| Back to Multiple platform build/check report for BioC 3.11 |
|
This page was generated on 2020-10-17 11:57:52 -0400 (Sat, 17 Oct 2020).
| TO THE DEVELOPERS/MAINTAINERS OF THE STATegRa PACKAGE: Please make sure to use the following settings in order to reproduce any error or warning you see on this page. |
| Package 1744/1905 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
| STATegRa 1.24.0 David Gomez-Cabrero
| malbec2 | Linux (Ubuntu 18.04.4 LTS) / x86_64 | OK | OK | OK | |||||||
| tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | [ OK ] | NA | |||||||
| machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK |
| Package: STATegRa |
| Version: 1.24.0 |
| Command: C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings STATegRa_1.24.0.tar.gz |
| StartedAt: 2020-10-17 08:38:48 -0400 (Sat, 17 Oct 2020) |
| EndedAt: 2020-10-17 08:45:31 -0400 (Sat, 17 Oct 2020) |
| EllapsedTime: 403.0 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: STATegRa.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings STATegRa_1.24.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory 'C:/Users/biocbuild/bbs-3.11-bioc/meat/STATegRa.Rcheck'
* using R version 4.0.3 (2020-10-10)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'STATegRa/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'STATegRa' version '1.24.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'STATegRa' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
modelSelection,list-numeric-character: no visible binding for global
variable 'components'
modelSelection,list-numeric-character: no visible binding for global
variable 'mylabel'
plotVAF,caClass: no visible binding for global variable 'comp'
plotVAF,caClass: no visible binding for global variable 'VAF'
plotVAF,caClass: no visible binding for global variable 'block'
selectCommonComps,list-numeric: no visible binding for global variable
'comps'
selectCommonComps,list-numeric: no visible binding for global variable
'block'
selectCommonComps,list-numeric: no visible binding for global variable
'comp'
selectCommonComps,list-numeric: no visible binding for global variable
'ratio'
Undefined global functions or variables:
VAF block comp components comps mylabel ratio
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... OK
** running examples for arch 'x64' ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
plotRes 5.13 0.14 5.26
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
Running 'STATEgRa_Example.omicsCLUST.R'
Running 'STATEgRa_Example.omicsPCA.R'
Running 'STATegRa_Example.omicsNPC.R'
Running 'runTests.R'
OK
** running tests for arch 'x64' ...
Running 'STATEgRa_Example.omicsCLUST.R'
Running 'STATEgRa_Example.omicsPCA.R'
Running 'STATegRa_Example.omicsNPC.R'
Running 'runTests.R'
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
'C:/Users/biocbuild/bbs-3.11-bioc/meat/STATegRa.Rcheck/00check.log'
for details.
STATegRa.Rcheck/00install.out
##############################################################################
##############################################################################
###
### Running command:
###
### C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.11/bioc/src/contrib/STATegRa_1.24.0.tar.gz && rm -rf STATegRa.buildbin-libdir && mkdir STATegRa.buildbin-libdir && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=STATegRa.buildbin-libdir STATegRa_1.24.0.tar.gz && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL STATegRa_1.24.0.zip && rm STATegRa_1.24.0.tar.gz STATegRa_1.24.0.zip
###
##############################################################################
##############################################################################
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
100 3176k 100 3176k 0 0 30.3M 0 --:--:-- --:--:-- --:--:-- 32.6M
install for i386
* installing *source* package 'STATegRa' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
converting help for package 'STATegRa'
finding HTML links ... done
STATegRa-defunct html
STATegRa html
STATegRaUsersGuide html
STATegRa_data html
STATegRa_data_TCGA_BRCA html
bioDist html
bioDistFeature html
bioDistFeaturePlot html
bioDistW html
bioDistWPlot html
bioDistclass html
bioMap html
caClass-class html
combiningMappings html
createOmicsExpressionSet html
getInitialData html
getLoadings html
getMethodInfo html
getPreprocessing html
getScores html
getVAF html
holistOmics html
modelSelection html
finding level-2 HTML links ... done
omicsCompAnalysis html
omicsNPC html
plotRes html
plotVAF html
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
install for x64
* installing *source* package 'STATegRa' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'STATegRa' as STATegRa_1.24.0.zip
* DONE (STATegRa)
* installing to library 'C:/Users/biocbuild/bbs-3.11-bioc/R/library'
package 'STATegRa' successfully unpacked and MD5 sums checked
|
STATegRa.Rcheck/tests_i386/runTests.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2
Distinctive components
[[1]]
[1] 0
[[2]]
[1] 0
Common components
[1] 2
Distinctive components
[[1]]
[1] 1
[[2]]
[1] 1
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
RUNIT TEST PROTOCOL -- Sat Oct 17 08:43:02 2020
***********************************************
Number of test functions: 4
Number of errors: 0
Number of failures: 0
1 Test Suite :
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4
Number of errors: 0
Number of failures: 0
Warning messages:
1: In rownames(pData) == colnames(exprs) :
longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
>
> proc.time()
user system elapsed
3.28 0.23 3.50
|
STATegRa.Rcheck/tests_x64/runTests.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2
Distinctive components
[[1]]
[1] 0
[[2]]
[1] 0
Common components
[1] 2
Distinctive components
[[1]]
[1] 1
[[2]]
[1] 1
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
RUNIT TEST PROTOCOL -- Sat Oct 17 08:45:22 2020
***********************************************
Number of test functions: 4
Number of errors: 0
Number of failures: 0
1 Test Suite :
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4
Number of errors: 0
Number of failures: 0
Warning messages:
1: In rownames(pData) == colnames(exprs) :
longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
>
> proc.time()
user system elapsed
3.60 0.17 3.76
|
|
STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsCLUST.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> ####### then the class is created.
>
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
>
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+ metadata = list(type_v1="Gene",type_v2="miRNA",
+ source_database="targetscan.Hs.eg.db",
+ data_extraction="July2014"),
+ map=mapdata)
>
>
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> ##### the profile of the main features is computed through the surrogate features.
