
final value 93.193350
converged
Fitting Repeat 4
# weights: 305
initial value 101.078489
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 104.512230
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 98.644389
iter 10 value 94.053190
final value 94.052911
converged
Fitting Repeat 2
# weights: 507
initial value 154.555868
iter 10 value 93.582493
final value 93.582418
converged
Fitting Repeat 3
# weights: 507
initial value 102.084931
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 129.180850
final value 94.052911
converged
Fitting Repeat 5
# weights: 507
initial value 106.236928
final value 93.582418
converged
Fitting Repeat 1
# weights: 103
initial value 105.414056
iter 10 value 94.056314
iter 20 value 86.538497
iter 30 value 83.021535
iter 40 value 82.611791
iter 50 value 81.938303
iter 60 value 81.240877
iter 70 value 81.050046
iter 80 value 81.042990
final value 81.042968
converged
Fitting Repeat 2
# weights: 103
initial value 104.040012
iter 10 value 94.054955
iter 20 value 93.880730
iter 30 value 87.619907
iter 40 value 83.500205
iter 50 value 83.008623
iter 60 value 82.826051
iter 70 value 82.481080
iter 80 value 82.307080
iter 90 value 82.306099
iter 100 value 82.240415
final value 82.240415
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 94.365095
iter 10 value 92.314871
iter 20 value 91.021587
iter 30 value 90.657137
iter 40 value 90.624980
final value 90.624966
converged
Fitting Repeat 4
# weights: 103
initial value 112.157775
iter 10 value 93.656626
iter 20 value 83.511778
iter 30 value 82.911545
iter 40 value 82.382450
iter 50 value 81.857054
iter 60 value 81.783735
iter 70 value 81.698240
iter 80 value 81.695036
final value 81.695034
converged
Fitting Repeat 5
# weights: 103
initial value 102.702038
iter 10 value 94.056697
iter 20 value 93.677068
iter 30 value 87.978667
iter 40 value 87.315638
iter 50 value 85.133428
iter 60 value 83.283217
iter 70 value 82.475266
iter 80 value 82.155981
iter 90 value 82.140557
final value 82.140552
converged
Fitting Repeat 1
# weights: 305
initial value 101.121017
iter 10 value 93.777343
iter 20 value 93.686262
iter 30 value 88.880358
iter 40 value 86.407440
iter 50 value 84.655395
iter 60 value 82.824564
iter 70 value 82.197327
iter 80 value 81.632313
iter 90 value 81.440019
iter 100 value 81.274322
final value 81.274322
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.176334
iter 10 value 93.711471
iter 20 value 93.682144
iter 30 value 93.522502
iter 40 value 87.562012
iter 50 value 83.966498
iter 60 value 82.027444
iter 70 value 81.550842
iter 80 value 81.373309
iter 90 value 81.279942
iter 100 value 81.159877
final value 81.159877
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 109.496299
iter 10 value 93.255018
iter 20 value 92.091504
iter 30 value 86.784395
iter 40 value 84.487957
iter 50 value 83.892707
iter 60 value 82.512783
iter 70 value 82.452218
iter 80 value 82.296391
iter 90 value 81.427130
iter 100 value 81.302329
final value 81.302329
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 123.875616
iter 10 value 96.243419
iter 20 value 93.361258
iter 30 value 84.114204
iter 40 value 82.846561
iter 50 value 82.287028
iter 60 value 81.732217
iter 70 value 81.030902
iter 80 value 80.205708
iter 90 value 79.997917
iter 100 value 79.966902
final value 79.966902
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.101837
iter 10 value 94.007623
iter 20 value 93.685932
iter 30 value 93.641831
iter 40 value 93.168839
iter 50 value 88.818000
iter 60 value 82.922262
iter 70 value 82.348596
iter 80 value 81.868662
iter 90 value 80.927169
iter 100 value 80.346116
final value 80.346116
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 109.167435
