Back to Multiple platform build/check report for BioC 3.23:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-12-20 11:35 -0500 (Sat, 20 Dec 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" 4875
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4593
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 996/2332HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.17.1  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-12-19 13:40 -0500 (Fri, 19 Dec 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: e6c77ab
git_last_commit_date: 2025-11-23 15:13:33 -0500 (Sun, 23 Nov 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    WARNINGS  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for HPiP on kjohnson3

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.17.1
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz
StartedAt: 2025-12-19 20:11:59 -0500 (Fri, 19 Dec 2025)
EndedAt: 2025-12-19 20:15:27 -0500 (Fri, 19 Dec 2025)
EllapsedTime: 207.7 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: HPiP.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 16.0.0 (clang-1600.0.26.6)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from Rd file 'pred_ensembel.Rd':
pred_ensembel
  Code: function(features, gold_standard, classifier = c("avNNet",
                 "svmRadial", "ranger"), resampling.method = "cv",
                 ncross = 2, repeats = 2, verboseIter = TRUE, plots =
                 FALSE, filename = "plots.pdf")
  Docs: function(features, gold_standard, classifier = c("avNNet",
                 "svmRadial", "ranger"), resampling.method = "cv",
                 ncross = 2, repeats = 2, verboseIter = TRUE, plots =
                 TRUE, filename = "plots.pdf")
  Mismatches in argument default values:
    Name: 'plots' Code: FALSE Docs: TRUE

* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                user system elapsed
FSmethod      19.119  0.986  21.123
corr_plot     18.980  0.987  20.952
var_imp       18.564  0.945  20.708
pred_ensembel  6.575  0.132   6.294
enrichfindP    0.195  0.037  12.885
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’
* installing *source* package ‘HPiP’ ...
** this is package ‘HPiP’ version ‘1.17.1’
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 95.259815 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.903063 
final  value 94.457914 
converged
Fitting Repeat 3 

# weights:  103
initial  value 105.165531 
final  value 94.443244 
converged
Fitting Repeat 4 

# weights:  103
initial  value 107.238478 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.936645 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 113.689700 
final  value 94.026542 
converged
Fitting Repeat 2 

# weights:  305
initial  value 104.526061 
iter  10 value 93.753917
iter  20 value 93.719176
iter  30 value 93.520596
iter  40 value 91.779700
final  value 91.778224 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.786715 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 109.489587 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.366446 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 94.715393 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 111.707489 
iter  10 value 94.649757
iter  20 value 94.271969
iter  30 value 93.389925
iter  40 value 92.829436
iter  50 value 91.829117
iter  60 value 91.825283
final  value 91.825009 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.707358 
iter  10 value 94.232939
iter  20 value 87.107462
iter  30 value 86.724240
iter  40 value 86.721972
iter  50 value 85.933379
final  value 85.924492 
converged
Fitting Repeat 4 

# weights:  507
initial  value 110.115340 
iter  10 value 89.809585
iter  20 value 86.657792
iter  30 value 86.657126
final  value 86.657112 
converged
Fitting Repeat 5 

# weights:  507
initial  value 101.328098 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.421667 
iter  10 value 89.248049
iter  20 value 85.778672
iter  30 value 83.842603
iter  40 value 83.602184
iter  50 value 83.541724
iter  60 value 82.189816
iter  70 value 81.417844
iter  80 value 81.180370
iter  90 value 81.170412
final  value 81.169762 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.411557 
iter  10 value 90.771242
iter  20 value 89.208518
iter  30 value 84.036130
iter  40 value 83.146427
iter  50 value 82.775646
iter  60 value 82.390997
iter  70 value 81.615858
iter  80 value 81.201269
iter  90 value 81.107671
final  value 81.107669 
converged
Fitting Repeat 3 