>
> # Load Data
> data(STATegRa_S1)
> #load("../data/STATegRa.S1.Rdata")
>
> ## Create ExpressionSets
> # source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
>
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
+ reference = "Var1",
+ mapping = MAP.SYMBOL,
+ surrogateData = miRNA.ds, ### miRNA data
+ referenceData = mRNA.ds, ### mRNA data
+ maxitems=2,
+ selectionRule="sd",
+ expfac=NULL,
+ aggregation = "sum",
+ distance = "spearman",
+ noMappingDist = 0,
+ filtering = NULL,
+ name = "mRNAbymiRNA")
>
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
>
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+ distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+ map.name = "id",
+ map.metadata = list(),
+ params = list())
>
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
>
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
>
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+ bioDistList = bioDistList,
+ weights=weights)
> length(bioDistWList)
[1] 4
>
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
>
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+ listDistW = bioDistWList,
+ method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
4: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
5: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
6: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
7: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
>
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
>
> ## IDH1
>
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+ listDistW = bioDistWList,
+ threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
>
> ## PDGFRA
>
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
>
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
>
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
>
>
>
>
>
> proc.time()
user system elapsed
29.70 0.82 30.53
|
STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsCLUST.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> ####### then the class is created.
>
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
>
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+ metadata = list(type_v1="Gene",type_v2="miRNA",
+ source_database="targetscan.Hs.eg.db",
+ data_extraction="July2014"),
+ map=mapdata)
>
>
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> ##### the profile of the main features is computed through the surrogate features.
>
> # Load Data
> data(STATegRa_S1)
> #load("../data/STATegRa.S1.Rdata")
>
> ## Create ExpressionSets
> # source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
>
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
+ reference = "Var1",
+ mapping = MAP.SYMBOL,
+ surrogateData = miRNA.ds, ### miRNA data
+ referenceData = mRNA.ds, ### mRNA data
+ maxitems=2,
+ selectionRule="sd",
+ expfac=NULL,
+ aggregation = "sum",
+ distance = "spearman",
+ noMappingDist = 0,
+ filtering = NULL,
+ name = "mRNAbymiRNA")
>
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
>
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+ distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+ map.name = "id",
+ map.metadata = list(),
+ params = list())
>
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
>
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
>
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+ bioDistList = bioDistList,
+ weights=weights)
> length(bioDistWList)
[1] 4
>
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
>
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+ listDistW = bioDistWList,
+ method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
4: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
5: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
6: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
7: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
>
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
>
> ## IDH1
>
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+ listDistW = bioDistWList,
+ threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
>
> ## PDGFRA
>
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
>
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
>
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
>
>
>
>
>
> proc.time()
user system elapsed
27.60 0.87 28.46
|
|
STATegRa.Rcheck/tests_i386/STATegRa_Example.omicsNPC.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
>
> proc.time()
user system elapsed
71.53 0.23 71.75
|
STATegRa.Rcheck/tests_x64/STATegRa_Example.omicsNPC.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
>
> proc.time()
user system elapsed
92.73 0.28 93.04
|
|
STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsPCA.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+ tmp <- ggplot_gtable(ggplot_build(a.gplot))
+ leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+ legend <- tmp$grobs[[leg]]
+ return(legend)}
>
> #########################
> ## PART 1. Load data
>
> ## Load data
> data(STATegRa_S3)
>
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend"
>
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
>
> #########################
> ## PART 2. Model Selection
>
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
>