iter 10 value 87.161772
iter 20 value 83.047890
iter 30 value 82.638344
iter 40 value 81.692822
iter 50 value 80.846513
iter 60 value 80.600807
iter 70 value 80.312362
iter 80 value 79.955871
iter 90 value 79.818006
iter 100 value 79.774366
final value 79.774366
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.551517
iter 10 value 94.203698
iter 20 value 93.767470
iter 30 value 93.488257
iter 40 value 87.630778
iter 50 value 84.895801
iter 60 value 84.117918
iter 70 value 83.802280
iter 80 value 81.700027
iter 90 value 80.965968
iter 100 value 80.551920
final value 80.551920
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 116.387245
iter 10 value 94.025044
iter 20 value 85.677826
iter 30 value 85.098411
iter 40 value 82.750750
iter 50 value 81.491987
iter 60 value 80.681684
iter 70 value 79.998839
iter 80 value 79.927375
iter 90 value 79.846171
iter 100 value 79.563153
final value 79.563153
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 117.496373
iter 10 value 94.159497
iter 20 value 93.566239
iter 30 value 88.771575
iter 40 value 83.315035
iter 50 value 81.725328
iter 60 value 80.755927
iter 70 value 80.305299
iter 80 value 80.124966
iter 90 value 80.046189
iter 100 value 79.981171
final value 79.981171
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.248133
iter 10 value 94.821924
iter 20 value 91.060800
iter 30 value 84.872575
iter 40 value 82.836465
iter 50 value 80.984082
iter 60 value 80.761136
iter 70 value 80.380339
iter 80 value 79.808059
iter 90 value 79.677367
iter 100 value 79.402858
final value 79.402858
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.167044
final value 94.054393
converged
Fitting Repeat 2
# weights: 103
initial value 95.113940
final value 94.054649
converged
Fitting Repeat 3
# weights: 103
initial value 98.707440
iter 10 value 93.584180
iter 20 value 93.583083
final value 93.582813
converged
Fitting Repeat 4
# weights: 103
initial value 105.409646
final value 94.054473
converged
Fitting Repeat 5
# weights: 103
initial value 95.284241
final value 94.054813
converged
Fitting Repeat 1
# weights: 305
initial value 99.029147
iter 10 value 94.058197
iter 20 value 94.037981
iter 30 value 92.605472
iter 40 value 91.866462
iter 50 value 91.467185
iter 60 value 89.233791
iter 70 value 83.326627
iter 80 value 83.179638
iter 90 value 82.483727
iter 100 value 82.195758
final value 82.195758
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 111.584815
iter 10 value 93.887181
iter 20 value 93.857268
iter 30 value 93.855969
iter 40 value 92.061386
iter 50 value 92.017757
iter 60 value 91.975572
iter 70 value 91.974881
final value 91.973495
converged
Fitting Repeat 3
# weights: 305
initial value 119.470441
iter 10 value 94.008102
iter 20 value 93.973483
iter 30 value 93.702945
final value 93.583192
converged
Fitting Repeat 4
# weights: 305
initial value 102.666838
iter 10 value 94.057632
iter 20 value 94.055644
iter 30 value 93.950620
iter 40 value 93.156161
iter 50 value 90.699413
iter 60 value 90.646031
iter 70 value 90.645317
iter 80 value 90.641996
iter 80 value 90.641996
final value 90.641996
converged
Fitting Repeat 5
# weights: 305
initial value 100.501113
iter 10 value 94.057828
iter 20 value 94.052930
iter 30 value 93.659784
final value 93.582583
converged
Fitting Repeat 1
# weights: 507
initial value 94.678798
iter 10 value 85.828340
iter 20 value 85.824353
iter 30 value 85.817771
iter 40 value 85.709307
final value 85.708802
converged
Fitting Repeat 2
# weights: 507
initial value 98.996425
iter 10 value 94.060984
iter 20 value 93.940330
iter 30 value 92.751889
iter 40 value 89.068074
iter 50 value 86.964272
iter 60 value 85.472789
iter 70 value 85.344260
