Back to Multiple platform build/check report for BioC 3.18: simplified long |
|
This page was generated on 2024-04-17 11:37:49 -0400 (Wed, 17 Apr 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.3.3 (2024-02-29) -- "Angel Food Cake" | 4676 |
palomino4 | Windows Server 2022 Datacenter | x64 | 4.3.3 (2024-02-29 ucrt) -- "Angel Food Cake" | 4414 |
merida1 | macOS 12.7.1 Monterey | x86_64 | 4.3.3 (2024-02-29) -- "Angel Food Cake" | 4437 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 974/2266 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.8.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.1 Ventura / arm64 | see weekly results here | ||||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.8.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.8.0.tar.gz |
StartedAt: 2024-04-16 04:03:47 -0400 (Tue, 16 Apr 2024) |
EndedAt: 2024-04-16 04:11:43 -0400 (Tue, 16 Apr 2024) |
EllapsedTime: 475.8 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.8.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck’ * using R version 4.3.3 (2024-02-29) * using platform: x86_64-apple-darwin20 (64-bit) * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.8.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 51.743 1.754 57.070 corr_plot 50.389 1.693 54.575 FSmethod 50.251 1.699 54.038 pred_ensembel 23.350 0.427 20.532 calculateTC 4.385 0.451 5.098 enrichfindP 0.870 0.083 14.693 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/Users/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.3 (2024-02-29) -- "Angel Food Cake" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 101.929319 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.389695 iter 10 value 88.879495 iter 20 value 84.192495 final value 84.192382 converged Fitting Repeat 3 # weights: 103 initial value 97.559395 iter 10 value 91.868688 iter 20 value 91.167198 iter 30 value 91.166113 final value 91.166110 converged Fitting Repeat 4 # weights: 103 initial value 96.773279 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.641565 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.001855 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 111.825202 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 96.401636 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 109.607396 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 122.606835 final value 94.484210 converged Fitting Repeat 1 # weights: 507 initial value 97.047147 iter 10 value 94.123745 iter 20 value 87.708404 iter 30 value 86.943321 iter 40 value 86.504150 iter 50 value 85.111358 iter 60 value 84.591409 iter 70 value 83.945380 iter 80 value 83.922481 iter 90 value 83.921932 iter 100 value 83.921897 final value 83.921897 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 99.261099 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 101.816026 final value 94.046703 converged Fitting Repeat 4 # weights: 507 initial value 98.010266 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 112.998295 final value 94.484209 converged Fitting Repeat 1 # weights: 103 initial value 103.264797 iter 10 value 94.464337 iter 20 value 87.690019 iter 30 value 84.214486 iter 40 value 84.060483 iter 50 value 83.793106 iter 60 value 83.232102 iter 70 value 83.154559 iter 80 value 82.929854 iter 90 value 82.844927 final value 82.844766 converged Fitting Repeat 2 # weights: 103 initial value 101.939815 iter 10 value 94.475581 iter 20 value 92.131024 iter 30 value 90.803598 iter 40 value 87.947157 iter 50 value 87.124534 iter 60 value 86.460745 iter 70 value 85.986605 iter 80 value 85.936360 final value 85.936339 converged Fitting Repeat 3 # weights: 103 initial value 116.020170 iter 10 value 94.503097 iter 20 value 93.973271 iter 30 value 87.261306 iter 40 value 85.798633 iter 50 value 85.541378 iter 60 value 85.213225 iter 70 value 85.092380 iter 80 value 85.042712 iter 90 value 85.039424 iter 90 value 85.039424 iter 90 value 85.039424 final value 85.039424 converged Fitting Repeat 4 # weights: 103 initial value 97.430120 iter 10 value 94.445962 iter 20 value 93.223807 iter 30 value 92.111001 iter 40 value 90.953394 iter 50 value 90.344517 iter 60 value 86.061664 iter 70 value 85.823884 iter 80 value 85.747447 iter 90 value 85.441874 iter 100 value 85.389953 final value 85.389953 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.847216 iter 10 value 94.489736 iter 20 value 94.402463 iter 30 value 86.569736 iter 40 value 86.055588 iter 50 value 85.639303 iter 60 value 85.423468 iter 70 value 85.418746 iter 80 value 85.391283 final value 85.391064 converged Fitting Repeat 1 # weights: 305 initial value 100.019791 iter 10 value 93.934428 iter 20 value 86.802934 iter 30 value 86.093065 iter 40 value 85.917724 iter 50 value 84.420546 iter 60 value 83.373598 iter 70 value 82.922694 iter 80 value 82.345007 iter 90 value 82.017699 iter 100 value 81.983546 final value 81.983546 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.733165 iter 10 value 94.397452 iter 20 value 86.372995 iter 30 value 84.631340 iter 40 value 83.451693 iter 50 value 83.163002 iter 60 value 82.501875 iter 70 value 82.355805 iter 80 value 81.886390 iter 90 value 81.863402 iter 100 value 81.825057 final value 81.825057 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.215753 iter 10 value 94.485032 iter 20 value 91.256508 iter 30 value 86.929618 iter 40 value 86.488424 iter 50 value 86.128457 iter 60 value 86.027833 iter 70 value 84.852337 iter 80 value 82.973800 iter 90 value 82.864803 iter 100 value 82.486330 final value 82.486330 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.449317 iter 10 value 91.639045 iter 20 value 89.199578 iter 30 value 89.061816 iter 40 value 86.557823 iter 50 value 85.174798 iter 60 value 85.006652 iter 70 value 84.600186 iter 80 value 84.001672 iter 90 value 82.171460 iter 100 value 81.651351 final value 81.651351 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.501429 iter 10 value 93.882835 iter 20 value 90.904616 iter 30 value 89.086643 iter 40 value 85.870782 iter 50 value 84.057965 iter 60 value 83.641034 iter 70 value 83.107174 iter 80 value 82.598940 iter 90 value 82.418597 iter 100 value 82.271604 final value 82.271604 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.879341 iter 10 value 87.453467 iter 20 value 85.465769 iter 30 value 84.078941 iter 40 value 83.197372 iter 50 value 81.659425 iter 