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
>
>
> #########################
> ## PART 3. Component Analysis
>
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
>
> ## 3.2 Exploring scores structures
>
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
1 2
sample1 -0.0781575585 0.0431547978
sample2 0.1192221314 -0.0294022761
sample3 0.0531408761 0.0746837622
sample4 -0.0292971851 0.0006032940
sample5 -0.0202090770 -0.0110455400
sample6 -0.1226088468 -0.1053492838
sample7 -0.1078931274 0.0322419868
sample8 -0.1782891234 -0.1449330882
sample9 -0.0468697301 0.0455171785
sample10 0.0036032643 -0.0420078241
sample11 0.0035566372 0.0566285250
sample12 -0.1006129660 -0.0641393790
sample13 0.1174412706 -0.0907475585
sample14 -0.0981203558 -0.0617763250
sample15 -0.0085337196 0.0086956936
sample16 -0.0783146864 -0.1581332985
sample17 0.1483610647 -0.0638580156
sample18 0.0963084425 -0.0556687362
sample19 0.0217243100 0.0720128044
sample20 0.0635633986 0.0779610786
sample21 0.0201843910 -0.1566382138
sample22 -0.0218273737 0.0764056399
sample23 -0.0852039100 0.0032764087
sample24 0.1287181278 -0.1924427610
sample25 0.0430575615 0.0456637722
sample26 0.1453899727 -0.0541459432
sample27 0.0197483722 0.1185593604
sample28 0.1025339359 -0.0650655690
sample29 -0.0706022369 0.0682933657
sample30 0.1295623064 0.0066678678
sample31 -0.1147449316 -0.1232726796
sample32 0.0374308260 -0.0380248765
sample33 -0.0599520677 -0.0136935365
sample34 0.0984199334 -0.0375364106
sample35 0.0543096451 0.0378035987
sample36 -0.1403628012 0.0343640255
sample37 -0.0228947580 0.0732691330
sample38 0.0222073120 0.0962567579
sample39 0.0941739207 -0.0215180742
sample40 -0.0643806976 0.0687721522
sample41 0.0327635045 0.1232187213
sample42 0.0500431640 0.0292513289
sample43 0.0184497212 -0.0233044038
sample44 -0.1487889540 -0.1171211793
sample45 0.1050778699 -0.1123141070
sample46 0.1151191684 0.1093996132
sample47 0.0962591570 0.0288418560
sample48 -0.0004832699 0.0310378295
sample49 -0.1135203963 -0.1213937062
sample50 0.0123550007 0.1740762804
sample51 -0.0550527499 -0.1258930288
sample52 -0.0499118551 -0.0728580541
sample53 -0.1119772698 -0.1588063727
sample54 0.0360055712 -0.0228585554
sample55 -0.0210418833 -0.0006750512
sample56 0.0434171445 -0.0633131213
sample57 -0.0197820780 -0.1150753492
sample58 -0.0030440694 -0.0326127253
sample59 -0.0500256682 -0.0129520537
sample60 -0.0184280071 -0.0136216592
sample61 -0.0150298940 -0.0635096145
sample62 0.0304758848 0.0201237012
sample63 -0.1102250166 -0.1285968405
sample64 -0.1552586855 -0.0971185004
sample65 0.0058503807 -0.0207102854
sample66 0.0025607427 -0.0424284999
sample67 -0.1546638612 0.0661579685
sample68 -0.0536374161 0.0923604932
sample69 -0.0640332945 -0.0082003634
sample70 -0.0163521651 0.0663227245
sample71 0.0102536157 0.1345964450
sample72 0.0654191830 0.0196037078
sample73 0.1048553298 -0.0220999367
sample74 -0.0123800488 -0.0586156437
sample75 -0.0392079701 0.0209726500
sample76 -0.0648954559 0.0524759463
sample77 -0.1172922646 0.0201200118
sample78 0.1463072531 -0.0708400362
sample79 -0.0265208867 0.1603424154
sample80 -0.0279739173 0.0214153969
sample81 -0.0079212130 0.0738495004
sample82 0.1544234632 0.0361450743
sample83 0.0494205522 0.0049940048
sample84 0.0259039711 0.0346591102
sample85 -0.1116487400 0.0031405135
sample86 0.1306479125 0.0377156587
sample87 0.0554777865 0.0459739690
sample88 0.0301626464 -0.0382206668
sample89 0.1016866191 -0.0694077772
sample90 -0.0086821609 0.0201323727
sample91 -0.1578629668 0.2097792742
sample92 -0.0170933557 0.1655934982
sample93 0.0979805136 0.0121500616
sample94 -0.0131486172 0.0114929514
sample95 -0.0315682455 0.0758916497
sample96 -0.0024125827 0.0470184625
sample97 -0.0634545794 -0.0270304008
sample98 0.0359372598 0.0135466763
sample99 0.1009167530 -0.1124713424
sample100 -0.0551754078 -0.0246501979
sample101 0.0080116069 0.1627406857
sample102 0.0046451061 -0.0095474815
sample103 0.0472520918 0.0940383648
sample104 -0.0198157490 0.0591146542
sample105 0.0400238966 0.0160948610
sample106 0.0923810103 -0.0369004036
sample107 0.1019372401 -0.0224967139
sample108 0.0877091519 0.0128849545
sample109 -0.0864820339 0.0901079355
sample110 0.1223116461 0.0096108223
sample111 -0.0257352460 0.0936279821
sample112 0.0765285929 -0.0270378977
sample113 -0.0258799910 -0.0377439108
sample114 -0.0021141044 0.0882039829
sample115 -0.0303455370 0.0723733424
sample116 -0.0780504533 0.0685161147
sample117 -0.0536894140 0.0912023885
sample118 -0.0666649916 0.0236260710
sample119 -0.1021872528 0.2325003065
sample120 -0.0750216333 -0.0243346066
sample121 0.0756937854 -0.0942970128
sample122 0.0259631987 -0.0731922039
sample123 0.1037844713 0.0369178935
sample124 -0.0611205218 -0.0421648019
sample125 0.0738472618 -0.0066944402
sample126 -0.0972919080 -0.0762698056
sample127 -0.0824699399 0.0096644599
sample128 0.1249411455 -0.0929254513
sample129 0.0734063765 0.0434314184
sample130 0.0003500287 0.0309857116
sample131 -0.0930184027 -0.0155969667
sample132 -0.0736220645 -0.0732972875
sample133 0.0498398353 0.0462455685
sample134 -0.1644872651 -0.0720046388
sample135 0.0752295084 -0.0003868926
sample136 -0.0227149888 0.0495469896
sample137 -0.0564721628 0.0288861290