# weights:  103
initial  value 107.102183 
iter  10 value 94.487411
iter  20 value 94.486692
iter  30 value 92.764827
iter  40 value 88.698923
iter  50 value 87.992925
iter  60 value 85.885064
iter  70 value 81.797497
iter  80 value 81.615784
iter  90 value 81.175897
final  value 81.169762 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.178153 
iter  10 value 94.315796
iter  20 value 87.877178
iter  30 value 86.768906
iter  40 value 86.134002
iter  50 value 85.735115
iter  60 value 85.603405
iter  70 value 85.523815
iter  80 value 85.512740
iter  90 value 85.511250
final  value 85.511248 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.171580 
iter  10 value 91.299312
iter  20 value 88.202748
iter  30 value 87.924334
iter  40 value 87.196266
iter  50 value 85.321810
iter  60 value 85.185738
iter  70 value 85.148356
iter  80 value 85.146643
iter  80 value 85.146643
final  value 85.146643 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.648267 
iter  10 value 94.530047
iter  20 value 92.896931
iter  30 value 85.968192
iter  40 value 85.362260
iter  50 value 85.123753
iter  60 value 84.905520
iter  70 value 84.032848
iter  80 value 80.985571
iter  90 value 80.330536
iter 100 value 80.019906
final  value 80.019906 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.559949 
iter  10 value 94.629659
iter  20 value 86.710698
iter  30 value 85.699735
iter  40 value 82.126929
iter  50 value 81.385148
iter  60 value 80.873127
iter  70 value 80.503664
iter  80 value 80.294213
iter  90 value 80.132065
iter 100 value 80.019761
final  value 80.019761 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 113.622354 
iter  10 value 94.399887
iter  20 value 91.038156
iter  30 value 90.410043
iter  40 value 89.776716
iter  50 value 89.617980
iter  60 value 83.869559
iter  70 value 81.899176
iter  80 value 81.000442
iter  90 value 80.720260
iter 100 value 80.643757
final  value 80.643757 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 117.774531 
iter  10 value 94.403199
iter  20 value 87.405113
iter  30 value 84.414882
iter  40 value 83.685493
iter  50 value 82.734018
iter  60 value 82.319860
iter  70 value 81.376399
iter  80 value 80.772240
iter  90 value 80.553837
iter 100 value 80.151313
final  value 80.151313 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.196577 
iter  10 value 94.634653
iter  20 value 87.602488
iter  30 value 84.652218
iter  40 value 82.448002
iter  50 value 81.048038
iter  60 value 80.618114
iter  70 value 80.503028
iter  80 value 80.404660
iter  90 value 80.237413
iter 100 value 80.099257
final  value 80.099257 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 120.250674 
iter  10 value 94.470196
iter  20 value 93.878606
iter  30 value 88.852823
iter  40 value 83.801486
iter  50 value 82.996378
iter  60 value 82.591800
iter  70 value 82.259582
iter  80 value 82.120863
iter  90 value 81.893525
iter 100 value 81.468118
final  value 81.468118 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 122.967634 
iter  10 value 94.458561
iter  20 value 86.226359
iter  30 value 85.462687
iter  40 value 84.585628
iter  50 value 83.217134
iter  60 value 82.952800
iter  70 value 82.746301
iter  80 value 81.813194
iter  90 value 81.264977
iter 100 value 80.970796
final  value 80.970796 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 132.899206 
iter  10 value 94.487101
iter  20 value 88.702638
iter  30 value 87.229768
iter  40 value 83.797142
iter  50 value 82.985850
iter  60 value 82.479301
iter  70 value 81.830929
iter  80 value 81.020861
iter  90 value 80.605867
iter 100 value 80.015864
final  value 80.015864 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 112.716737 
iter  10 value 94.494711
iter  20 value 88.567868
iter  30 value 87.540586
iter  40 value 87.273886
iter  50 value 85.770286
iter  60 value 83.636706
iter  70 value 82.362229
iter  80 value 81.209916
iter  90 value 80.000454
iter 100 value 79.810743
final  value 79.810743 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 118.570709 
iter  10 value 94.484003
iter  20 value 86.953247
iter  30 value 84.621190
iter  40 value 83.806173
iter  50 value 83.013952
iter  60 value 82.523578
iter  70 value 81.557620
iter  80 value 80.201651
iter  90 value 79.842944
iter 100 value 79.737954
final  value 79.737954 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.345201 
final  value 94.485757 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.683222 
iter  10 value 94.445008
iter  20 value 94.443645
iter  30 value 94.043980
iter  40 value 93.625813
final  value 93.624703 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.306153 
final  value 94.485717 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.953567 
final  value 94.445072 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.112301 
iter  10 value 94.445069
iter  20 value 94.443309
iter  30 value 92.666927
iter  40 value 86.660548
final  value 86.659574 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.632304 
iter  10 value 94.481277
iter  20 value 90.102302
iter  30 value 89.956016
iter  40 value 89.943809
iter  50 value 89.918350
iter  60 value 89.868108
final  value 89.867711 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.269498 
iter  10 value 94.488927
iter  20 value 92.799054
iter  30 value 87.712867
iter  40 value 86.138537
iter  50 value 86.031982
final  value 86.031268 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.020673 
iter  10 value 94.488557
iter  20 value 94.484226
iter  20 value 94.484226
iter  20 value 94.484226
final  value 94.484226 
converged
Fitting Repeat 4 

# weights:  305
initial  value 103.097434 
iter  10 value 94.449003
iter  20 value 94.446369
iter  30 value 91.948729
iter  40 value 84.541974
iter  50 value 81.056732
iter  60 value 79.600723
iter  70 value 79.348580
iter  80 value 79.342305
iter  90 value 79.336978
final  value 79.324535 
converged
Fitting Repeat 5 

# weights:  305
initial  value 103.133098 
iter  10 value 94.488766
iter  20 value 94.459796
iter  30 value 86.775819
iter  40 value 86.741755
iter  50 value 86.361279
iter  60 value 86.347541
iter  70 value 86.281035
iter  80 value 86.275925
final  value 86.275915 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.387063 
iter  10 value 93.705094
iter  20 value 93.443912
iter  30 value 93.442893
iter  40 value 93.438891
iter  50 value 93.434670
iter  60 value 93.429615
iter  70 value 93.425875
final  value 93.425749 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.414589 
iter  10 value 94.451578
iter  20 value 93.785599
iter  30 value 87.084657
iter  40 value 86.141445
iter  50 value 84.009815
iter  60 value 83.120679
iter  70 value 82.613114
iter  80 value 81.663850
iter  90 value 81.651502
iter 100 value 81.648407
final  value 81.648407 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 112.643457 
iter  10 value 90.579978
iter  20 value 90.359932
iter  30 value 90.302493
iter  40 value 90.302004
final  value 90.300461 
converged
Fitting Repeat 4 

# weights:  507
initial  value 109.280543 
iter  10 value 94.298294
iter  20 value 94.296105
iter  30 value 94.293263
iter  40 value 94.095361
iter  50 value 93.890696
iter  60 value 93.889233
iter  70 value 93.887527
iter  80 value 89.252708
iter  90 value 87.153216
iter 100 value 87.070357
final  value 87.070357 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 110.703560 
iter  10 value 94.491252
iter  20 value 94.482008
iter  30 value 88.243020
iter  40 value 87.669563
iter  50 value 87.622973
iter  60 value 87.622441
iter  70 value 87.621283
iter  80 value 87.621025
final  value 87.621003 
converged
Fitting Repeat 1 

# weights:  103
initial  value 95.837444 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.438157 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 108.257542 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.867318 
final  value 94.354396 
converged
Fitting Repeat 5 

# weights:  103
initial  value 112.455299 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.509038 
iter  10 value 93.125473
iter  20 value 89.259849
iter  30 value 89.173161
iter  40 value 89.027753
iter  50 value 84.755361
iter  60 value 83.568085
iter  70 value 82.834476
iter  80 value 82.426483
iter  90 value 82.170424
final  value 82.166583 
converged
Fitting Repeat 2 

# weights:  305
initial  value 120.667734 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 105.979496 
final  value 94.483810 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.338308 
final  value 94.443243 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.776553 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 93.037879 
iter  10 value 85.844211
iter  20 value 85.841378
iter  30 value 85.594794
iter  40 value 84.265858
iter  50 value 84.226983
final  value 84.226941 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.406250 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 107.257276 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 100.649318 
iter  10 value 93.262702
iter  20 value 93.212797
final  value 93.212302 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.730265 
final  value 94.354396 
converged
Fitting Repeat 1 