60 value 81.306220 iter 70 value 81.231538 iter 80 value 81.137454 iter 90 value 81.099663 iter 100 value 81.048071 final value 81.048071 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.069908 iter 10 value 94.652070 iter 20 value 90.114660 iter 30 value 88.287114 iter 40 value 85.752486 iter 50 value 84.095274 iter 60 value 83.054525 iter 70 value 82.297643 iter 80 value 81.921062 iter 90 value 81.856098 iter 100 value 81.571141 final value 81.571141 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.296051 iter 10 value 94.525265 iter 20 value 93.400016 iter 30 value 87.122620 iter 40 value 84.188409 iter 50 value 83.663185 iter 60 value 82.358888 iter 70 value 81.482315 iter 80 value 81.306702 iter 90 value 81.170988 iter 100 value 81.146703 final value 81.146703 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.543549 iter 10 value 92.550553 iter 20 value 90.527558 iter 30 value 85.509685 iter 40 value 82.905927 iter 50 value 82.061621 iter 60 value 81.885185 iter 70 value 81.763616 iter 80 value 81.599674 iter 90 value 81.468173 iter 100 value 81.306066 final value 81.306066 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.518241 iter 10 value 90.201015 iter 20 value 89.214424 iter 30 value 87.286120 iter 40 value 85.501051 iter 50 value 84.878614 iter 60 value 84.521098 iter 70 value 83.951848 iter 80 value 82.929031 iter 90 value 81.744362 iter 100 value 81.601440 final value 81.601440 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.122638 final value 94.485894 converged Fitting Repeat 2 # weights: 103 initial value 97.367810 final value 94.468275 converged Fitting Repeat 3 # weights: 103 initial value 99.998164 final value 94.485824 converged Fitting Repeat 4 # weights: 103 initial value 94.537418 iter 10 value 92.100272 iter 20 value 91.426124 iter 30 value 90.806239 iter 40 value 86.167420 iter 50 value 85.615593 iter 60 value 85.383619 iter 70 value 85.338702 iter 80 value 85.338224 iter 90 value 85.337730 iter 100 value 85.337499 final value 85.337499 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 101.605048 final value 94.486061 converged Fitting Repeat 1 # weights: 305 initial value 95.385515 iter 10 value 94.471217 iter 20 value 94.466909 iter 30 value 86.748278 iter 40 value 85.760591 iter 50 value 85.397629 final value 85.045105 converged Fitting Repeat 2 # weights: 305 initial value 102.348507 iter 10 value 94.329152 iter 20 value 90.347537 iter 30 value 89.206920 iter 40 value 88.590382 iter 50 value 87.943275 iter 60 value 87.942528 iter 70 value 87.941437 final value 87.941430 converged Fitting Repeat 3 # weights: 305 initial value 105.396896 iter 10 value 94.489643 iter 20 value 94.485587 iter 30 value 94.061344 iter 40 value 91.341986 iter 50 value 88.340776 iter 60 value 88.206275 final value 88.205551 converged Fitting Repeat 4 # weights: 305 initial value 98.205091 iter 10 value 94.471121 iter 20 value 93.879199 iter 30 value 90.792775 iter 40 value 90.780028 iter 50 value 90.778238 iter 60 value 89.745030 iter 70 value 89.228155 iter 80 value 88.330100 iter 90 value 88.307292 iter 100 value 88.252323 final value 88.252323 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.635755 iter 10 value 94.488993 iter 20 value 94.462295 iter 30 value 85.800923 final value 85.754243 converged Fitting Repeat 1 # weights: 507 initial value 98.409233 iter 10 value 94.055089 iter 20 value 93.976643 iter 30 value 89.121605 iter 40 value 85.291357 iter 50 value 85.260452 iter 60 value 85.194826 iter 70 value 85.184872 iter 80 value 85.183435 iter 90 value 85.183137 final value 85.183035 converged Fitting Repeat 2 # weights: 507 initial value 114.532993 iter 10 value 94.044676 iter 20 value 94.039104 final value 94.037013 converged Fitting Repeat 3 # weights: 507 initial value 106.801273 iter 10 value 94.492753 iter 20 value 92.107331 iter 30 value 85.235648 iter 40 value 83.414165 iter 50 value 81.703741 iter 60 value 81.125558 iter 70 value 81.011266 iter 80 value 80.685004 iter 90 value 80.610626 iter 100 value 80.569146 final value 80.569146 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.338689 iter 10 value 89.421159 iter 20 value 88.604993 iter 30 value 88.597930 iter 40 value 88.589912 final value 88.588608 converged Fitting Repeat 5 # weights: 507 initial value 100.337597 iter 10 value 89.872819 iter 20 value 85.762391 iter 30 value 85.058491 iter 40 value 84.880392 iter 50 value 84.879135 iter 60 value 84.874556 iter 70 value 84.845153 iter 80 value 84.164677 iter 90 value 83.888826 iter 100 value 83.884457 final value 83.884457 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.683581 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.361072 final value 93.637379 converged Fitting Repeat 3 # weights: 103 initial value 101.279769 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.415656 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.590064 final value 94.484213 converged Fitting Repeat 1 # weights: 305 initial value 95.005315 iter 10 value 94.026542 iter 10 value 94.026542 iter 10 value 94.026542 final value 94.026542 converged Fitting Repeat 2 # weights: 305 initial value 101.888337 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 98.836982 final value 94.026542 converged Fitting Repeat 4 # weights: 305 initial value 95.335455 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.124348 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 95.669377 iter 10 value 91.904440 iter 20 value 84.323906 iter 30 value 84.289750 iter 40 value 84.289045 final value 84.289042 converged Fitting Repeat 2 # weights: 507 initial value 101.012803 iter 10 value 93.508987 iter 20 value 91.872101 final value 91.858965 converged Fitting Repeat 3 # weights: 507 initial value 95.597901 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 99.229254 iter 10 value 94.026543 final value 94.026542 converged Fitting Repeat 5 # weights: 507 initial value 104.845271 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 97.578423 iter 10 value 94.094095 iter 20 value 88.361171 iter 30 value 85.396010 iter 40 value 84.220559 iter 50 value 83.350958 iter 60 value 82.069219 iter 70 value 80.984875 iter 80 value 80.921086 final value 80.863667 converged Fitting Repeat 2 # weights: 103 initial value 109.439174 iter 10 value 93.483036 iter 20 value 89.402577 iter 30 value 83.702442 iter 40 value 82.896285 