sample138 -0.0255986510 0.0610929604
sample139 -0.0621218773 -0.0235857207
sample140 0.0604149016 0.0435533168
sample141 -0.0246743064 -0.0532630596
sample142 0.0409563798 -0.0316234876
sample143 0.0077356367 0.0476908658
sample144 -0.0173240998 0.0156785769
sample145 -0.0485467847 -0.1202738331
sample146 -0.0419649896 0.0811241444
sample147 0.0977304712 0.0274772117
sample148 -0.0368253347 -0.0803969670
sample149 0.0072864897 0.1533016572
sample150 -0.1020825517 -0.0624821931
sample151 -0.0305397194 0.0289336259
sample152 0.0533595212 0.0638334762
sample153 0.0891639211 -0.1799454733
sample154 0.0727554459 0.0834129823
sample155 0.0880665872 0.0220771003
sample156 0.0276558896 0.0326602162
sample157 0.1155031574 -0.0183635239
sample158 0.0281506716 0.0104912306
sample159 -0.0663233819 -0.0443810130
sample160 0.0302644001 -0.0404300869
sample161 -0.0114713004 0.0591082347
sample162 0.1337090924 -0.1398131416
sample163 -0.1330120826 -0.1688769435
sample164 0.0150338107 -0.0028375950
sample165 -0.0076518864 0.0164145589
sample166 -0.0367791552 -0.0630614865
sample167 -0.1111989799 -0.0030066318
sample168 0.0672982946 -0.0446266930
sample169 0.0413003657 -0.0224446378
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
1 2
sample1 -0.0420464272 0.0867866022
sample2 -0.0820849011 -0.0410969039
sample3 0.0155963963 -0.0195186284
sample4 -0.1001342606 -0.0410776620
sample5 -0.0153479265 -0.0253257773
sample6 0.0340241993 -0.0408223331
sample7 0.0722601635 0.0002324115
sample8 -0.0457615493 -0.0370007106
sample9 -0.0086217739 0.0820184494
sample10 -0.0423630103 -0.0083917768
sample11 0.0022591995 0.0787764146
sample12 0.0322077237 0.1479823444
sample13 -0.0293967535 -0.0306743001
sample14 0.0337432613 -0.0367508303
sample15 0.0815559569 0.1275614050
sample16 0.0508336078 0.0540604404
sample17 0.0062556633 0.0041024854
sample18 0.0705602163 -0.0351053208
sample19 -0.0476785678 -0.0509595529
sample20 0.0523025027 0.0715514230
sample21 -0.0119246852 -0.0376087187
sample22 0.0724455811 -0.0095634703
sample23 -0.0992529623 0.0134298724
sample24 -0.1595260530 0.0728683743
sample25 -0.0920662208 -0.0749749467
sample26 -0.0595566059 0.0848973494
sample27 0.0826573968 -0.0086747308
sample28 -0.0384832073 0.0440972609
sample29 0.0777738662 0.1735298719
sample30 0.1229474195 -0.0819018188
sample31 0.0579753747 -0.0238646772
sample32 0.0970366671 -0.0111434927
sample33 0.1017580347 -0.0630452360
sample34 0.0637903371 0.0377936343
sample35 0.0790002730 -0.0229732287
sample36 0.1224933196 -0.1274968047
sample37 0.1798846456 -0.1673447592
sample38 0.0466390913 0.0888153317
sample39 -0.0168694445 0.0421535994
sample40 0.1756416985 -0.1526661930
sample41 0.0042466010 0.0004924621
sample42 -0.0447826366 -0.0651501480
sample43 0.0482292558 -0.0253533437
sample44 -0.1986815936 -0.0545754262
sample45 -0.0741915311 0.0054713999
sample46 0.0478859058 -0.0007080238
sample47 0.0608215684 0.0481615588
sample48 -0.1381465549 0.0578300718
sample49 -0.0530627254 -0.1405523756
sample50 -0.0173651657 0.1602386144
sample51 0.0462460195 0.0303473097
sample52 0.0279998384 0.0280387909
sample53 0.0667502884 0.0237700238
sample54 0.0121812411 -0.0521354886
sample55 0.0182392353 0.0221326676
sample56 -0.0001307079 0.0030909272
sample57 0.0316578228 0.0530190686
sample58 0.0393891924 -0.0297801715
sample59 0.1278272023 -0.0546540316
sample60 0.1486965368 0.1069142185
sample61 0.0793069436 0.0569790567
sample62 0.1172821162 -0.0149210912
sample63 -0.0028809647 0.1300524083
sample64 0.0237298656 0.1073288413
sample65 -0.0126543302 0.0589810323
sample66 -0.0468232576 -0.0771066727
sample67 0.1494285168 -0.0769877032
sample68 0.0978021315 -0.0577363579
sample69 0.0403090385 0.0156038334
sample70 0.0221595711 0.0315436686
sample71 -0.0546333663 -0.0272395042
sample72 0.1107500546 -0.0537331136
sample73 0.0906756878 0.0579958068
sample74 0.0586514868 0.0121417567
sample75 0.0390512004 0.0349278305
sample76 -0.0022940400 -0.1676560085
sample77 -0.0232101418 -0.2067300989
sample78 -0.0929807939 -0.0434928180
sample79 -0.1619384865 -0.0378102791
sample80 0.0680391922 0.1424656077
sample81 -0.0530727593 -0.0358347772
sample82 0.0266849427 -0.0577449034
sample83 0.1517241786 -0.0448569776
sample84 -0.0570944052 -0.0273808576
sample85 0.1086272068 -0.1228130187
sample86 0.0833890527 -0.0442924625
sample87 0.0022039938 -0.0943908487
sample88 -0.0078275105 -0.1140504566
sample89 0.0611007665 -0.0094589283
sample90 0.0022941099 -0.0936254862
sample91 0.0433767072 0.3205972305
sample92 -0.1815221834 -0.0334667036
sample93 0.0267653303 0.0614425858
sample94 0.0181900702 0.0605088204
sample95 -0.0720316434 -0.0013040708
sample96 -0.0559674136 -0.0118787254
sample97 -0.0217420287 0.0195417145
sample98 0.0379198563 0.0588352841
sample99 -0.0792505448 -0.0151262589
sample100 0.0222100887 -0.0023322893
sample101 -0.0387089102 0.1224225158
sample102 -0.2094625643 -0.0516421333
sample103 0.0138555365 0.0301047689
sample104 -0.0807949369 -0.0162712553
sample105 -0.0520491990 -0.1229660468
sample106 -0.0192641969 -0.0185235222
sample107 0.0319014498 0.0405120633
sample108 -0.0140674735 0.0163422306
sample109 -0.1831859399 0.0613023298
sample110 -0.0292782905 -0.0199846548