final value 85.344247
converged
Fitting Repeat 3
# weights: 507
initial value 97.306937
iter 10 value 94.067087
iter 20 value 93.756762
iter 30 value 85.764604
iter 40 value 85.755048
iter 50 value 84.236059
iter 60 value 83.459966
iter 70 value 82.247029
iter 80 value 82.070354
iter 90 value 81.983103
iter 100 value 81.978518
final value 81.978518
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 117.468988
iter 10 value 92.065417
iter 20 value 90.201107
iter 30 value 90.077844
final value 90.077138
converged
Fitting Repeat 5
# weights: 507
initial value 100.294461
iter 10 value 91.121891
iter 20 value 90.690715
iter 30 value 90.683766
iter 40 value 90.552437
iter 50 value 90.549999
iter 60 value 90.544309
iter 70 value 90.543888
iter 80 value 90.367094
iter 90 value 90.359650
iter 100 value 89.556789
final value 89.556789
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.461087
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 95.518996
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 95.324941
iter 10 value 94.036366
final value 94.032968
converged
Fitting Repeat 4
# weights: 103
initial value 110.581185
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 102.107364
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 106.214881
iter 10 value 93.288889
iter 10 value 93.288889
iter 10 value 93.288889
final value 93.288889
converged
Fitting Repeat 2
# weights: 305
initial value 102.950336
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 98.707892
final value 94.032967
converged
Fitting Repeat 4
# weights: 305
initial value 98.975494
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 95.555571
iter 10 value 94.032963
iter 10 value 94.032963
iter 10 value 94.032963
final value 94.032963
converged
Fitting Repeat 1
# weights: 507
initial value 97.809998
iter 10 value 93.863618
final value 93.863615
converged
Fitting Repeat 2
# weights: 507
initial value 101.246540
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 109.195674
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 111.042884
iter 10 value 93.735645
iter 20 value 93.288917
iter 20 value 93.288917
final value 93.288889
converged
Fitting Repeat 5
# weights: 507
initial value 102.021194
iter 10 value 93.879282
iter 20 value 90.895309
iter 30 value 84.227234
iter 40 value 83.915008
iter 50 value 83.914943
iter 60 value 83.763640
final value 83.763577
converged
Fitting Repeat 1
# weights: 103
initial value 95.705746
iter 10 value 93.947487
iter 20 value 90.455616
iter 30 value 89.172935
iter 40 value 86.121361
iter 50 value 85.778815
iter 60 value 85.367077
iter 70 value 85.231190
final value 85.230727
converged
Fitting Repeat 2
# weights: 103
initial value 96.513735
iter 10 value 94.108681
iter 20 value 92.801760
iter 30 value 92.671034
iter 40 value 91.539111
iter 50 value 90.863471
iter 60 value 90.813976
iter 70 value 90.813382
iter 70 value 90.813382
iter 70 value 90.813382
final value 90.813382
converged
Fitting Repeat 3
# weights: 103
initial value 96.698370
iter 10 value 94.125109
iter 20 value 94.056639
iter 30 value 93.650021
iter 40 value 87.614359
iter 50 value 87.334402
iter 60 value 86.328935
iter 70 value 85.585126
iter 80 value 85.077898
iter 90 value 85.042086
final value 85.042049
converged
Fitting Repeat 4
# weights: 103
initial value 97.326806
iter 10 value 93.550835
iter 20 value 86.065978
iter 30 value 84.315045
iter 40 value 83.004392
iter 50 value 82.905017
iter 60 value 82.801924
iter 70 value 82.744292
iter 80 value 82.388783
iter 90 value 82.231295
iter 100 value 82.173201
final value 82.173201
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 96.527539
iter 10 value 94.070715
iter 20 value 91.714075