iter 50 value 82.843696 iter 60 value 82.769290 iter 70 value 82.671266 iter 80 value 82.650699 iter 80 value 82.650699 iter 80 value 82.650699 final value 82.650699 converged Fitting Repeat 3 # weights: 103 initial value 96.615173 iter 10 value 89.005658 iter 20 value 84.428812 iter 30 value 82.933394 iter 40 value 81.739131 iter 50 value 81.080784 iter 60 value 80.948188 iter 70 value 80.765342 iter 80 value 80.629730 final value 80.629711 converged Fitting Repeat 4 # weights: 103 initial value 102.034703 iter 10 value 94.486471 iter 20 value 94.151290 iter 30 value 94.125506 iter 40 value 93.686701 iter 50 value 92.155156 iter 60 value 86.195343 iter 70 value 82.755818 iter 80 value 82.721834 iter 90 value 82.666250 iter 100 value 82.650741 final value 82.650741 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.095703 iter 10 value 94.455113 iter 20 value 90.477617 iter 30 value 85.935999 iter 40 value 83.404127 iter 50 value 82.052045 iter 60 value 80.894556 iter 70 value 80.801344 final value 80.801330 converged Fitting Repeat 1 # weights: 305 initial value 104.619823 iter 10 value 94.379522 iter 20 value 87.956503 iter 30 value 86.561318 iter 40 value 84.217657 iter 50 value 83.320899 iter 60 value 81.586800 iter 70 value 80.711427 iter 80 value 79.917241 iter 90 value 79.629339 iter 100 value 79.591485 final value 79.591485 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.414665 iter 10 value 94.489297 iter 20 value 84.383800 iter 30 value 83.836954 iter 40 value 83.249545 iter 50 value 82.307074 iter 60 value 81.946453 iter 70 value 81.435460 iter 80 value 81.263436 iter 90 value 80.988599 iter 100 value 80.883074 final value 80.883074 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.805411 iter 10 value 94.518101 iter 20 value 85.027759 iter 30 value 81.646716 iter 40 value 81.059585 iter 50 value 80.755891 iter 60 value 80.632440 iter 70 value 80.461964 iter 80 value 80.121037 iter 90 value 79.633303 iter 100 value 79.395125 final value 79.395125 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.881106 iter 10 value 94.298964 iter 20 value 93.707926 iter 30 value 93.343582 iter 40 value 89.699295 iter 50 value 88.621833 iter 60 value 88.310386 iter 70 value 85.938419 iter 80 value 83.062753 iter 90 value 81.321781 iter 100 value 80.184992 final value 80.184992 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.202317 iter 10 value 96.068542 iter 20 value 85.913955 iter 30 value 84.303728 iter 40 value 84.139485 iter 50 value 82.553217 iter 60 value 81.652479 iter 70 value 81.316120 iter 80 value 81.232213 iter 90 value 80.954909 iter 100 value 80.571695 final value 80.571695 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.900631 iter 10 value 94.939324 iter 20 value 86.604700 iter 30 value 83.464016 iter 40 value 80.888449 iter 50 value 79.954413 iter 60 value 79.664196 iter 70 value 79.477392 iter 80 value 79.342067 iter 90 value 79.250644 iter 100 value 79.113637 final value 79.113637 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 122.749890 iter 10 value 94.452253 iter 20 value 90.999053 iter 30 value 84.071337 iter 40 value 80.689722 iter 50 value 80.066243 iter 60 value 79.911734 iter 70 value 79.810987 iter 80 value 79.533915 iter 90 value 79.454431 iter 100 value 79.378452 final value 79.378452 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.723323 iter 10 value 90.415956 iter 20 value 85.254608 iter 30 value 84.554910 iter 40 value 83.015376 iter 50 value 81.273090 iter 60 value 80.759006 iter 70 value 80.268446 iter 80 value 79.645013 iter 90 value 79.535663 iter 100 value 79.329050 final value 79.329050 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 127.528190 iter 10 value 93.953318 iter 20 value 87.954054 iter 30 value 83.975072 iter 40 value 83.228932 iter 50 value 82.515768 iter 60 value 80.418010 iter 70 value 79.667018 iter 80 value 79.489927 iter 90 value 79.303595 iter 100 value 79.277802 final value 79.277802 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 137.105625 iter 10 value 95.189046 iter 20 value 94.539819 iter 30 value 87.968621 iter 40 value 86.900352 iter 50 value 85.288933 iter 60 value 82.089992 iter 70 value 80.622061 iter 80 value 79.795411 iter 90 value 79.645099 iter 100 value 79.549434 final value 79.549434 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.759336 iter 10 value 94.486045 iter 20 value 94.479288 iter 30 value 93.638132 final value 93.638129 converged Fitting Repeat 2 # weights: 103 initial value 106.055155 iter 10 value 94.485798 iter 20 value 94.484228 final value 94.484218 converged Fitting Repeat 3 # weights: 103 initial value 107.833583 iter 10 value 94.486064 iter 20 value 94.484315 final value 94.484215 converged Fitting Repeat 4 # weights: 103 initial value 103.058165 final value 94.486009 converged Fitting Repeat 5 # weights: 103 initial value 103.966986 iter 10 value 94.485788 iter 20 value 94.484272 final value 94.484215 converged Fitting Repeat 1 # weights: 305 initial value 134.231892 iter 10 value 94.489248 iter 20 value 94.484293 iter 30 value 93.277437 iter 40 value 83.358670 iter 50 value 82.608614 iter 60 value 81.159845 iter 70 value 80.905280 iter 80 value 80.879587 iter 90 value 80.526088 iter 100 value 79.477164 final value 79.477164 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.767204 iter 10 value 94.032138 iter 20 value 94.030282 iter 30 value 94.027138 iter 40 value 93.230843 iter 50 value 88.172742 iter 60 value 88.147129 iter 70 value 88.146598 iter 70 value 88.146597 final value 88.146553 converged Fitting Repeat 3 # weights: 305 initial value 101.560647 iter 10 value 94.488961 iter 20 value 94.317004 iter 30 value 84.882437 iter 40 value 84.544160 iter 50 value 83.466567 final value 83.465624 converged Fitting Repeat 4 # weights: 305 initial value 99.490939 iter 10 value 94.031639 iter 20 value 94.027075 iter 30 value 83.624789 iter 40 value 83.465664 iter 50 value 83.201503 iter 60 value 83.166920 iter 70 value 83.108015 iter 80 value 82.115517 iter 90 value 80.760997 iter 100 value 80.670495 final value 80.670495 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 98.220269 iter 10 value 94.488643 iter 20 value 94.292883 iter 30 value 83.183170 iter 40 value 83.131966 iter 50 value 83.131378 final value 83.131367 converged Fitting Repeat 1 # weights: 507 initial value 102.502675 iter 10 