sample111 -0.1423176415 0.0327351791
sample112 0.0426313932 -0.0029086970
sample113 -0.0771931190 0.0268742556
sample114 -0.0241570414 -0.0184080684
sample115 -0.1958958062 0.0460148173
sample116 -0.1394438715 -0.0530793786
sample117 -0.1672313494 -0.1386522303
sample118 -0.0448332022 -0.0117618078
sample119 -0.0910198994 0.2217435628
sample120 -0.0331404543 -0.0057270414
sample121 0.0307518389 0.1392506240
sample122 -0.0839836133 -0.0291983824
sample123 0.0239674563 -0.0642167342
sample124 -0.0909175631 0.0130429911
sample125 -0.0065362124 -0.1092631038
sample126 0.0935274444 0.1368277011
sample127 0.0035405228 0.0292755017
sample128 -0.0660348680 0.1018575613
sample129 0.0693670220 -0.0695430098
sample130 0.0008516450 -0.0669705382
sample131 0.0431012275 0.0174061097
sample132 -0.0637087747 0.0029383346
sample133 -0.0289465419 -0.0390817352
sample134 0.0446143620 0.0456332385
sample135 0.0712343640 0.0521627752
sample136 0.0596317293 0.0197291828
sample137 0.0793174903 -0.0380637116
sample138 -0.0973506691 -0.0454210320
sample139 0.0539866955 -0.1534331996
sample140 0.0850871060 0.0955804627
sample141 -0.0192722868 -0.0554446529
sample142 -0.0672293640 -0.0461313229
sample143 -0.0303707738 -0.0519258592
sample144 -0.0089350902 0.0145815353
sample145 -0.0638874297 0.0122268568
sample146 0.0585920999 0.0063075041
sample147 0.0894146414 -0.1124625600
sample148 -0.0216437918 -0.0615962472
sample149 -0.0515319032 -0.0839902928
sample150 0.0568230078 -0.0124472630
sample151 -0.0789514134 -0.0261824106
sample152 -0.0330694701 0.1306444944
sample153 -0.1752062002 0.1497755086
sample154 0.0421488198 -0.0037017007
sample155 0.0680198313 0.0095703655
sample156 0.0388949357 0.1057558039
sample157 0.0314765236 0.0561364705
sample158 0.0329630045 0.0353943691
sample159 -0.0398460616 -0.1007368381
sample160 0.0424906567 0.0108493131
sample161 -0.0888341033 -0.0679692994
sample162 -0.0027568522 0.1237848245
sample163 -0.0126226450 0.0725440818
sample164 -0.0566787052 -0.0458318413
sample165 -0.0315331691 -0.0236359641
sample166 -0.0612108090 -0.0425224974
sample167 0.0142729572 0.0179307023
sample168 -0.0169542126 -0.0769614919
sample169 0.0675063799 0.0131499207
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
1 2
sample1 -0.0012331636 1.635716e-01
sample2 -0.0724353164 6.022113e-03
sample3 -0.0188459950 1.080029e-01
sample4 0.0390143161 -3.106667e-04
sample5 0.1774810644 2.996428e-02
sample6 -0.0451446430 3.455898e-02
sample7 -0.0226463526 7.019228e-03
sample8 -0.1033684492 9.857926e-03
sample9 0.1350014180 -8.979113e-02
sample10 0.1259884461 5.097936e-02
sample11 0.0979790885 -7.086566e-02
sample12 -0.0863020959 8.620322e-02
sample13 -0.1381401819 -1.827998e-01
sample14 -0.0615074724 2.642808e-02
sample15 0.0381600561 3.101603e-02
sample16 -0.0048779354 -1.271038e-03
sample17 -0.0788483191 1.547605e-02
sample18 -0.0884189485 3.795477e-02
sample19 0.0703043532 1.084003e-01
sample20 -0.0025581415 -7.975968e-02
sample21 0.0941596711 4.126890e-02
sample22 -0.0550270900 7.806619e-02
sample23 0.0679492854 4.102076e-02
sample24 -0.1310969344 -1.649283e-01
sample25 0.0113583591 4.426899e-02
sample26 -0.1402948866 -2.016461e-02
sample27 0.0261565974 -1.589932e-03
sample28 -0.0724200754 -5.850512e-02
sample29 -0.0330054828 -2.062054e-03
sample30 -0.0228750363 2.015346e-02
sample31 -0.0635070373 6.670368e-02
sample32 0.0685099999 4.955247e-02
sample33 -0.0777764931 1.272070e-01
sample34 0.0157842090 3.024311e-02
sample35 -0.0529628001 -1.500981e-01
sample36 0.0070907876 -2.025320e-01
sample37 -0.0442411928 -1.802109e-01
sample38 -0.0781508420 3.676301e-02
sample39 0.0120330094 3.388883e-02
sample40 -0.0473283956 -1.471581e-01
sample41 0.0228192151 2.673460e-02
sample42 -0.0245361835 7.960877e-02
sample43 0.1036362025 8.229577e-02
sample44 -0.1012234693 -7.049245e-02
sample45 0.0013726773 2.451066e-02
sample46 -0.0558506503 -2.948560e-03
sample47 -0.0380478751 -4.554235e-02
sample48 0.0784340486 -4.888893e-02
sample49 -0.0605168011 1.162469e-02
sample50 0.0530082861 2.737816e-02
sample51 0.1514645369 -5.678262e-02
sample52 0.1860935999 -1.246711e-01
sample53 -0.0064179669 2.701059e-02
sample54 0.0697037575 2.308412e-02
sample55 0.1633577695 -1.366433e-02
sample56 0.1011484014 -4.682135e-02
sample57 0.1730374402 -1.609594e-01
sample58 -0.0071384886 1.666951e-02
sample59 -0.0030458521 -3.005374e-02
sample60 0.0215842087 -2.665887e-01
sample61 0.1510585308 -1.002384e-01
sample62 -0.0925531619 4.845730e-02
sample63 -0.0596315388 4.137107e-02
sample64 -0.0449227263 2.600953e-03
sample65 0.0939382270 4.406949e-02
sample66 0.1063397782 5.710076e-02
sample67 -0.0201580948 -2.361746e-01
sample68 0.0037208314 -2.418539e-02
sample69 -0.0645161986 1.155618e-01
sample70 -0.1013439752 1.351780e-01
sample71 -0.0016466129 2.976775e-02
sample72 0.0328895373 2.835773e-02
sample73 0.0275080384 5.148153e-02
sample74 0.1341718387 7.895302e-02
sample75 0.0951576629 3.943149e-02
sample76 -0.0864719974 -3.035052e-02
sample77 -0.1035749503 2.545326e-02
sample78 -0.1575647813 -4.939477e-02
sample79 0.0189138358 -4.874690e-02
sample80 0.1384142737 -4.313979e-05
sample81 -0.0118846661 6.357908e-02
sample82 -0.1675306659 -3.533968e-02
sample83 -0.0065671187 7.812500e-02