iter 30 value 87.880134
iter 40 value 87.284612
iter 50 value 85.762512
iter 60 value 85.282601
final value 85.281041
converged
Fitting Repeat 1
# weights: 305
initial value 113.659992
iter 10 value 93.748870
iter 20 value 87.335099
iter 30 value 85.231484
iter 40 value 84.764661
iter 50 value 84.661579
iter 60 value 83.989079
iter 70 value 82.855072
iter 80 value 82.460712
iter 90 value 82.183585
iter 100 value 81.922391
final value 81.922391
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.889142
iter 10 value 94.077188
iter 20 value 92.592358
iter 30 value 87.242415
iter 40 value 85.820583
iter 50 value 85.616761
iter 60 value 84.341323
iter 70 value 82.707565
iter 80 value 81.656370
iter 90 value 81.283452
iter 100 value 81.056629
final value 81.056629
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.078497
iter 10 value 94.253759
iter 20 value 92.547538
iter 30 value 88.480973
iter 40 value 87.891805
iter 50 value 86.587320
iter 60 value 82.773879
iter 70 value 81.543697
iter 80 value 81.137148
iter 90 value 80.934489
iter 100 value 80.844851
final value 80.844851
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 114.096160
iter 10 value 93.869643
iter 20 value 85.920318
iter 30 value 85.657187
iter 40 value 85.523681
iter 50 value 84.749216
iter 60 value 82.797836
iter 70 value 81.470513
iter 80 value 81.257842
iter 90 value 80.945542
iter 100 value 80.931359
final value 80.931359
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.949612
iter 10 value 94.831101
iter 20 value 89.484258
iter 30 value 88.315056
iter 40 value 86.575839
iter 50 value 86.463731
iter 60 value 85.358590
iter 70 value 84.696171
iter 80 value 83.364315
iter 90 value 83.098440
iter 100 value 82.901667
final value 82.901667
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 115.372158
iter 10 value 98.251689
iter 20 value 91.493860
iter 30 value 85.587680
iter 40 value 83.406706
iter 50 value 82.884276
iter 60 value 82.389521
iter 70 value 81.558940
iter 80 value 81.392749
iter 90 value 81.308600
iter 100 value 81.250453
final value 81.250453
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 129.739219
iter 10 value 94.102994
iter 20 value 93.546392
iter 30 value 88.056697
iter 40 value 84.022797
iter 50 value 82.303089
iter 60 value 81.822767
iter 70 value 81.718388
iter 80 value 81.073682
iter 90 value 80.839594
iter 100 value 80.745700
final value 80.745700
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 117.220819
iter 10 value 94.081516
iter 20 value 87.512293
iter 30 value 86.970553
iter 40 value 85.054377
iter 50 value 83.861090
iter 60 value 81.788504
iter 70 value 81.266488
iter 80 value 81.193935
iter 90 value 81.111924
iter 100 value 81.107664
final value 81.107664
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 119.868527
iter 10 value 102.600295
iter 20 value 95.281505
iter 30 value 90.022064
iter 40 value 85.494324
iter 50 value 85.239477
iter 60 value 84.225213
iter 70 value 83.238490
iter 80 value 82.783905
iter 90 value 81.960259
iter 100 value 81.886133
final value 81.886133
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.730542
iter 10 value 87.852338
iter 20 value 87.468319
iter 30 value 87.279771
iter 40 value 85.434511
iter 50 value 85.056408
iter 60 value 84.474028
iter 70 value 83.287110
iter 80 value 81.976217
iter 90 value 81.834337
iter 100 value 81.678208
final value 81.678208
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 109.029834
iter 10 value 94.054395
iter 20 value 93.936737
iter 30 value 88.486316
iter 40 value 88.148301
iter 50 value 87.591149
iter 60 value 87.589747
final value 87.589686
converged
Fitting Repeat 2
# weights: 103
initial value 104.600522