value 94.113704 iter 20 value 94.107016 iter 30 value 93.760317 iter 40 value 92.557164 iter 50 value 83.776245 final value 83.464417 converged Fitting Repeat 2 # weights: 507 initial value 100.596510 iter 10 value 94.492444 iter 20 value 91.096875 iter 30 value 84.203064 iter 40 value 84.151343 iter 50 value 84.125674 iter 60 value 84.103947 iter 70 value 84.103535 final value 84.099978 converged Fitting Repeat 3 # weights: 507 initial value 114.232761 iter 10 value 94.078423 iter 20 value 94.031192 iter 30 value 94.025319 iter 40 value 93.629554 iter 50 value 93.347777 iter 60 value 93.346305 iter 70 value 92.641937 final value 92.636901 converged Fitting Repeat 4 # weights: 507 initial value 98.916746 iter 10 value 94.034727 iter 20 value 94.030197 iter 30 value 94.016653 final value 93.550503 converged Fitting Repeat 5 # weights: 507 initial value 95.593994 iter 10 value 86.385174 iter 20 value 82.983763 iter 30 value 82.977917 iter 40 value 82.976214 iter 50 value 82.381529 iter 60 value 81.610670 iter 70 value 81.517092 iter 80 value 81.512431 iter 90 value 81.237152 iter 100 value 79.528049 final value 79.528049 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.568072 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.556520 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.858431 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 112.378578 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 101.709611 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 97.160157 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 100.233927 final value 93.395952 converged Fitting Repeat 3 # weights: 305 initial value 99.071499 final value 94.008696 converged Fitting Repeat 4 # weights: 305 initial value 98.619163 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 95.345686 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 102.221110 iter 10 value 93.506090 iter 20 value 93.471195 final value 93.470905 converged Fitting Repeat 2 # weights: 507 initial value 97.397538 iter 10 value 94.081189 final value 94.008696 converged Fitting Repeat 3 # weights: 507 initial value 95.900908 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 101.811506 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 103.042444 final value 94.008696 converged Fitting Repeat 1 # weights: 103 initial value 100.902112 iter 10 value 94.157234 iter 20 value 94.050079 iter 30 value 90.589379 iter 40 value 87.702628 iter 50 value 87.039304 iter 60 value 85.734073 iter 70 value 84.111300 iter 80 value 83.621894 iter 90 value 83.003520 iter 100 value 82.946322 final value 82.946322 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.770582 iter 10 value 94.056924 iter 20 value 94.048036 iter 30 value 93.244212 iter 40 value 88.181597 iter 50 value 87.894077 iter 60 value 85.771309 iter 70 value 85.168415 iter 80 value 84.921282 iter 90 value 84.863939 final value 84.863928 converged Fitting Repeat 3 # weights: 103 initial value 106.183894 iter 10 value 94.056476 iter 20 value 93.775195 iter 30 value 88.302061 iter 40 value 86.078637 iter 50 value 85.966662 iter 60 value 85.885626 iter 70 value 85.806199 final value 85.805254 converged Fitting Repeat 4 # weights: 103 initial value 101.562260 iter 10 value 94.056133 iter 20 value 94.028484 iter 30 value 89.079418 iter 40 value 88.433330 iter 50 value 88.403342 iter 60 value 86.396716 iter 70 value 85.378146 iter 80 value 85.366967 iter 90 value 85.317516 iter 100 value 85.257686 final value 85.257686 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 109.273115 iter 10 value 94.054871 iter 20 value 91.201408 iter 30 value 86.324207 iter 40 value 85.506517 iter 50 value 85.372849 iter 60 value 85.262504 iter 70 value 85.221648 final value 85.219624 converged Fitting Repeat 1 # weights: 305 initial value 103.507489 iter 10 value 94.030995 iter 20 value 92.347439 iter 30 value 90.055094 iter 40 value 87.771054 iter 50 value 84.993122 iter 60 value 83.276958 iter 70 value 83.190378 iter 80 value 82.930353 iter 90 value 82.855312 iter 100 value 82.623415 final value 82.623415 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.971903 iter 10 value 94.280712 iter 20 value 94.054620 iter 30 value 92.349545 iter 40 value 91.136713 iter 50 value 88.489442 iter 60 value 85.466660 iter 70 value 84.043664 iter 80 value 83.744229 iter 90 value 83.226943 iter 100 value 83.057521 final value 83.057521 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.514662 iter 10 value 94.087955 iter 20 value 93.980968 iter 30 value 92.007454 iter 40 value 91.340110 iter 50 value 89.782696 iter 60 value 87.699259 iter 70 value 86.143113 iter 80 value 85.188368 iter 90 value 84.666485 iter 100 value 83.789826 final value 83.789826 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 125.072753 iter 10 value 94.106765 iter 20 value 92.404498 iter 30 value 86.895090 iter 40 value 84.336109 iter 50 value 82.686852 iter 60 value 82.586962 iter 70 value 82.487862 iter 80 value 82.331380 iter 90 value 81.938773 iter 100 value 81.687916 final value 81.687916 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.963387 iter 10 value 93.794060 iter 20 value 91.477490 iter 30 value 88.695906 iter 40 value 86.529841 iter 50 value 84.412090 iter 60 value 83.180238 iter 70 value 82.907253 iter 80 value 82.749578 iter 90 value 82.111273 iter 100 value 81.950914 final value 81.950914 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.177257 iter 10 value 93.833379 iter 20 value 87.856080 iter 30 value 86.296582 iter 40 value 85.896093 iter 50 value 84.795603 iter 60 value 83.309213 iter 70 value 82.406819 iter 80 value 81.504455 iter 90 value 81.382703 iter 100 value 81.266807 final value 81.266807 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.904755 iter 10 value 94.056815 iter 20 value 92.614418 iter 30 value 90.299650 iter 40 value 89.816991 iter 50 value 87.691082 iter 60 value 85.580536 iter 70 value 84.746238 iter 80 value 83.458238 iter 90 value 82.725734 iter 100 value 82.158066 final value 82.158066 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.361291 iter 10 value 92.910605 iter 20 value 91.303467 iter 30 value 89.542860 iter 40 value 87.316454 iter 50 value 86.359282 iter 60 value 84.885069 iter 70 value 84.055229 iter 80 value 82.999694 iter 90 value 82.215743 iter 100 value 81.778271 final value 81.778271 