# weights:  103
initial  value 104.370224 
iter  10 value 93.417385
iter  20 value 85.255304
iter  30 value 85.148030
iter  40 value 85.115763
iter  50 value 84.142054
iter  60 value 84.024113
iter  70 value 83.561244
iter  80 value 83.488161
final  value 83.487120 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.821245 
iter  10 value 94.439922
iter  20 value 91.374327
iter  30 value 87.559222
iter  40 value 87.297610
iter  50 value 87.205716
iter  60 value 85.575566
iter  70 value 82.852049
iter  80 value 81.652419
iter  90 value 81.576417
iter 100 value 81.428007
final  value 81.428007 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 98.042603 
iter  10 value 94.494430
final  value 94.486432 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.816642 
iter  10 value 94.475777
iter  20 value 87.837759
iter  30 value 86.746615
iter  40 value 85.879137
iter  50 value 85.154261
final  value 85.137748 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.593969 
iter  10 value 94.396957
iter  20 value 92.572076
iter  30 value 87.979011
iter  40 value 83.155640
iter  50 value 82.816940
iter  60 value 82.520201
iter  70 value 81.679283
iter  80 value 81.558849
iter  90 value 81.509996
iter 100 value 81.403892
final  value 81.403892 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 105.323798 
iter  10 value 92.693409
iter  20 value 86.226678
iter  30 value 83.867502
iter  40 value 82.708197
iter  50 value 81.745430
iter  60 value 81.341183
iter  70 value 80.853711
iter  80 value 80.438799
iter  90 value 80.254661
iter 100 value 80.096892
final  value 80.096892 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 108.143056 
iter  10 value 95.040038
iter  20 value 93.840454
iter  30 value 88.161824
iter  40 value 87.204475
iter  50 value 84.802009
iter  60 value 82.832994
iter  70 value 81.941699
iter  80 value 81.576885
iter  90 value 81.377564
iter 100 value 81.205090
final  value 81.205090 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 107.744751 
iter  10 value 94.481544
iter  20 value 90.820356
iter  30 value 85.676911
iter  40 value 83.509153
iter  50 value 82.432902
iter  60 value 81.285788
iter  70 value 80.361585
iter  80 value 80.155583
iter  90 value 80.132645
iter 100 value 79.914566
final  value 79.914566 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.320560 
iter  10 value 94.703429
iter  20 value 94.485092
iter  30 value 87.640017
iter  40 value 84.711202
iter  50 value 81.868032
iter  60 value 80.532320
iter  70 value 80.344098
iter  80 value 80.169413
iter  90 value 80.114019
iter 100 value 80.091153
final  value 80.091153 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.776625 
iter  10 value 94.468358
iter  20 value 93.019183
iter  30 value 89.689285
iter  40 value 86.638167
iter  50 value 84.705250
iter  60 value 82.665002
iter  70 value 81.597922
iter  80 value 80.920784
iter  90 value 80.698518
iter 100 value 80.409233
final  value 80.409233 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 119.125749 
iter  10 value 94.531907
iter  20 value 87.544210
iter  30 value 85.949857
iter  40 value 85.148864
iter  50 value 84.134890
iter  60 value 82.329090
iter  70 value 81.608535
iter  80 value 81.505895
iter  90 value 81.155260
iter 100 value 80.608243
final  value 80.608243 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 108.983495 
iter  10 value 94.480352
iter  20 value 87.525103
iter  30 value 86.508871
iter  40 value 84.979287
iter  50 value 83.002054
iter  60 value 81.079506
iter  70 value 80.420352
iter  80 value 79.913976
iter  90 value 79.785651
iter 100 value 79.762130
final  value 79.762130 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 106.202930 
iter  10 value 94.681300
iter  20 value 93.797792
iter  30 value 90.085093
iter  40 value 85.813133
iter  50 value 83.882584
iter  60 value 81.233527
iter  70 value 80.726136
iter  80 value 80.229207
iter  90 value 79.894766
iter 100 value 79.820498
final  value 79.820498 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 114.343620 
iter  10 value 95.417760
iter  20 value 93.244792
iter  30 value 84.889362
iter  40 value 82.622451
iter  50 value 82.351772
iter  60 value 80.425238
iter  70 value 80.226371
iter  80 value 80.187058
iter  90 value 80.184196
iter 100 value 80.145472
final  value 80.145472 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 106.193216 
iter  10 value 92.411666
iter  20 value 87.380629
iter  30 value 85.234899
iter  40 value 82.240837
iter  50 value 81.198318
iter  60 value 81.102727
iter  70 value 80.923653
iter  80 value 80.653490
iter  90 value 80.235076
iter 100 value 79.979036
final  value 79.979036 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.734298 
final  value 94.485812 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.158562 
final  value 94.486004 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.651767 
final  value 94.485958 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.722658 
final  value 94.485682 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.809456 
final  value 94.485812 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.875989 
iter  10 value 94.489854
iter  20 value 94.484721
iter  30 value 94.139945
iter  40 value 91.958012
iter  50 value 91.957586
iter  60 value 88.986506
iter  70 value 83.141952
iter  80 value 83.117716
iter  90 value 82.310462
iter 100 value 81.574811
final  value 81.574811 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.536797 
iter  10 value 94.488352
iter  20 value 94.473596
iter  30 value 94.298856
iter  40 value 86.885942
iter  50 value 86.563659
final  value 86.562110 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.257922 
iter  10 value 94.359426
iter  20 value 94.354904
iter  30 value 93.034294
iter  40 value 86.740693
iter  50 value 85.566456
final  value 85.566354 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.245209 
iter  10 value 93.435024
iter  20 value 93.430515
iter  30 value 92.224195
iter  40 value 91.539660
iter  50 value 90.759706
iter  60 value 90.754857
iter  70 value 90.753836
final  value 90.753831 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.253097 
iter  10 value 94.381036
iter  20 value 90.558336
iter  30 value 85.865993
iter  40 value 85.777988
iter  50 value 85.777546
iter  50 value 85.777545
final  value 85.777545 
converged
Fitting Repeat 1 