final value 94.054369
converged
Fitting Repeat 3
# weights: 103
initial value 97.241740
final value 94.054791
converged
Fitting Repeat 4
# weights: 103
initial value 104.405878
final value 94.054514
converged
Fitting Repeat 5
# weights: 103
initial value 98.316980
final value 94.054609
converged
Fitting Repeat 1
# weights: 305
initial value 94.926433
iter 10 value 89.034682
iter 20 value 86.621089
iter 30 value 86.616550
iter 40 value 86.415417
iter 50 value 86.412298
iter 60 value 86.411902
iter 70 value 86.411709
final value 86.411678
converged
Fitting Repeat 2
# weights: 305
initial value 98.104427
iter 10 value 94.057058
iter 20 value 93.793662
iter 30 value 89.811185
iter 40 value 86.230080
iter 50 value 86.226745
iter 60 value 86.224598
iter 70 value 86.221678
iter 80 value 86.218759
iter 90 value 86.218305
iter 100 value 86.217752
final value 86.217752
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.385240
iter 10 value 94.058016
iter 20 value 94.032713
iter 30 value 88.132050
iter 40 value 86.298315
iter 50 value 86.208488
iter 60 value 86.201737
iter 70 value 86.200066
final value 86.200020
converged
Fitting Repeat 4
# weights: 305
initial value 94.609054
iter 10 value 94.037423
iter 20 value 93.649902
iter 30 value 93.289931
final value 93.289244
converged
Fitting Repeat 5
# weights: 305
initial value 94.158869
final value 94.057963
converged
Fitting Repeat 1
# weights: 507
initial value 94.934697
iter 10 value 94.061057
iter 20 value 94.048799
iter 30 value 91.408942
iter 40 value 84.874551
iter 50 value 84.840790
iter 60 value 84.791567
iter 70 value 84.612772
iter 80 value 84.587650
iter 90 value 84.583372
iter 100 value 84.581500
final value 84.581500
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 96.991859
iter 10 value 94.063459
iter 20 value 93.700683
iter 30 value 87.025658
iter 40 value 87.022155
iter 50 value 87.020953
iter 60 value 86.969396
iter 70 value 84.386647
iter 80 value 84.170743
iter 90 value 83.709866
iter 100 value 82.392693
final value 82.392693
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.115896
iter 10 value 94.061659
iter 20 value 94.054957
iter 30 value 94.006786
iter 40 value 86.861541
iter 50 value 85.294731
iter 60 value 85.291411
final value 85.291368
converged
Fitting Repeat 4
# weights: 507
initial value 113.500554
iter 10 value 93.733127
iter 20 value 92.435797
iter 30 value 87.385558
iter 40 value 86.615963
final value 86.615953
converged
Fitting Repeat 5
# weights: 507
initial value 99.419330
iter 10 value 94.059140
iter 20 value 86.795137
iter 30 value 84.504947
iter 40 value 84.497165
iter 50 value 84.262812
iter 60 value 82.071701
iter 70 value 81.436505
iter 80 value 80.807469
iter 90 value 80.097042
iter 100 value 79.912176
final value 79.912176
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.017945
final value 94.443243
converged
Fitting Repeat 2
# weights: 103
initial value 94.840260
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 98.351148
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.318121
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 113.829868
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 105.565727
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 99.964884
iter 10 value 89.137749
iter 20 value 86.106627
iter 30 value 85.795246
iter 40 value 85.793711
iter 40 value 85.793710
iter 40 value 85.793710
final value 85.793710
converged
Fitting Repeat 3
# weights: 305
initial value 102.101570
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 95.076146
final value 94.443243
converged
Fitting Repeat 5
# weights: 305
initial value 99.906415
final value 93.783647
converged
Fitting Repeat 1