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.559217 iter 10 value 94.110155 iter 20 value 93.291413 iter 30 value 85.984523 iter 40 value 84.718709 iter 50 value 84.488668 iter 60 value 84.393278 iter 70 value 83.186657 iter 80 value 82.839885 iter 90 value 82.671077 iter 100 value 82.553580 final value 82.553580 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.186186 iter 10 value 95.500339 iter 20 value 93.111721 iter 30 value 88.317893 iter 40 value 84.605899 iter 50 value 83.720885 iter 60 value 83.170480 iter 70 value 82.682436 iter 80 value 82.648149 iter 90 value 82.593169 iter 100 value 82.397659 final value 82.397659 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.169142 final value 94.054608 converged Fitting Repeat 2 # weights: 103 initial value 95.955851 iter 10 value 94.010316 iter 20 value 93.882244 iter 30 value 85.707827 iter 40 value 84.592948 iter 50 value 84.550312 iter 60 value 84.403337 iter 70 value 84.403252 final value 84.403224 converged Fitting Repeat 3 # weights: 103 initial value 95.175497 final value 94.054446 converged Fitting Repeat 4 # weights: 103 initial value 94.588871 iter 10 value 94.010267 iter 20 value 94.009855 iter 30 value 94.008807 final value 94.008751 converged Fitting Repeat 5 # weights: 103 initial value 96.762212 iter 10 value 94.054636 iter 20 value 94.052970 final value 94.052916 converged Fitting Repeat 1 # weights: 305 initial value 117.610938 iter 10 value 94.057592 iter 20 value 93.652233 iter 30 value 85.732238 final value 85.106619 converged Fitting Repeat 2 # weights: 305 initial value 133.198362 iter 10 value 94.058894 iter 20 value 93.992289 iter 30 value 85.139261 iter 40 value 82.872257 iter 50 value 82.805316 final value 82.805246 converged Fitting Repeat 3 # weights: 305 initial value 104.739231 iter 10 value 94.057992 iter 20 value 93.739926 iter 30 value 88.852280 iter 40 value 88.208817 iter 50 value 88.208442 final value 88.208353 converged Fitting Repeat 4 # weights: 305 initial value 100.100380 iter 10 value 94.057222 iter 20 value 93.659322 iter 30 value 88.212866 iter 40 value 88.210897 iter 50 value 88.209500 iter 60 value 88.204407 iter 70 value 88.089709 iter 80 value 87.776495 iter 90 value 83.637159 iter 100 value 83.552238 final value 83.552238 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.383398 iter 10 value 94.057851 iter 20 value 94.052931 iter 30 value 93.979780 iter 40 value 93.810339 iter 50 value 93.757856 iter 60 value 87.575105 iter 70 value 87.544650 iter 70 value 87.544649 iter 70 value 87.544649 final value 87.544649 converged Fitting Repeat 1 # weights: 507 initial value 127.215646 iter 10 value 94.061516 iter 20 value 94.051870 iter 30 value 93.724580 iter 40 value 93.444033 iter 50 value 92.037613 iter 60 value 86.391564 iter 70 value 85.883795 iter 80 value 85.838767 iter 90 value 85.838216 final value 85.837442 converged Fitting Repeat 2 # weights: 507 initial value 101.883140 iter 10 value 94.037343 iter 20 value 94.016063 iter 30 value 93.835932 iter 40 value 85.554890 iter 50 value 85.089288 iter 60 value 83.609309 iter 70 value 81.839941 iter 80 value 81.829320 iter 90 value 81.828512 final value 81.827294 converged Fitting Repeat 3 # weights: 507 initial value 101.286577 iter 10 value 93.645168 iter 20 value 93.639576 iter 30 value 90.209193 iter 40 value 87.004817 iter 50 value 84.356580 iter 60 value 84.259307 iter 70 value 84.259050 iter 80 value 84.257210 final value 84.257075 converged Fitting Repeat 4 # weights: 507 initial value 100.278339 iter 10 value 94.017185 iter 20 value 93.918993 iter 30 value 92.604851 iter 40 value 84.659207 iter 50 value 84.145970 iter 60 value 84.117302 final value 84.117237 converged Fitting Repeat 5 # weights: 507 initial value 111.481393 iter 10 value 94.060430 iter 20 value 92.371377 iter 30 value 88.283868 iter 40 value 86.966625 iter 50 value 86.954492 iter 60 value 86.953644 final value 86.950976 converged Fitting Repeat 1 # weights: 103 initial value 102.781600 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.734353 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.340930 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 103.786414 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.075047 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.076821 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 94.530142 iter 10 value 94.213603 iter 20 value 87.244797 iter 30 value 85.320176 final value 84.267099 converged Fitting Repeat 3 # weights: 305 initial value 116.349979 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 105.608175 iter 10 value 83.510858 iter 20 value 81.762073 iter 30 value 81.742768 final value 81.739033 converged Fitting Repeat 5 # weights: 305 initial value 93.539989 iter 10 value 82.303170 iter 20 value 80.292145 iter 30 value 80.282842 final value 80.279601 converged Fitting Repeat 1 # weights: 507 initial value 103.400561 final value 94.466823 converged Fitting Repeat 2 # weights: 507 initial value 107.558998 final value 94.480519 converged Fitting Repeat 3 # weights: 507 initial value 110.039439 iter 10 value 93.947376 final value 93.947313 converged Fitting Repeat 4 # weights: 507 initial value 116.741651 iter 10 value 94.482932 iter 10 value 94.482932 iter 10 value 94.482932 final value 94.482932 converged Fitting Repeat 5 # weights: 507 initial value 108.433664 final value 94.443243 converged Fitting Repeat 1 # weights: 103 initial value 103.755583 iter 10 value 94.411858 iter 20 value 90.890909 iter 30 value 86.449677 iter 40 value 82.745208 iter 50 value 82.101890 iter 60 value 81.730504 iter 70 value 80.231568 iter 80 value 79.662053 iter 90 value 79.519269 iter 100 value 79.293522 final value 79.293522 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.868929 iter 10 value 93.858737 iter 20 value 85.855642 iter 30 value 83.276982 iter 40 value 82.730690 iter 50 value 81.553082 iter 60 value 81.219490 final value 81.200415 converged Fitting Repeat 3 # weights: 103 initial value 98.366431 iter 10 value 94.486612 iter 20 value 83.576489 iter 30 value 83.299287 iter 40 value 82.770692 iter 50 value 81.225806 iter 60 value 80.921121 iter 70 value 80.913742 final value 80.913121 converged Fitting Repeat 4 # weights: 103 initial value 103.718684 iter 10 value 94.560720 iter 20 value 94.044498 iter 30 value 83.865256 iter 40 value 83.009996 iter 