# weights:  507
initial  value 110.077251 
iter  10 value 94.492486
iter  20 value 94.424035
iter  30 value 90.567477
iter  40 value 87.654193
iter  50 value 87.323392
iter  60 value 86.248425
iter  70 value 82.722803
iter  80 value 82.066320
iter  90 value 81.914679
iter 100 value 81.585969
final  value 81.585969 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 96.185743 
iter  10 value 94.362697
iter  20 value 94.340568
iter  30 value 93.696996
iter  40 value 85.543255
iter  50 value 84.474677
iter  60 value 84.446160
iter  70 value 84.404119
iter  80 value 83.884138
iter  90 value 83.755543
iter 100 value 83.562376
final  value 83.562376 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 102.165958 
iter  10 value 94.492164
iter  20 value 94.484367
iter  30 value 94.198555
iter  40 value 88.725086
iter  50 value 84.804180
iter  60 value 83.469344
iter  70 value 83.393306
iter  80 value 83.362410
iter  90 value 83.361291
iter 100 value 83.360812
final  value 83.360812 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 94.741738 
iter  10 value 93.713110
iter  20 value 93.119439
iter  30 value 92.908326
iter  40 value 92.904248
iter  50 value 92.850458
iter  60 value 92.820400
final  value 92.819615 
converged
Fitting Repeat 5 

# weights:  507
initial  value 99.629850 
iter  10 value 94.490499
iter  20 value 94.328040
iter  30 value 89.656239
iter  40 value 81.923146
iter  50 value 80.146655
iter  60 value 80.142883
iter  70 value 79.971811
iter  80 value 79.461226
iter  90 value 79.392824
iter 100 value 79.363270
final  value 79.363270 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 105.537457 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.841715 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.630985 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.460846 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.535045 
iter  10 value 93.877126
iter  20 value 93.328267
final  value 93.328261 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.221398 
iter  10 value 93.328270
final  value 93.328261 
converged
Fitting Repeat 2 

# weights:  305
initial  value 94.583503 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.607835 
final  value 92.523809 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.472079 
final  value 93.473743 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.039085 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.464137 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.443719 
iter  10 value 90.409815
iter  20 value 84.269035
iter  30 value 84.216175
iter  40 value 84.207379
iter  50 value 84.153741
iter  60 value 83.999538
final  value 83.976388 
converged
Fitting Repeat 3 

# weights:  507
initial  value 99.166005 
iter  10 value 87.730058
iter  20 value 80.999795
final  value 80.998298 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.478375 
final  value 93.328261 
converged
Fitting Repeat 5 

# weights:  507
initial  value 100.788703 
iter  10 value 93.338132
iter  20 value 93.316810
final  value 93.316787 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.376595 
iter  10 value 93.957461
iter  20 value 92.875312
iter  30 value 90.165816
iter  40 value 84.327674
iter  50 value 83.451238
iter  60 value 82.537738
iter  70 value 79.910395
iter  80 value 78.786165
iter  90 value 78.494061
final  value 78.493959 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.622576 
iter  10 value 94.045374
iter  20 value 93.295376
iter  30 value 92.798982
iter  40 value 92.785135
iter  50 value 86.808151
iter  60 value 82.454189
iter  70 value 81.934113
iter  80 value 80.490129
iter  90 value 79.706272
iter 100 value 79.079756
final  value 79.079756 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 102.412590 
iter  10 value 93.876675
iter  20 value 81.908312
iter  30 value 81.529756
iter  40 value 80.545313
iter  50 value 79.604121
iter  60 value 79.124218
final  value 79.092135 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.235492 
iter  10 value 94.055233
iter  20 value 92.979064
iter  30 value 92.867352
iter  40 value 92.792019
iter  50 value 92.790091
iter  60 value 92.787951
iter  70 value 92.786532
iter  80 value 92.644561
iter  90 value 86.917207
iter 100 value 86.316934
final  value 86.316934 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 103.515509 
iter  10 value 94.051555
iter  20 value 84.210113
iter  30 value 82.928908
iter  40 value 82.202839
iter  50 value 82.091350
final  value 82.088631 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.980226 
iter  10 value 94.005094
iter  20 value 85.146271
iter  30 value 82.765035
iter  40 value 82.190279
iter  50 value 81.995372
iter  60 value 81.829425
iter  70 value 81.790494
iter  80 value 81.569707
iter  90 value 81.092086
iter 100 value 80.499789
final  value 80.499789 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 111.117980 
iter  10 value 94.039372
iter  20 value 92.679837
iter  30 value 92.598639
iter  40 value 86.147008
iter  50 value 82.906343
iter  60 value 81.880117
iter  70 value 81.666134
iter  80 value 80.177395
iter  90 value 79.844857
iter 100 value 79.308295
final  value 79.308295 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 99.521759 
iter  10 value 93.902106
iter  20 value 91.368687
iter  30 value 86.566617
iter  40 value 84.529545
iter  50 value 83.244402
iter  60 value 82.863782
iter  70 value 82.512959
iter  80 value 81.460270
iter  90 value 79.970424
iter 100 value 78.811701
final  value 78.811701 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 108.270565 
iter  10 value 94.037770
iter  20 value 93.536228
iter  30 value 92.667131
iter  40 value 91.058700
iter  50 value 84.711693
iter  60 value 84.114800
iter  70 value 82.443838
iter  80 value 80.751488
iter  90 value 79.324982
iter 100 value 78.536360
final  value 78.536360 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 113.244932 
iter  10 value 94.172267
iter  20 value 93.000839
iter  30 value 92.728901
iter  40 value 89.544035
iter  50 value 83.207898
iter  60 value 82.779168
iter  70 value 80.281795
iter  80 value 78.555899
iter  90 value 78.285857
iter 100 value 77.651287
final  value 77.651287 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 105.718234 
iter  10 value 92.727149
iter  20 value 85.161545
iter  30 value 83.940532
iter  40 value 82.407552
iter  50 value 80.341420
iter  60 value 78.662361
iter  70 value 77.927525
iter  80 value 77.421441
iter  90 value 77.345281
iter 100 value 77.223237
final  value 77.223237 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 116.749170 
iter  10 value 94.823234
iter  20 value 93.884694
iter  30 value 87.570913
iter  40 value 83.049842
iter  50 value 80.186216
iter  60 value 78.781626
iter  70 value 77.839694
iter  80 value 77.667845
iter  90 value 77.449718
iter 100 value 77.035803
final  value 77.035803 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 114.159671 
iter  10 value 87.563074
iter  20 value 83.130398
iter  30 value 82.696434
iter  40 value 80.728593
iter  50 value 79.258555
iter  60 value 78.791950
iter  70 value 78.032433
iter  80 value 77.504827
iter  90 value 77.137991
iter 100 value 77.086772
final  value 77.086772 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 104.059082 
iter  10 value 93.795619
iter  20 value 92.736229
iter  30 value 91.700752
iter  40 value 83.793591
iter  50 value 80.649839
iter  60 value 79.158366
iter  70 value 78.572436
iter  80 value 78.321227
iter  90 value 78.251284
iter 100 value 78.092687
final  value 78.092687 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 123.075695 
iter  10 value 94.010156
iter  20 value 89.063052
iter  30 value 85.681850
iter  40 value 82.563944
iter  50 value 80.391316
iter  60 value 80.097297
iter  70 value 79.924564
iter  80 value 79.484979
iter  90 value 79.139765
iter 100 value 78.665954
final  value 78.665954 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.514928 
final  value 94.054600 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.039620 
final  value 94.054667 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.206860 
final  value 94.054523 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.486259 
final  value 94.054509 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.021418 
iter  10 value 94.074872
iter  20 value 94.053483
iter  30 value 84.001745
iter  40 value 81.326052
final  value 81.319928 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.026546 
iter  10 value 93.333305
iter  20 value 93.329191
iter  30 value 91.869138
iter  40 value 83.296123
iter  50 value 80.261882
iter  60 value 80.211985
iter  70 value 80.112657
iter  80 value 80.068242
final  value 80.067987 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.134084 
iter  10 value 92.768140
iter  20 value 92.640068
iter  30 value 92.486655
final  value 92.486218 
converged
Fitting Repeat 3 