# weights: 507
initial value 101.937876
final value 94.484137
converged
Fitting Repeat 2
# weights: 507
initial value 105.638113
iter 10 value 93.946860
iter 20 value 93.886755
iter 30 value 93.842070
final value 93.842068
converged
Fitting Repeat 3
# weights: 507
initial value 97.889672
iter 10 value 93.605666
iter 20 value 93.452464
iter 30 value 93.450026
final value 93.450014
converged
Fitting Repeat 4
# weights: 507
initial value 94.735903
iter 10 value 93.722397
final value 93.722222
converged
Fitting Repeat 5
# weights: 507
initial value 114.603039
iter 10 value 89.216948
iter 20 value 87.316703
final value 87.316697
converged
Fitting Repeat 1
# weights: 103
initial value 103.188977
iter 10 value 93.692233
iter 20 value 86.670101
iter 30 value 86.460065
iter 40 value 86.327724
iter 50 value 85.574197
iter 60 value 84.533652
iter 70 value 83.831532
iter 80 value 83.383804
iter 90 value 83.228994
final value 83.228194
converged
Fitting Repeat 2
# weights: 103
initial value 103.937689
iter 10 value 94.547163
iter 20 value 88.889761
iter 30 value 85.753139
iter 40 value 85.106453
iter 50 value 84.567993
iter 60 value 84.404079
final value 84.403426
converged
Fitting Repeat 3
# weights: 103
initial value 98.335187
iter 10 value 89.861666
iter 20 value 86.422236
iter 30 value 85.976282
iter 40 value 85.297932
iter 50 value 83.707283
iter 60 value 83.445596
iter 70 value 83.290207
iter 80 value 83.271670
iter 90 value 83.228873
final value 83.228786
converged
Fitting Repeat 4
# weights: 103
initial value 100.411599
iter 10 value 94.005995
iter 20 value 93.894536
iter 30 value 88.824242
iter 40 value 88.644990
iter 50 value 88.503888
iter 60 value 87.634272
iter 70 value 86.849081
iter 80 value 86.739842
iter 90 value 84.137576
iter 100 value 84.049064
final value 84.049064
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 98.166550
iter 10 value 94.411740
iter 20 value 87.900846
iter 30 value 85.627162
iter 40 value 85.368673
iter 50 value 85.098746
iter 60 value 84.951437
iter 70 value 83.916547
iter 80 value 83.551622
iter 90 value 82.730658
iter 100 value 82.708829
final value 82.708829
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 116.753551
iter 10 value 94.542046
iter 20 value 94.025923
iter 30 value 93.721481
iter 40 value 88.141144
iter 50 value 87.285158
iter 60 value 86.838653
iter 70 value 86.105182
iter 80 value 84.197565
iter 90 value 82.173840
iter 100 value 81.623359
final value 81.623359
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.797555
iter 10 value 95.221078
iter 20 value 92.923854
iter 30 value 89.530814
iter 40 value 87.705263
iter 50 value 85.333465
iter 60 value 82.260941
iter 70 value 82.014606
iter 80 value 81.599897
iter 90 value 81.338300
iter 100 value 81.262292
final value 81.262292
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.580147
iter 10 value 94.488679
iter 20 value 93.958776
iter 30 value 90.304787
iter 40 value 88.248357
iter 50 value 85.295829
iter 60 value 83.912402
iter 70 value 82.630792
iter 80 value 82.363475
iter 90 value 82.174967
iter 100 value 82.019024
final value 82.019024
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.425414
iter 10 value 94.382936
iter 20 value 86.551296
iter 30 value 86.048062
iter 40 value 84.932009
iter 50 value 83.889731
iter 60 value 83.328845
iter 70 value 82.951619
iter 80 value 82.469591
iter 90 value 82.015053
iter 100 value 81.692084
final value 81.692084
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.224663
iter 10 value 94.481850
iter 20 value 93.716296
iter 30 value 87.750034
iter 40 value 85.014584
iter 50 value 84.494832
iter 60 value 83.711021
iter 70 value 82.996466
iter 80 value 81.929719
iter 90 value 81.230635