50 value 81.474837 iter 60 value 80.756858 iter 70 value 80.273940 iter 80 value 80.064028 iter 90 value 79.694016 iter 100 value 79.310864 final value 79.310864 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 107.427755 iter 10 value 94.510264 iter 20 value 94.485592 iter 30 value 94.307632 iter 40 value 89.197303 iter 50 value 88.770621 iter 60 value 86.907264 iter 70 value 85.373422 iter 80 value 84.197428 iter 90 value 84.081868 iter 100 value 82.890791 final value 82.890791 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 107.428935 iter 10 value 94.483152 iter 20 value 88.203674 iter 30 value 84.446526 iter 40 value 80.127179 iter 50 value 78.742684 iter 60 value 78.542984 iter 70 value 78.431374 iter 80 value 78.151674 iter 90 value 78.023275 iter 100 value 77.916892 final value 77.916892 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.746821 iter 10 value 94.055343 iter 20 value 84.100479 iter 30 value 83.273115 iter 40 value 82.625197 iter 50 value 81.746732 iter 60 value 81.393448 iter 70 value 80.324071 iter 80 value 79.059687 iter 90 value 78.033570 iter 100 value 77.540405 final value 77.540405 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 124.264858 iter 10 value 95.035491 iter 20 value 92.452444 iter 30 value 88.361344 iter 40 value 85.730934 iter 50 value 81.888290 iter 60 value 79.122100 iter 70 value 78.545706 iter 80 value 77.892373 iter 90 value 77.762926 iter 100 value 77.622310 final value 77.622310 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.653593 iter 10 value 94.960987 iter 20 value 86.901550 iter 30 value 83.561584 iter 40 value 82.644071 iter 50 value 81.668766 iter 60 value 81.503209 iter 70 value 79.883196 iter 80 value 78.680129 iter 90 value 78.196807 iter 100 value 78.141122 final value 78.141122 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.343668 iter 10 value 94.444502 iter 20 value 88.708946 iter 30 value 83.593796 iter 40 value 83.382031 iter 50 value 80.080681 iter 60 value 79.671140 iter 70 value 79.349489 iter 80 value 78.508648 iter 90 value 78.092271 iter 100 value 77.626649 final value 77.626649 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.129445 iter 10 value 94.185322 iter 20 value 83.313849 iter 30 value 82.729364 iter 40 value 82.160846 iter 50 value 81.537468 iter 60 value 81.103583 iter 70 value 80.692652 iter 80 value 78.147274 iter 90 value 77.415408 iter 100 value 77.323034 final value 77.323034 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.796666 iter 10 value 95.116650 iter 20 value 88.532190 iter 30 value 84.191283 iter 40 value 83.927416 iter 50 value 81.864942 iter 60 value 80.132789 iter 70 value 79.353796 iter 80 value 78.408289 iter 90 value 77.344990 iter 100 value 77.132273 final value 77.132273 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.919307 iter 10 value 94.124387 iter 20 value 89.561967 iter 30 value 88.791140 iter 40 value 83.743833 iter 50 value 81.652767 iter 60 value 79.984747 iter 70 value 78.691824 iter 80 value 77.906875 iter 90 value 77.716201 iter 100 value 77.665816 final value 77.665816 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.520893 iter 10 value 93.809324 iter 20 value 83.983046 iter 30 value 82.043439 iter 40 value 81.438819 iter 50 value 81.384909 iter 60 value 81.144913 iter 70 value 79.897969 iter 80 value 78.346996 iter 90 value 77.761560 iter 100 value 77.594905 final value 77.594905 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 142.576320 iter 10 value 94.520893 iter 20 value 91.968324 iter 30 value 83.618834 iter 40 value 83.490313 iter 50 value 82.627354 iter 60 value 80.935791 iter 70 value 79.355417 iter 80 value 77.935721 iter 90 value 77.514081 iter 100 value 77.296286 final value 77.296286 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.614719 final value 94.468682 converged Fitting Repeat 2 # weights: 103 initial value 94.666853 final value 94.486070 converged Fitting Repeat 3 # weights: 103 initial value 93.408422 iter 10 value 85.959349 iter 20 value 84.841767 iter 30 value 83.857852 iter 40 value 83.414365 iter 50 value 83.403203 iter 60 value 83.402834 iter 70 value 83.402067 iter 80 value 81.125944 iter 90 value 80.180772 iter 100 value 80.103473 final value 80.103473 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 108.620865 final value 94.486130 converged Fitting Repeat 5 # weights: 103 initial value 101.000210 final value 93.703322 converged Fitting Repeat 1 # weights: 305 initial value 95.491942 iter 10 value 94.480646 iter 20 value 94.471881 iter 30 value 94.469968 iter 40 value 94.429448 iter 50 value 94.429202 final value 94.429180 converged Fitting Repeat 2 # weights: 305 initial value 107.660101 iter 10 value 94.454259 iter 20 value 88.803389 iter 30 value 85.360458 iter 30 value 85.360458 iter 30 value 85.360458 final value 85.360458 converged Fitting Repeat 3 # weights: 305 initial value 95.655368 iter 10 value 94.488599 iter 20 value 87.711467 final value 87.353899 converged Fitting Repeat 4 # weights: 305 initial value 104.331985 iter 10 value 94.577661 iter 20 value 94.377328 iter 30 value 91.129418 iter 40 value 80.225230 iter 50 value 79.053329 iter 60 value 79.052818 iter 70 value 79.052153 iter 80 value 79.051679 iter 90 value 79.051599 final value 79.050739 converged Fitting Repeat 5 # weights: 305 initial value 107.129379 iter 10 value 94.489035 iter 20 value 94.299368 iter 30 value 85.796449 iter 40 value 84.230232 iter 50 value 83.455377 iter 60 value 82.806401 iter 70 value 82.804578 final value 82.804564 converged Fitting Repeat 1 # weights: 507 initial value 109.315529 iter 10 value 94.492498 iter 20 value 94.293962 iter 30 value 84.337694 iter 40 value 83.988156 iter 50 value 83.975085 iter 60 value 83.684492 iter 70 value 83.676297 iter 80 value 83.407936 iter 90 value 83.406183 iter 100 value 83.403187 final value 83.403187 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.420421 iter 10 value 93.628985 iter 20 value 93.178929 iter 30 value 93.116237 iter 40 value 93.093977 final value 93.093494 converged Fitting Repeat 3 # weights: 507 initial value 143.785331 iter 10 value 94.168933 iter 20 value 82.934362 iter 30 value 82.649374 iter 40 value 81.618135 iter 50 value 81.197805 iter 60 value 81.195002 iter 70 value 81.165894 iter 80 value 81.059800 iter 90 value 80.851196 iter 100 value 80.849085 final value 80.849085 