# weights:  305
initial  value 125.843904 
iter  10 value 94.058008
iter  20 value 94.053009
iter  30 value 91.368248
iter  40 value 90.345127
iter  50 value 87.580811
final  value 87.579611 
converged
Fitting Repeat 4 

# weights:  305
initial  value 106.196201 
iter  10 value 94.057894
iter  20 value 94.052961
final  value 94.052915 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.131829 
iter  10 value 94.057600
iter  20 value 93.690225
iter  30 value 88.981583
iter  40 value 88.628259
iter  50 value 85.257058
iter  60 value 85.253118
iter  70 value 85.239230
iter  80 value 85.218128
iter  90 value 82.157233
iter 100 value 80.831297
final  value 80.831297 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 101.422167 
iter  10 value 90.285295
iter  20 value 81.327022
iter  30 value 80.807558
iter  40 value 79.586214
iter  50 value 78.995886
iter  60 value 78.989415
iter  60 value 78.989415
iter  60 value 78.989415
final  value 78.989415 
converged
Fitting Repeat 2 

# weights:  507
initial  value 112.577296 
iter  10 value 93.337095
iter  20 value 93.332030
iter  30 value 92.553237
final  value 92.516462 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.690335 
iter  10 value 92.732938
iter  20 value 92.705371
iter  30 value 92.698034
iter  40 value 92.597962
iter  50 value 90.550179
iter  60 value 86.485120
iter  70 value 84.931815
iter  80 value 84.917127
iter  90 value 84.915047
iter 100 value 84.430602
final  value 84.430602 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 101.982221 
iter  10 value 93.122528
iter  20 value 93.095508
iter  30 value 93.090359
iter  40 value 92.249264
iter  50 value 87.940940
iter  60 value 78.416779
iter  70 value 78.218312
iter  80 value 78.213404
iter  90 value 77.873438
iter 100 value 76.571707
final  value 76.571707 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 108.459900 
iter  10 value 92.428274
iter  20 value 92.424465
iter  30 value 92.420739
iter  40 value 92.419753
iter  50 value 91.420674
iter  60 value 89.940519
iter  70 value 80.922555
iter  80 value 79.447695
iter  90 value 78.058351
iter 100 value 77.147024
final  value 77.147024 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.034879 
final  value 94.479532 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.604501 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.411029 
final  value 94.467391 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.802113 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.877606 
final  value 94.479532 
converged
Fitting Repeat 1 

# weights:  305
initial  value 111.253995 
final  value 94.467391 
converged
Fitting Repeat 2 

# weights:  305
initial  value 111.661864 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 125.854224 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 122.389478 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 123.369912 
iter  10 value 94.275363
iter  10 value 94.275363
iter  10 value 94.275363
final  value 94.275363 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.896641 
final  value 94.467391 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.221635 
final  value 94.467391 
converged
Fitting Repeat 3 

# weights:  507
initial  value 99.268285 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.457793 
iter  10 value 94.467391
iter  10 value 94.467391
iter  10 value 94.467391
final  value 94.467391 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.407178 
iter  10 value 91.643874
final  value 91.604177 
converged
Fitting Repeat 1 