iter 100 value 81.027050
final value 81.027050
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 116.026632
iter 10 value 94.295576
iter 20 value 93.987830
iter 30 value 93.694101
iter 40 value 88.291716
iter 50 value 86.920920
iter 60 value 83.767080
iter 70 value 83.475975
iter 80 value 82.923428
iter 90 value 82.249608
iter 100 value 81.636469
final value 81.636469
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.547464
iter 10 value 94.583752
iter 20 value 91.917860
iter 30 value 88.040677
iter 40 value 83.760906
iter 50 value 83.000054
iter 60 value 81.940783
iter 70 value 81.504855
iter 80 value 81.477520
iter 90 value 81.342462
iter 100 value 81.276913
final value 81.276913
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.726293
iter 10 value 94.459388
iter 20 value 93.509341
iter 30 value 93.071646
iter 40 value 90.168881
iter 50 value 89.693778
iter 60 value 87.198469
iter 70 value 84.699549
iter 80 value 83.883743
iter 90 value 83.161168
iter 100 value 82.973692
final value 82.973692
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 137.377213
iter 10 value 94.926268
iter 20 value 90.762214
iter 30 value 85.507788
iter 40 value 83.723648
iter 50 value 82.503915
iter 60 value 81.819718
iter 70 value 81.682423
iter 80 value 81.217377
iter 90 value 80.932100
iter 100 value 80.804763
final value 80.804763
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 124.781154
iter 10 value 91.201127
iter 20 value 87.016313
iter 30 value 85.237381
iter 40 value 83.662004
iter 50 value 83.129196
iter 60 value 82.872649
iter 70 value 81.879249
iter 80 value 81.391701
iter 90 value 81.270820
iter 100 value 81.237284
final value 81.237284
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.323398
iter 10 value 85.641844
iter 20 value 84.769920
iter 30 value 84.759096
final value 84.758903
converged
Fitting Repeat 2
# weights: 103
initial value 96.172747
final value 94.486029
converged
Fitting Repeat 3
# weights: 103
initial value 98.010278
final value 94.486223
converged
Fitting Repeat 4
# weights: 103
initial value 110.427097
iter 10 value 94.215842
iter 20 value 93.924257
iter 30 value 86.276356
iter 40 value 85.955707
iter 50 value 85.917904
iter 60 value 85.917033
iter 70 value 85.878125
iter 80 value 85.493057
iter 90 value 84.525267
iter 100 value 84.048914
final value 84.048914
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 110.913391
iter 10 value 94.444987
iter 20 value 94.443622
final value 94.443549
converged
Fitting Repeat 1
# weights: 305
initial value 109.958518
iter 10 value 94.489142
iter 20 value 94.484526
iter 30 value 94.144130
iter 40 value 91.061151
iter 50 value 90.907165
final value 90.906704
converged
Fitting Repeat 2
# weights: 305
initial value 98.006535
iter 10 value 94.489101
iter 20 value 94.484255
iter 20 value 94.484255
final value 94.484255
converged
Fitting Repeat 3
# weights: 305
initial value 101.230709
iter 10 value 94.489198
iter 20 value 94.484140
iter 20 value 94.484140
iter 30 value 92.092785
iter 40 value 86.157246
iter 50 value 86.148115
final value 86.141414
converged
Fitting Repeat 4
# weights: 305
initial value 108.685473
iter 10 value 94.488867
iter 20 value 94.290080
iter 30 value 86.705972
iter 40 value 86.334238
iter 50 value 86.265566
iter 60 value 86.262489
final value 86.262435
converged
Fitting Repeat 5
# weights: 305
initial value 105.390777
iter 10 value 94.489358
iter 20 value 94.484503
iter 30 value 88.584503
iter 40 value 88.263056
iter 50 value 88.260053
iter 60 value 88.259832
iter 70 value 88.241839
iter 80 value 88.237524
final value 88.237498
converged
Fitting Repeat 1
# weights: 507
initial value 118.949520
iter 10 value 94.452051