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.357492 iter 10 value 94.375509 iter 20 value 94.197840 iter 30 value 93.955092 iter 40 value 93.057648 iter 50 value 91.615008 iter 60 value 91.576507 iter 70 value 83.422980 iter 80 value 80.095653 iter 90 value 78.115950 iter 100 value 77.988510 final value 77.988510 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.943201 iter 10 value 94.472500 iter 20 value 93.221349 iter 30 value 87.519721 iter 40 value 87.323058 iter 50 value 87.321462 iter 60 value 87.319118 iter 70 value 87.317750 iter 80 value 87.166089 iter 90 value 83.417205 iter 100 value 81.048828 final value 81.048828 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 113.341462 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.084005 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.399114 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 99.841605 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 105.699797 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 111.272697 iter 10 value 90.406212 iter 20 value 89.039807 iter 30 value 88.989773 iter 40 value 83.945738 iter 50 value 83.214465 iter 60 value 82.786184 iter 70 value 82.779131 final value 82.779051 converged Fitting Repeat 2 # weights: 305 initial value 96.207657 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 95.653489 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 101.523390 final value 93.836066 converged Fitting Repeat 5 # weights: 305 initial value 99.940838 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 100.535913 final value 93.912644 converged Fitting Repeat 2 # weights: 507 initial value 102.375665 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 99.990136 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 104.891586 iter 10 value 93.553229 iter 20 value 93.013829 iter 30 value 91.070766 iter 40 value 91.067133 final value 91.067082 converged Fitting Repeat 5 # weights: 507 initial value 101.180904 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 103.558716 iter 10 value 93.789427 iter 20 value 89.961019 iter 30 value 85.642704 iter 40 value 84.887036 iter 50 value 84.444338 iter 60 value 84.033064 iter 70 value 83.889130 iter 80 value 83.825115 final value 83.824149 converged Fitting Repeat 2 # weights: 103 initial value 102.333340 iter 10 value 94.056741 iter 20 value 94.039423 iter 30 value 93.954948 iter 40 value 93.943825 iter 50 value 93.766908 iter 60 value 93.442461 iter 70 value 93.173599 iter 80 value 92.220256 iter 90 value 85.974597 iter 100 value 84.617567 final value 84.617567 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 109.330623 iter 10 value 93.984734 iter 20 value 91.541394 iter 30 value 84.930963 iter 40 value 84.628400 iter 50 value 84.513445 iter 60 value 84.497529 iter 60 value 84.497529 iter 60 value 84.497529 final value 84.497529 converged Fitting Repeat 4 # weights: 103 initial value 96.970387 iter 10 value 94.056832 iter 20 value 93.549040 iter 30 value 93.465037 iter 40 value 93.403499 iter 50 value 93.267280 iter 60 value 88.052730 iter 70 value 85.572406 iter 80 value 85.450727 iter 90 value 85.358913 iter 100 value 84.864037 final value 84.864037 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 101.163230 iter 10 value 94.024306 iter 20 value 89.265557 iter 30 value 84.156005 iter 40 value 83.458247 iter 50 value 83.317970 iter 60 value 83.065041 iter 70 value 81.990995 iter 80 value 81.867093 iter 90 value 81.817694 final value 81.817396 converged Fitting Repeat 1 # weights: 305 initial value 104.158921 iter 10 value 94.054933 iter 20 value 92.908858 iter 30 value 91.392363 iter 40 value 91.326695 iter 50 value 89.252451 iter 60 value 85.609805 iter 70 value 84.141602 iter 80 value 82.648636 iter 90 value 82.172884 iter 100 value 80.950861 final value 80.950861 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 98.103960 iter 10 value 89.481120 iter 20 value 87.620878 iter 30 value 86.763081 iter 40 value 84.102689 iter 50 value 81.500992 iter 60 value 80.704573 iter 70 value 80.097028 iter 80 value 79.995456 iter 90 value 79.979771 iter 100 value 79.902755 final value 79.902755 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.510646 iter 10 value 94.045882 iter 20 value 88.309894 iter 30 value 86.866897 iter 40 value 86.227447 iter 50 value 83.803972 iter 60 value 83.089058 iter 70 value 82.796157 iter 80 value 82.631300 iter 90 value 82.137592 iter 100 value 82.042433 final value 82.042433 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.279719 iter 10 value 94.057137 iter 20 value 92.012890 iter 30 value 85.946996 iter 40 value 84.442795 iter 50 value 82.369955 iter 60 value 81.963295 iter 70 value 81.393117 iter 80 value 81.163966 iter 90 value 81.029069 iter 100 value 80.853524 final value 80.853524 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.527701 iter 10 value 94.217593 iter 20 value 88.982653 iter 30 value 87.772238 iter 40 value 85.008869 iter 50 value 84.359632 iter 60 value 83.830644 iter 70 value 83.305756 iter 80 value 82.200727 iter 90 value 81.629993 iter 100 value 81.606026 final value 81.606026 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 126.173568 iter 10 value 94.334192 iter 20 value 93.664496 iter 30 value 88.314237 iter 40 value 87.341708 iter 50 value 87.235777 iter 60 value 87.006566 iter 70 value 86.308369 iter 80 value 85.866516 iter 90 value 83.927467 iter 100 value 82.473094 final value 82.473094 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.150642 iter 10 value 94.161041 iter 20 value 87.555054 iter 30 value 86.429704 iter 40 value 84.857018 iter 50 value 82.408562 iter 60 value 81.389047 iter 70 value 80.937929 iter 80 value 80.734380 iter 90 value 80.678990 iter 100 value 80.556521 final value 80.556521 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.579213 iter 10 value 94.086320 iter 20 value 90.192585 iter 30 value 86.637504 iter 40 value 85.866960 iter 50 value 82.329893 iter 60 value 80.699402 iter 70 value 80.614565 iter 80 value 80.284163 iter 90 value 80.134521 iter 100 value 79.987441 final value 79.987441 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 131.000902 iter 10 value 93.617112 iter 20 value 87.001423 iter 30 value 85.824871 iter 40 value 84.298038 iter 50 value 82.670748 iter 60 value 81.339037 iter 70 value 80.955833 iter 80 value 80.709412 iter 90 