# weights:  103
initial  value 110.575457 
iter  10 value 93.730896
iter  20 value 85.243480
iter  30 value 84.898572
iter  40 value 84.554589
iter  50 value 84.428808
iter  60 value 83.079620
iter  70 value 82.685133
iter  80 value 82.667210
final  value 82.665410 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.589344 
iter  10 value 94.655520
iter  20 value 94.474564
iter  30 value 94.472042
iter  40 value 88.295631
iter  50 value 85.101426
iter  60 value 84.654726
iter  70 value 83.976154
iter  80 value 82.645588
iter  90 value 82.463704
iter 100 value 82.353653
final  value 82.353653 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 107.328139 
iter  10 value 94.388888
iter  20 value 92.539977
iter  30 value 90.331736
iter  40 value 84.975787
iter  50 value 83.330303
iter  60 value 82.936205
iter  70 value 82.705506
iter  80 value 82.661665
iter  90 value 82.639505
iter 100 value 82.619628
final  value 82.619628 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 101.172613 
iter  10 value 89.273296
iter  20 value 84.242923
iter  30 value 83.591477
iter  40 value 83.223058
iter  50 value 83.073658
iter  60 value 82.883520
iter  70 value 82.482998
iter  80 value 82.325080
iter  90 value 82.244281
iter 100 value 82.153506
final  value 82.153506 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 98.549527 
iter  10 value 94.484352
iter  20 value 88.693904
iter  30 value 84.857556
iter  40 value 84.645262
iter  50 value 83.128142
iter  60 value 82.659785
iter  70 value 82.619680
final  value 82.619622 
converged
Fitting Repeat 1 

# weights:  305
initial  value 126.981412 
iter  10 value 94.508956
iter  20 value 89.405061
iter  30 value 86.699733
iter  40 value 84.023661
iter  50 value 83.020425
iter  60 value 82.788226
iter  70 value 82.691981
iter  80 value 82.653534
iter  90 value 82.624466
iter 100 value 82.558138
final  value 82.558138 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 108.711120 
iter  10 value 94.490687
iter  20 value 94.360251
iter  30 value 92.339726
iter  40 value 84.879076
iter  50 value 83.538652
iter  60 value 82.603468
iter  70 value 81.698965
iter  80 value 81.458955
iter  90 value 81.371401
iter 100 value 81.362857
final  value 81.362857 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.174711 
iter  10 value 94.712450
iter  20 value 94.507537
iter  30 value 93.566130
iter  40 value 92.059715
iter  50 value 90.861202
iter  60 value 87.525045
iter  70 value 84.850103
iter  80 value 82.293158
iter  90 value 82.023988
iter 100 value 81.771625
final  value 81.771625 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.989160 
iter  10 value 93.696775
iter  20 value 87.230424
iter  30 value 86.964858
iter  40 value 86.520318
iter  50 value 84.259809
iter  60 value 83.999468
iter  70 value 83.692277
iter  80 value 82.743499
iter  90 value 81.850338
iter 100 value 81.166426
final  value 81.166426 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 119.509297 
iter  10 value 94.394254
iter  20 value 86.120138
iter  30 value 85.152761
iter  40 value 84.138727
iter  50 value 82.970186
iter  60 value 81.477144
iter  70 value 81.000466
iter  80 value 80.887546
iter  90 value 80.806436
iter 100 value 80.799428
final  value 80.799428 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 105.775035 
iter  10 value 94.624777
iter  20 value 93.497536
iter  30 value 88.817760
iter  40 value 84.152838
iter  50 value 83.470316
iter  60 value 83.083101
iter  70 value 81.680112
iter  80 value 80.961175
iter  90 value 80.744283
iter 100 value 80.715732
final  value 80.715732 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 107.173142 
iter  10 value 94.826930
iter  20 value 89.323137
iter  30 value 88.141659
iter  40 value 85.891974
iter  50 value 84.697544
iter  60 value 83.655954
iter  70 value 83.287959
iter  80 value 83.041103
iter  90 value 82.159099
iter 100 value 81.988302
final  value 81.988302 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.586897 
iter  10 value 93.819508
iter  20 value 84.277596
iter  30 value 83.376212
iter  40 value 82.349136
iter  50 value 81.458792
iter  60 value 81.226290
iter  70 value 81.049953
iter  80 value 80.991389
iter  90 value 80.907304
iter 100 value 80.754186
final  value 80.754186 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 126.330570 
iter  10 value 94.436750
iter  20 value 87.410946
iter  30 value 84.374375
iter  40 value 83.150499
iter  50 value 81.272857
iter  60 value 80.892761
iter  70 value 80.783071
iter  80 value 80.639874
iter  90 value 80.524145
iter 100 value 80.351588
final  value 80.351588 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 106.635144 
iter  10 value 93.912161
iter  20 value 87.381467
iter  30 value 86.269545
iter  40 value 84.218132
iter  50 value 83.031615
iter  60 value 82.748364
iter  70 value 82.324883
iter  80 value 81.733372
iter  90 value 81.062132
iter 100 value 80.958645
final  value 80.958645 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.248887 
final  value 94.485688 
converged
Fitting Repeat 2 

# weights:  103
initial  value 108.885002 
final  value 94.486012 
converged
Fitting Repeat 3 

# weights:  103
initial  value 105.565403 
final  value 94.486011 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.565724 
final  value 94.486088 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.455388 
final  value 94.485850 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.983339 
iter  10 value 93.592316
iter  20 value 93.286059
iter  30 value 93.276839
iter  40 value 90.484774
iter  50 value 88.153039
iter  60 value 85.675401
final  value 85.649749 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.158319 
iter  10 value 87.805918
iter  20 value 87.652816
iter  30 value 85.814155
iter  40 value 85.548730
iter  40 value 85.548730
final  value 85.548730 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.998264 
iter  10 value 94.487969
iter  20 value 94.483221
final  value 94.467415 
converged
Fitting Repeat 4 

# weights:  305
initial  value 103.414577 
iter  10 value 94.472067
iter  20 value 94.467600
final  value 94.467571 
converged
Fitting Repeat 5 

# weights:  305
initial  value 109.635034 
iter  10 value 94.280312
iter  20 value 92.580085
iter  30 value 88.193917
iter  40 value 88.180746
iter  50 value 88.180076
iter  60 value 88.179669
iter  70 value 87.630534
iter  80 value 83.630318
iter  90 value 83.618004
iter 100 value 83.617259
final  value 83.617259 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 95.298633 
iter  10 value 94.490679
iter  20 value 93.133900
iter  30 value 90.551464
iter  40 value 90.281428
iter  50 value 90.281204
iter  60 value 90.275744
iter  70 value 83.529383
iter  80 value 83.374234
iter  90 value 83.361124
iter 100 value 83.358723
final  value 83.358723 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 106.126961 
iter  10 value 94.270391
iter  20 value 94.266644
iter  30 value 94.263434
final  value 94.263082 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.524014 
iter  10 value 94.493147
iter  20 value 94.473097
final  value 94.467487 
converged
Fitting Repeat 4 