iter 20 value 94.445928
iter 30 value 94.037895
iter 40 value 87.838686
iter 50 value 86.055086
final value 86.045959
converged
Fitting Repeat 2
# weights: 507
initial value 95.256483
iter 10 value 94.486134
iter 20 value 89.176535
iter 30 value 85.832354
iter 40 value 85.829306
iter 50 value 85.759699
iter 60 value 85.756499
final value 85.756456
converged
Fitting Repeat 3
# weights: 507
initial value 106.405317
iter 10 value 94.486003
iter 20 value 89.256158
iter 30 value 86.289489
iter 40 value 84.832000
iter 50 value 84.820599
iter 60 value 84.668313
iter 70 value 84.074347
iter 80 value 83.936333
iter 90 value 83.777665
iter 100 value 83.751663
final value 83.751663
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.529035
iter 10 value 94.492751
iter 20 value 94.484367
final value 94.484252
converged
Fitting Repeat 5
# weights: 507
initial value 96.445454
iter 10 value 94.492869
iter 20 value 94.486751
iter 30 value 94.324660
iter 40 value 93.439051
iter 50 value 85.619739
iter 60 value 85.033367
iter 70 value 84.832578
iter 80 value 84.829969
final value 84.829963
converged
Fitting Repeat 1
# weights: 507
initial value 126.023863
iter 10 value 117.898409
iter 20 value 117.618410
iter 30 value 117.557482
iter 40 value 117.512076
final value 117.512016
converged
Fitting Repeat 2
# weights: 507
initial value 119.264225
iter 10 value 117.439837
iter 20 value 117.438666
iter 30 value 117.069687
iter 40 value 116.817682
iter 50 value 116.808889
final value 116.808743
converged
Fitting Repeat 3
# weights: 507
initial value 122.592108
iter 10 value 117.751076
iter 20 value 117.618755
iter 30 value 117.534964
final value 117.512382
converged
Fitting Repeat 4
# weights: 507
initial value 120.423517
iter 10 value 117.897973
iter 20 value 117.889751
iter 30 value 115.804945
iter 40 value 112.218042
iter 50 value 107.191093
iter 60 value 107.158067
iter 70 value 105.616038
iter 80 value 105.613940
iter 90 value 104.676886
iter 100 value 104.032826
final value 104.032826
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 122.753233
iter 10 value 117.897907
iter 20 value 117.088363
iter 30 value 113.098632
iter 40 value 112.227055
iter 50 value 111.766070
iter 60 value 111.492708
iter 70 value 111.436976
iter 80 value 110.112506
iter 90 value 105.009994
iter 100 value 102.205800
final value 102.205800
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Fri Jan 23 20:32:17 2026
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
20.735 0.496 71.897
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 18.916 | 0.980 | 21.140 | |
| FreqInteractors | 0.158 | 0.012 | 0.184 | |
| calculateAAC | 0.013 | 0.001 | 0.014 | |
| calculateAutocor | 0.129 | 0.024 | 0.163 | |
| calculateCTDC | 0.034 | 0.004 | 0.039 | |
| calculateCTDD | 0.164 | 0.010 | 0.182 | |
| calculateCTDT | 0.069 | 0.007 | 0.077 | |
| calculateCTriad | 0.171 | 0.019 | 0.198 | |
| calculateDC | 0.033 | 0.004 | 0.037 | |
| calculateF | 0.104 | 0.004 | 0.114 | |
| calculateKSAAP | 0.033 | 0.006 | 0.040 | |
| calculateQD_Sm | 0.877 | 0.064 | 0.980 | |
| calculateTC | 0.711 | 0.067 | 0.815 | |
| calculateTC_Sm | 0.105 | 0.008 | 0.117 | |
| corr_plot | 18.787 | 0.959 | 20.716 | |
| enrichfindP | 0.196 | 0.037 | 10.268 | |
| enrichfind_hp | 0.015 | 0.003 | 0.985 | |
| enrichplot | 0.177 | 0.009 | 0.205 | |
| filter_missing_values | 0.001 | 0.000 | 0.003 | |
| getFASTA | 0.035 | 0.007 | 3.434 | |
| getHPI | 0.000 | 0.001 | 0.001 | |
| get_negativePPI | 0.001 | 0.000 | 0.001 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.001 | 0.001 | 0.001 | |
| plotPPI | 0.041 | 0.001 | 0.048 | |
| pred_ensembel | 6.704 | 0.141 | 6.897 | |
| var_imp | 18.662 | 1.056 | 21.728 | |