sample84 0.1486890674 3.109095e-02
sample85 -0.0532720404 -7.417986e-02
sample86 -0.1138474950 1.822163e-05
sample87 0.0432865922 -6.080499e-02
sample88 0.0433451186 -1.402486e-01
sample89 0.0331204817 1.395428e-02
sample90 -0.0607413466 8.610386e-02
sample91 -0.0566263889 -1.303769e-01
sample92 -0.0359580723 -1.061605e-01
sample93 -0.0433646455 4.443610e-02
sample94 -0.0477292117 1.059571e-01
sample95 -0.0249595921 3.980510e-02
sample96 0.0035217603 9.293931e-02
sample97 -0.0066051954 1.527234e-01
sample98 0.0020367060 5.579516e-02
sample99 -0.0886621642 3.728371e-02
sample100 -0.1091259596 3.560401e-02
sample101 -0.0739723875 4.317887e-02
sample102 0.0574455795 2.784082e-02
sample103 0.0142733708 -9.706335e-03
sample104 0.0710395577 -4.068331e-02
sample105 0.0980829966 3.452996e-02
sample106 -0.0254260474 -3.628934e-02
sample107 -0.0160655015 9.173398e-02
sample108 -0.0200988301 2.379699e-02
sample109 -0.0389781922 -1.692313e-02
sample110 -0.0326305243 -2.988087e-02
sample111 0.0676935963 6.038248e-02
sample112 0.0167883510 -5.336924e-03
sample113 0.0969214003 2.757701e-02
sample114 -0.0026397981 9.209103e-02
sample115 -0.0308049530 -1.603746e-02
sample116 -0.1240306405 -1.272998e-01
sample117 0.0334728661 -5.392663e-02
sample118 -0.1037152169 -6.252439e-02
sample119 -0.1064170684 -1.196217e-01
sample120 -0.0771357668 1.004935e-01
sample121 -0.0129352292 -3.181916e-02
sample122 0.0847487635 5.568461e-02
sample123 -0.0041335536 -7.693544e-03
sample124 -0.0583462138 8.396474e-02
sample125 0.0634843276 5.232567e-02
sample126 -0.0662582083 1.091730e-01
sample127 -0.0865025601 1.094173e-01
sample128 -0.0627821957 1.471090e-02
sample129 -0.0336274617 4.007777e-02
sample130 -0.0293518107 8.046087e-02
sample131 -0.0469196808 2.209393e-03
sample132 -0.0241745555 1.248608e-01
sample133 0.0907303792 -1.466698e-02
sample134 -0.0350841248 -7.539660e-02
sample135 0.0001334857 -9.185808e-03
sample136 -0.0335874826 9.860184e-02
sample137 -0.0640147297 7.554374e-02
sample138 0.0060964062 1.742782e-02
sample139 -0.0592082788 -5.615005e-02
sample140 0.0427988560 1.099468e-02
sample141 0.0618793323 9.301100e-02
sample142 0.0898552542 -3.573326e-02
sample143 0.0817391036 -8.880528e-02
sample144 0.0787754480 3.821395e-02
sample145 0.1085819544 -1.569461e-01
sample146 -0.0589555050 4.373240e-02
sample147 -0.0495327950 -7.278040e-03
sample148 0.1161590525 -9.078158e-03
sample149 -0.0121575566 -7.788460e-02
sample150 -0.0314511988 -3.520220e-02
sample151 0.0575380967 1.945392e-02
sample152 -0.0494540388 -7.025565e-02
sample153 -0.0941338444 -2.153270e-01
sample154 -0.0335928881 -2.078823e-02
sample155 0.0690459022 2.780362e-02
sample156 0.1039902291 6.292489e-02
sample157 -0.0408645841 -8.065530e-03
sample158 0.1018106325 -7.817018e-03
sample159 -0.0281732494 1.207259e-02
sample160 0.1643052866 -2.977817e-03
sample161 0.0374330071 -8.524589e-02
sample162 -0.0804538219 -8.349638e-02
sample163 -0.0743232324 1.406344e-02
sample164 0.1208804311 2.139522e-02
sample165 0.1608115954 -2.025160e-02
sample166 -0.0425947877 2.660799e-02
sample167 -0.0226849507 4.464258e-02
sample168 -0.0180737336 7.471420e-04
sample169 0.0190780188 -2.645426e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
[,1] [,2]
sample1 -0.0572060227 -1.729087e-02
sample2 0.0875245208 1.112588e-02
sample3 0.0403482602 -3.168994e-02
sample4 -0.0218345996 4.052760e-06
sample5 -0.0150905011 4.795041e-03
sample6 -0.0924362933 4.511003e-02
sample7 -0.0793066751 -1.243823e-02
sample8 -0.1342997187 6.215220e-02
sample9 -0.0338886944 -1.854401e-02
sample10 0.0020547173 1.749421e-02
sample11 0.0037275602 -2.364116e-02
sample12 -0.0753094533 2.772698e-02
sample13 0.0856160091 3.679963e-02
sample14 -0.0737457307 2.668452e-02
sample15 -0.0062111746 -3.554864e-03
sample16 -0.0602355268 6.675115e-02
sample17 0.1086768843 2.524534e-02
sample18 0.0702999472 2.231671e-02
sample19 0.0173785882 -3.024846e-02
sample20 0.0484173812 -3.310904e-02
sample21 0.0124657042 6.517144e-02
sample22 -0.0140989936 -3.159137e-02
sample23 -0.0627028403 -5.393710e-04
sample24 0.0919972100 7.909297e-02
sample25 0.0326998483 -1.945206e-02
sample26 0.1064741246 2.120849e-02
sample27 0.0166058995 -4.964993e-02
sample28 0.0743504770 2.614211e-02
sample29 -0.0511008491 -2.782647e-02
sample30 0.0962250842 -3.974893e-03
sample31 -0.0869563008 5.250819e-02
sample32 0.0271858919 1.552005e-02
sample33 -0.0448364581 6.243160e-03
sample34 0.0718415218 1.469396e-02
sample35 0.0403086451 -1.632629e-02
sample36 -0.1036402827 -1.304320e-02
sample37 -0.0159385744 -3.036525e-02
sample38 0.0182198369 -4.034805e-02
sample39 0.0690363619 8.058350e-03
sample40 -0.0467312750 -2.810325e-02
sample41 0.0263674438 -5.171216e-02
sample42 0.0374578960 -1.268634e-02
sample43 0.0132336869 9.536642e-03
sample44 -0.1119154428 5.028683e-02
sample45 0.0759639367 4.587903e-02
sample46 0.0871885519 -4.670385e-02
sample47 0.0721490571 -1.288540e-02
sample48 0.0005086144 -1.290565e-02
sample49 -0.0858177028 5.173760e-02
sample50 0.0118992665 -7.276215e-02
sample51 -0.0426446855 5.306205e-02
sample52 -0.0381605826 3.086785e-02
sample53 -0.0855757630 6.730043e-02
sample54 0.0261723092 9.184260e-03
sample55 -0.0156418304 4.682404e-04
sample56 0.0307831193 2.597550e-02