# weights:  507
initial  value 115.814180 
iter  10 value 94.475491
iter  20 value 94.467858
final  value 94.467408 
converged
Fitting Repeat 5 

# weights:  507
initial  value 123.276956 
iter  10 value 94.475899
iter  20 value 94.459279
iter  30 value 90.721158
iter  40 value 89.199673
iter  50 value 87.845168
iter  60 value 87.757410
iter  70 value 87.755610
final  value 87.751189 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.368772 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.424143 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.292715 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.070769 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.554433 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.305441 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.494866 
iter  10 value 93.924078
iter  20 value 93.871624
iter  30 value 93.868978
iter  30 value 93.868978
final  value 93.868973 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.417879 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.061577 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.393514 
final  value 93.915746 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.493022 
final  value 93.915746 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.926425 
iter  10 value 86.339237
final  value 85.486387 
converged
Fitting Repeat 3 

# weights:  507
initial  value 112.625252 
final  value 93.969040 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.415478 
final  value 93.915746 
converged
Fitting Repeat 5 

# weights:  507
initial  value 97.766335 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 106.888212 
iter  10 value 93.922323
iter  20 value 88.114810
iter  30 value 84.818778
iter  40 value 84.377519
iter  50 value 83.620866
iter  60 value 83.341537
final  value 83.323453 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.534663 
iter  10 value 94.068082
iter  20 value 93.084435
iter  30 value 87.326470
iter  40 value 84.982385
iter  50 value 83.728398
iter  60 value 83.024438
iter  70 value 82.586565
iter  80 value 82.429922
iter  90 value 82.339002
iter 100 value 82.133944
final  value 82.133944 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 101.259675 
iter  10 value 94.254848
iter  20 value 93.315768
iter  30 value 90.050271
iter  40 value 89.420302
iter  50 value 87.125276
iter  60 value 84.766419
iter  70 value 83.626653
iter  80 value 83.489861
iter  90 value 83.345703
iter 100 value 83.318452
final  value 83.318452 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 106.254476 
iter  10 value 94.056684
iter  20 value 85.311609
iter  30 value 85.037290
iter  40 value 84.814128
iter  50 value 83.867172
iter  60 value 83.738013
iter  70 value 83.733143
iter  80 value 83.731503
iter  90 value 83.725096
final  value 83.723186 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.163990 
iter  10 value 94.054360
iter  20 value 88.756129
iter  30 value 85.188137
iter  40 value 84.929848
iter  50 value 84.632652
iter  60 value 83.824177
iter  70 value 83.757511
iter  80 value 83.725285
iter  90 value 83.723447
final  value 83.723186 
converged
Fitting Repeat 1 

# weights:  305
initial  value 106.822184 
iter  10 value 94.631823
iter  20 value 92.438553
iter  30 value 85.244844
iter  40 value 83.632335
iter  50 value 82.840392
iter  60 value 81.628880
iter  70 value 81.155258
iter  80 value 80.853623
iter  90 value 80.803777
iter 100 value 80.779193
final  value 80.779193 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.077670 
iter  10 value 94.044274
iter  20 value 92.630196
iter  30 value 92.229637
iter  40 value 92.154326
iter  50 value 85.695615
iter  60 value 85.186763
iter  70 value 85.059301
iter  80 value 83.300612
iter  90 value 80.950023
iter 100 value 80.683004
final  value 80.683004 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 105.066454 
iter  10 value 96.208678
iter  20 value 87.649084
iter  30 value 87.067272
iter  40 value 85.546887
iter  50 value 84.695618
iter  60 value 82.407845
iter  70 value 82.061465
iter  80 value 82.007005
iter  90 value 81.983759
iter 100 value 81.966283
final  value 81.966283 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.690441 
iter  10 value 93.961226
iter  20 value 92.112151
iter  30 value 90.229958
iter  40 value 88.420475
iter  50 value 85.513780
iter  60 value 85.288043
iter  70 value 83.862043
iter  80 value 82.730245
iter  90 value 82.215961
iter 100 value 82.191454
final  value 82.191454 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.533257 
iter  10 value 94.585267
iter  20 value 89.894565
iter  30 value 86.152519
iter  40 value 85.487625
iter  50 value 84.916457
iter  60 value 84.781890
iter  70 value 83.109793
iter  80 value 82.290152
iter  90 value 82.150609
iter 100 value 81.974120
final  value 81.974120 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 111.602408 
iter  10 value 93.190150
iter  20 value 88.081569
iter  30 value 85.232842
iter  40 value 84.108704
iter  50 value 83.831071
iter  60 value 82.157315
iter  70 value 81.489949
iter  80 value 80.753876
iter  90 value 80.496220
iter 100 value 80.074505
final  value 80.074505 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 129.135175 
iter  10 value 96.412844
iter  20 value 94.837061
iter  30 value 86.299041
iter  40 value 85.836852
iter  50 value 85.564364
iter  60 value 84.637553
iter  70 value 83.023324
iter  80 value 82.155900
iter  90 value 81.808529
iter 100 value 81.279159
final  value 81.279159 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 127.137134 
iter  10 value 93.996126
iter  20 value 89.364499
iter  30 value 87.001175
iter  40 value 84.924014
iter  50 value 84.117165
iter  60 value 83.794319
iter  70 value 83.193294
iter  80 value 82.115242
iter  90 value 81.838609
iter 100 value 81.366351
final  value 81.366351 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 101.781669 
iter  10 value 93.760380
iter  20 value 86.750851
iter  30 value 83.481467
iter  40 value 82.938825
iter  50 value 82.194621
iter  60 value 81.024016
iter  70 value 80.796203
iter  80 value 80.604729
iter  90 value 80.362997
iter 100 value 80.220468
final  value 80.220468 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 112.351366 
iter  10 value 94.062430
iter  20 value 91.977766
iter  30 value 88.184052
iter  40 value 87.153552
iter  50 value 85.405135
iter  60 value 82.976277
iter  70 value 82.014709
iter  80 value 80.947508
iter  90 value 80.428631
iter 100 value 80.193046
final  value 80.193046 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.509583 
final  value 94.054515 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.098154 
iter  10 value 94.054338
iter  20 value 94.044334
iter  30 value 89.019694
iter  40 value 89.019006
iter  50 value 89.016486
iter  60 value 89.016186
iter  70 value 87.369002
iter  80 value 84.191525
final  value 83.668831 
converged
Fitting Repeat 3 