value 80.267636 iter 100 value 80.226148 final value 80.226148 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.680013 iter 10 value 93.820067 iter 20 value 84.220382 iter 30 value 82.503708 iter 40 value 81.282869 iter 50 value 80.554482 iter 60 value 80.268047 iter 70 value 80.183873 iter 80 value 80.116740 iter 90 value 79.881985 iter 100 value 79.641260 final value 79.641260 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.333378 final value 94.054509 converged Fitting Repeat 2 # weights: 103 initial value 94.557012 final value 94.054683 converged Fitting Repeat 3 # weights: 103 initial value 97.727589 iter 10 value 94.054706 iter 20 value 94.052661 iter 30 value 93.412969 final value 93.412740 converged Fitting Repeat 4 # weights: 103 initial value 99.841333 final value 94.054846 converged Fitting Repeat 5 # weights: 103 initial value 101.388057 iter 10 value 93.688425 iter 20 value 93.673052 iter 30 value 93.671682 iter 40 value 93.487066 iter 50 value 91.898591 iter 60 value 86.563320 iter 70 value 82.569739 iter 80 value 82.414126 iter 90 value 82.410368 iter 100 value 82.333632 final value 82.333632 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 99.750145 iter 10 value 94.057739 iter 20 value 93.880481 iter 30 value 89.261937 iter 40 value 88.592637 iter 50 value 88.558519 iter 60 value 88.354646 final value 88.354536 converged Fitting Repeat 2 # weights: 305 initial value 124.461304 iter 10 value 94.057466 iter 20 value 94.031026 iter 30 value 93.290767 final value 93.290763 converged Fitting Repeat 3 # weights: 305 initial value 104.590148 iter 10 value 94.058081 iter 20 value 94.026934 iter 30 value 93.836434 final value 93.836433 converged Fitting Repeat 4 # weights: 305 initial value 113.577582 iter 10 value 93.415302 iter 20 value 93.409644 iter 30 value 93.290672 final value 93.290628 converged Fitting Repeat 5 # weights: 305 initial value 98.738123 iter 10 value 94.057534 iter 20 value 94.049934 iter 30 value 93.079866 iter 40 value 92.809798 final value 92.809453 converged Fitting Repeat 1 # weights: 507 initial value 109.857184 iter 10 value 93.844166 iter 20 value 87.354267 iter 30 value 87.053436 iter 40 value 86.920053 iter 50 value 86.596545 iter 60 value 86.595905 final value 86.592182 converged Fitting Repeat 2 # weights: 507 initial value 101.500151 iter 10 value 94.059697 iter 20 value 94.055514 iter 30 value 93.911185 iter 40 value 93.448431 iter 50 value 93.290845 iter 60 value 93.202535 iter 70 value 93.010449 final value 92.986792 converged Fitting Repeat 3 # weights: 507 initial value 124.580344 iter 10 value 93.844665 iter 20 value 93.816095 iter 30 value 93.325151 iter 40 value 93.258728 iter 50 value 93.258030 iter 60 value 93.257779 iter 70 value 93.257577 final value 93.257454 converged Fitting Repeat 4 # weights: 507 initial value 106.532235 iter 10 value 94.060935 iter 20 value 94.029824 iter 30 value 87.669757 iter 40 value 86.849005 iter 50 value 85.086139 iter 60 value 83.401916 iter 70 value 83.162929 iter 70 value 83.162928 final value 83.162927 converged Fitting Repeat 5 # weights: 507 initial value 108.830351 iter 10 value 93.845378 iter 20 value 93.841153 iter 30 value 93.488468 iter 40 value 84.878867 iter 50 value 84.520197 iter 60 value 83.872129 iter 70 value 80.993824 iter 80 value 79.603381 iter 90 value 78.843251 iter 100 value 78.203034 final value 78.203034 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 140.342845 iter 10 value 117.795446 iter 20 value 115.901146 iter 30 value 108.898249 iter 40 value 105.619217 iter 50 value 105.230406 iter 60 value 104.641185 iter 70 value 103.304518 iter 80 value 102.706035 iter 90 value 102.346467 iter 100 value 101.537206 final value 101.537206 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 135.884909 iter 10 value 117.906572 iter 20 value 117.770252 iter 30 value 117.349512 iter 40 value 109.985511 iter 50 value 109.271935 iter 60 value 106.501215 iter 70 value 105.579572 iter 80 value 105.369092 iter 90 value 104.588728 iter 100 value 104.101182 final value 104.101182 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 124.545671 iter 10 value 117.902400 iter 20 value 110.370391 iter 30 value 107.330870 iter 40 value 105.181561 iter 50 value 102.987741 iter 60 value 102.232738 iter 70 value 102.084623 iter 80 value 101.970316 iter 90 value 101.432356 iter 100 value 101.207093 final value 101.207093 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 136.375757 iter 10 value 117.869938 iter 20 value 117.611539 iter 30 value 109.038069 iter 40 value 107.835518 iter 50 value 106.965682 iter 60 value 102.452006 iter 70 value 101.085296 iter 80 value 100.894359 iter 90 value 100.882931 iter 100 value 100.824405 final value 100.824405 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 146.445584 iter 10 value 117.595779 iter 20 value 110.814535 iter 30 value 107.791123 iter 40 value 107.573512 iter 50 value 103.881894 iter 60 value 102.204223 iter 70 value 101.883235 iter 80 value 101.785552 iter 90 value 101.673047 iter 100 value 101.658993 final value 101.658993 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Apr 16 04:11:29 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 69.596 2.060 78.439
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 50.251 | 1.699 | 54.038 | |
FreqInteractors | 0.460 | 0.020 | 0.484 | |
calculateAAC | 0.070 | 0.013 | 0.086 | |
calculateAutocor | 0.826 | 0.099 | 0.971 | |
calculateCTDC | 0.149 | 0.007 | 0.162 | |
calculateCTDD | 1.205 | 0.036 | 1.296 | |
calculateCTDT | 0.428 | 0.019 | 0.466 | |
calculateCTriad | 0.705 | 0.038 | 0.778 | |
calculateDC | 0.230 | 0.027 | 0.274 | |
calculateF | 0.608 | 0.018 | 0.640 | |
calculateKSAAP | 0.265 | 0.022 | 0.299 | |
calculateQD_Sm | 3.404 | 0.181 | 3.869 | |
calculateTC | 4.385 | 0.451 | 5.098 | |
calculateTC_Sm | 0.509 | 0.024 | 0.555 | |
corr_plot | 50.389 | 1.693 | 54.575 | |
enrichfindP | 0.870 | 0.083 | 14.693 | |
enrichfind_hp | 0.124 | 0.027 | 1.136 | |
enrichplot | 0.758 | 0.011 | 0.813 | |
filter_missing_values | 0.002 | 0.001 | 0.003 | |
getFASTA | 0.122 | 0.016 | 4.230 | |
getHPI | 0.001 | 0.001 | 0.002 | |
get_negativePPI | 0.003 | 0.001 | 0.003 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.001 | 0.004 | |
plotPPI | 0.136 | 0.003 | 0.145 | |
pred_ensembel | 23.350 | 0.427 | 20.532 | |
var_imp | 51.743 | 1.754 | 57.070 | |