sample57 -0.0157242103 4.829381e-02
sample58 -0.0031174404 1.359898e-02
sample59 -0.0373001859 5.868397e-03
sample60 -0.0142609099 5.831654e-03
sample61 -0.0122255144 2.663579e-02
sample62 0.0228002942 -8.692265e-03
sample63 -0.0833127581 5.473229e-02
sample64 -0.1166548159 4.196500e-02
sample65 0.0038808902 8.568590e-03
sample66 0.0011561811 1.766612e-02
sample67 -0.1129311062 -2.608702e-02
sample68 -0.0382526429 -3.804045e-02
sample69 -0.0476502440 4.003241e-03
sample70 -0.0110329882 -2.752719e-02
sample71 0.0096850282 -5.627056e-02
sample72 0.0487124704 -8.800131e-03
sample73 0.0773058132 8.239864e-03
sample74 -0.0102488176 2.454957e-02
sample75 -0.0286613976 -8.387293e-03
sample76 -0.0472655595 -2.129315e-02
sample77 -0.0865043074 -7.296820e-03
sample78 0.1070293698 2.818346e-02
sample79 -0.0165060681 -6.659721e-02
sample80 -0.0206765949 -8.712112e-03
sample81 -0.0050943615 -3.079175e-02
sample82 0.1153622361 -1.647054e-02
sample83 0.0367979217 -2.538114e-03
sample84 0.0199463070 -1.468961e-02
sample85 -0.0827122185 -2.709824e-04
sample86 0.0969487314 -1.699897e-02
sample87 0.0421957457 -1.965953e-02
sample88 0.0215934743 1.566050e-02
sample89 0.0751559502 2.811652e-02
sample90 -0.0057328000 -8.283795e-03
sample91 -0.1134005268 -8.603522e-02
sample92 -0.0101689918 -6.894992e-02
sample93 0.0725967502 -6.003176e-03
sample94 -0.0096878852 -4.693081e-03
sample95 -0.0223502239 -3.139636e-02
sample96 -0.0013232863 -1.963604e-02
sample97 -0.0476541710 1.183660e-02
sample98 0.0269546160 -5.978398e-03
sample99 0.0728179461 4.597884e-02
sample100 -0.0413398038 1.079347e-02
sample101 0.0087536994 -6.796076e-02
sample102 0.0032509529 3.932612e-03
sample103 0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105 0.0294940465 -7.140722e-03
sample106 0.0686472054 1.462895e-02
sample107 0.0748635927 8.401339e-03
sample108 0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110 0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112 0.0570870472 1.066018e-02
sample113 -0.0200110554 1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586 1.089843e-02
sample121 0.0542443861 3.861344e-02
sample122 0.0178575357 3.027138e-02
sample123 0.0775020581 -1.636852e-02
sample124 -0.0460701050 1.814758e-02
sample125 0.0543846585 2.075898e-03
sample126 -0.0729417144 3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128 0.0908136899 3.758801e-02
sample129 0.0552445878 -1.879062e-02
sample130 0.0007128089 -1.294308e-02
sample131 -0.0693311345 7.357082e-03
sample132 -0.0556565156 3.126995e-02
sample133 0.0375870104 -1.977240e-02
sample134 -0.1229130924 3.159495e-02
sample135 0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201 1.040683e-02
sample140 0.0452288969 -1.876279e-02
sample141 -0.0189142561 2.247042e-02
sample142 0.0297545566 1.280524e-02
sample143 0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491 5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147 0.0726083535 -1.239968e-02
sample148 -0.0284795794 3.389732e-02
sample149 0.0082261455 -6.399305e-02
sample150 -0.0765013197 2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152 0.0403422737 -2.714879e-02
sample153 0.0629117719 7.425085e-02
sample154 0.0551622927 -3.548984e-02
sample155 0.0654439133 -1.005306e-02
sample156 0.0209310714 -1.390213e-02
sample157 0.0851522597 6.577150e-03
sample158 0.0208354599 -4.663078e-03
sample159 -0.0498794349 1.913257e-02
sample160 0.0216074437 1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162 0.0963663017 5.705881e-02
sample163 -0.1009542191 7.174224e-02
sample164 0.0109881996 1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357 2.673084e-02
sample167 -0.0825048036 2.278863e-03
sample168 0.0486147429 1.793843e-02
sample169 0.0302506727 8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
[,1] [,2]
sample1 -0.0621842115 -1.364509e-02
sample2 0.0944623785 9.720892e-03
sample3 0.0406196267 -2.236338e-02
sample4 -0.0229316496 -3.932487e-04
sample5 -0.0157330047 3.231033e-03
sample6 -0.0945794025 3.120720e-02
sample7 -0.0854427118 -1.052880e-02
sample8 -0.1376625920 4.286608e-02
sample9 -0.0377115311 -1.415134e-02
sample10 0.0035244506 1.280825e-02
sample11 0.0016639987 -1.717895e-02
sample12 -0.0781403168 1.884368e-02
sample13 0.0938400516 2.838858e-02
sample14 -0.0759839772 1.810989e-02
sample15 -0.0068340837 -2.705361e-03
sample16 -0.0590150849 4.757848e-02
sample17 0.1178805097 2.040526e-02
sample18 0.0767858320 1.756604e-02
sample19 0.0157112113 -2.172867e-02
sample20 0.0485318300 -2.327033e-02
sample21 0.0185928176 4.777095e-02
sample22 -0.0191358702 -2.329775e-02
sample23 -0.0672994194 -1.535656e-03
sample24 0.1047476642 5.935707e-02
sample25 0.0329844953 -1.358036e-02
sample26 0.1154952052 1.741529e-02
sample27 0.0133849853 -3.590922e-02
sample28 0.0821554039 2.042376e-02
sample29 -0.0567643690 -2.123848e-02
sample30 0.1016073931 -1.134728e-03
sample31 -0.0880396372 3.670548e-02
sample32 0.0300363338 1.182406e-02
sample33 -0.0467252272 3.739254e-03
sample34 0.0783666394 1.203777e-02
sample35 0.0424227097 -1.118559e-02
sample36 -0.1107646166 -1.143464e-02
sample37 -0.0191667664 -2.246060e-02
sample38 0.0155968095 -2.909621e-02
sample39 0.0746847148 7.148218e-03
sample40 -0.0517028178 -2.137267e-02