# weights:  103
initial  value 112.340953 
final  value 94.054553 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.933266 
final  value 94.054567 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.233982 
final  value 94.054800 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.923714 
iter  10 value 94.057926
iter  20 value 88.636758
iter  30 value 83.020235
iter  40 value 83.018861
final  value 83.018691 
converged
Fitting Repeat 2 

# weights:  305
initial  value 106.426832 
iter  10 value 94.057887
iter  20 value 94.052925
iter  20 value 94.052924
iter  20 value 94.052924
final  value 94.052924 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.163867 
iter  10 value 90.458333
iter  20 value 85.767189
iter  30 value 85.531443
iter  40 value 85.510217
iter  50 value 84.202693
final  value 84.201893 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.307804 
iter  10 value 94.057488
iter  20 value 93.534164
iter  30 value 83.772902
iter  40 value 83.642075
iter  50 value 83.641019
iter  60 value 83.640450
iter  70 value 83.637155
final  value 83.635716 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.886327 
iter  10 value 93.920589
iter  20 value 90.766825
iter  30 value 85.751384
final  value 85.748894 
converged
Fitting Repeat 1 

# weights:  507
initial  value 111.006740 
iter  10 value 93.924177
iter  20 value 93.916153
iter  30 value 92.014373
iter  40 value 85.109995
iter  50 value 83.887572
iter  60 value 83.887336
final  value 83.884635 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.798305 
iter  10 value 94.060964
iter  20 value 94.012906
iter  30 value 92.721253
iter  40 value 87.239762
iter  50 value 84.952354
iter  60 value 83.718141
iter  70 value 82.430111
iter  80 value 81.990670
iter  90 value 81.804971
iter 100 value 81.705247
final  value 81.705247 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.829916 
iter  10 value 94.061149
iter  20 value 93.817409
iter  30 value 92.585320
iter  40 value 92.571369
final  value 92.571147 
converged
Fitting Repeat 4 

# weights:  507
initial  value 100.870676 
iter  10 value 93.584569
iter  20 value 93.443585
iter  30 value 93.441896
iter  40 value 93.439706
iter  50 value 93.398544
iter  60 value 93.375875
iter  70 value 91.665463
iter  80 value 91.616106
iter  90 value 86.512235
iter 100 value 85.649333
final  value 85.649333 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 120.222866 
iter  10 value 93.977528
iter  20 value 93.947517
iter  30 value 93.862981
iter  40 value 93.037294
iter  50 value 91.558736
iter  60 value 91.329200
iter  70 value 91.245278
iter  80 value 90.678872
iter  90 value 90.674776
iter 100 value 90.674205
final  value 90.674205 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 150.499154 
iter  10 value 131.467453
iter  20 value 124.607604
iter  30 value 106.585546
iter  40 value 105.564550
iter  50 value 103.697117
iter  60 value 102.422081
iter  70 value 102.224473
iter  80 value 102.007683
iter  90 value 101.806780
iter 100 value 101.411540
final  value 101.411540 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 137.067335 
iter  10 value 117.896641
iter  20 value 114.859954
iter  30 value 114.513937
iter  40 value 114.340872
iter  50 value 113.391233
iter  60 value 112.184665
iter  70 value 111.419068
iter  80 value 105.911004
iter  90 value 103.206034
iter 100 value 102.316171
final  value 102.316171 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 131.039832 
iter  10 value 117.873927
iter  20 value 108.617699
iter  30 value 106.197306
iter  40 value 105.882834
iter  50 value 104.195141
iter  60 value 103.340262
iter  70 value 102.766652
iter  80 value 102.363148
iter  90 value 102.233194
iter 100 value 102.081790
final  value 102.081790 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 124.339908 
iter  10 value 117.709814
iter  20 value 114.453918
iter  30 value 111.220145
iter  40 value 110.660430
iter  50 value 110.088645
iter  60 value 110.027437
iter  70 value 106.656915
iter  80 value 104.900470
iter  90 value 104.562561
iter 100 value 103.892618
final  value 103.892618 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 141.924638 
iter  10 value 117.960769
iter  20 value 117.902735
iter  30 value 117.890174
iter  40 value 116.635591
iter  50 value 109.869520
iter  60 value 108.850058
iter  70 value 108.517425
iter  80 value 108.362670
iter  90 value 105.221251
iter 100 value 104.821652
final  value 104.821652 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Fri Dec 19 20:15:22 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 20.382   0.488  73.876 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod19.119 0.98621.123
FreqInteractors0.1700.0110.194
calculateAAC0.0130.0020.015
calculateAutocor0.1240.0200.148
calculateCTDC0.0310.0040.035
calculateCTDD0.1560.0100.171
calculateCTDT0.0640.0060.082
calculateCTriad0.1480.0160.174
calculateDC0.0350.0040.039
calculateF0.1070.0030.115
calculateKSAAP0.0360.0030.039
calculateQD_Sm0.8330.0670.917
calculateTC0.5600.0550.617
calculateTC_Sm0.1240.0100.136
corr_plot18.980 0.98720.952
enrichfindP 0.195 0.03712.885
enrichfind_hp0.0150.0020.861
enrichplot0.1690.0110.183
filter_missing_values000
getFASTA0.0330.0063.535
getHPI0.0010.0000.001
get_negativePPI0.0000.0000.001
get_positivePPI000
impute_missing_data000
plotPPI0.0400.0020.042
pred_ensembel6.5750.1326.294
var_imp18.564 0.94520.708