sample41 0.0234979494 -3.723018e-02
sample42 0.0388797356 -8.557228e-03
sample43 0.0149555568 7.210002e-03
sample44 -0.1150305613 3.461805e-02
sample45 0.0846146236 3.486020e-02
sample46 0.0884426404 -3.246853e-02
sample47 0.0748644971 -8.083045e-03
sample48 -0.0012033198 -9.403647e-03
sample49 -0.0872662737 3.616245e-02
sample50 0.0066941314 -5.284863e-02
sample51 -0.0411777630 3.791830e-02
sample52 -0.0379355780 2.180834e-02
sample53 -0.0851639886 4.751761e-02
sample54 0.0288006248 7.184424e-03
sample55 -0.0164920835 5.919925e-05
sample56 0.0355115616 1.951043e-02
sample57 -0.0141146068 3.492409e-02
sample58 -0.0015636132 9.862883e-03
sample59 -0.0390656483 3.590929e-03
sample60 -0.0139454780 3.963030e-03
sample61 -0.0106410274 1.919705e-02
sample62 0.0236748439 -5.922677e-03
sample63 -0.0846790877 3.839102e-02
sample64 -0.1202581015 2.846469e-02
sample65 0.0050548584 6.328644e-03
sample66 0.0028013072 1.291807e-02
sample67 -0.1231623009 -2.112565e-02
sample68 -0.0437782161 -2.845072e-02
sample69 -0.0501199692 2.053469e-03
sample70 -0.0140278645 -2.027157e-02
sample71 0.0057489505 -4.085977e-02
sample72 0.0511212704 -5.522408e-03
sample73 0.0828141409 7.431582e-03
sample74 -0.0085959456 1.772951e-02
sample75 -0.0312180394 -6.636869e-03
sample76 -0.0519051781 -1.640191e-02
sample77 -0.0925924762 -6.907800e-03
sample78 0.1163971046 2.251122e-02
sample79 -0.0240906926 -4.887766e-02
sample80 -0.0221327065 -6.730703e-03
sample81 -0.0072114968 -2.254399e-02
sample82 0.1204416674 -9.907422e-03
sample83 0.0386739485 -1.171663e-03
sample84 0.0195988488 -1.033806e-02
sample85 -0.0877680171 -1.725057e-03
sample86 0.1023541048 -1.062501e-02
sample87 0.0425213089 -1.356865e-02
sample88 0.0244788514 1.180820e-02
sample89 0.0804276691 2.188588e-02
sample90 -0.0074639871 -6.140721e-03
sample91 -0.1278832404 -6.485140e-02
sample92 -0.0162199697 -5.048358e-02
sample93 0.0769344893 -3.045135e-03
sample94 -0.0104345587 -3.593172e-03
sample95 -0.0260058453 -2.330475e-02
sample96 -0.0025018700 -1.433516e-02
sample97 -0.0492358305 7.774183e-03
sample98 0.0279220220 -3.862141e-03
sample99 0.0813921923 3.487339e-02
sample100 -0.0428797405 7.112807e-03
sample101 0.0032855240 -4.940743e-02
sample102 0.0038439317 2.938008e-03
sample103 0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105 0.0314853405 -4.656633e-03
sample106 0.0726456731 1.192390e-02
sample107 0.0807342975 7.508627e-03
sample108 0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110 0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112 0.0599954082 8.820317e-03
sample113 -0.0195006577 1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131 6.937326e-03
sample121 0.0613899126 2.915307e-02
sample122 0.0218424338 2.241775e-02
sample123 0.0809008460 -1.051759e-02
sample124 -0.0472109313 1.239887e-02
sample125 0.0583180947 2.521167e-03
sample126 -0.0753941872 2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128 0.1000212216 2.908091e-02
sample129 0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877 4.091672e-03
sample132 -0.0566219024 2.179861e-02
sample133 0.0384172955 -1.372840e-02
sample134 -0.1280862736 2.077912e-02
sample135 0.0592633273 6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861 6.729304e-03
sample140 0.0468926306 -1.285498e-02
sample141 -0.0186248693 1.605439e-02
sample142 0.0328031246 9.887746e-03
sample143 0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310 3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147 0.0765025670 -7.714769e-03
sample148 -0.0276016641 2.420589e-02
sample149 0.0027545308 -4.653007e-02
sample150 -0.0792296010 1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152 0.0409796547 -1.907063e-02
sample153 0.0734301757 5.528780e-02
sample154 0.0557740684 -2.487723e-02
sample155 0.0689436560 -6.127635e-03
sample156 0.0212272938 -9.747423e-03
sample157 0.0911931194 6.355708e-03
sample158 0.0220840645 -3.016357e-03
sample159 -0.0513244242 1.304175e-02
sample160 0.0246213576 1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162 0.1078802043 4.337260e-02
sample163 -0.1017965082 5.047171e-02
sample164 0.0119430799 9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180 1.899222e-02
sample167 -0.0872832229 1.516582e-04
sample168 0.0540714512 1.397701e-02
sample169 0.0328432652 7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
[,1] [,2]
sample1 0.0133684846 2.195848e-02
sample2 0.0254157197 -1.058416e-02
sample3 -0.0049551479 -4.840017e-03
sample4 0.0310390570 -1.063929e-02
sample5 0.0046941318 -6.488426e-03
sample6 -0.0107406753 -1.026702e-02
sample7 -0.0225157631 2.624712e-04
sample8 0.0141320952 -9.505821e-03
sample9 0.0029681280 2.078210e-02
sample10 0.0131729174 -2.275042e-03
sample11 -0.0004164298 1.994019e-02
sample12 -0.0095211620 3.759883e-02
sample13 0.0091018604 -7.953956e-03
sample14 -0.0106557524 -9.181659e-03
sample15 -0.0249924121 3.262724e-02
sample16 -0.0156216400 1.375700e-02
sample17 -0.0019382446 1.073994e-03
sample18 -0.0221072481 -8.703592e-03
sample19 0.0146917619 -1.311712e-02
sample20 -0.0160353760 1.826290e-02
sample21 0.0035947899 -9.616341e-03
sample22 -0.0225060762 -2.532589e-03
sample23 0.0310000683 3.033060e-03
sample24 0.0499544372 1.809450e-02
sample25 0.0284442301 -1.932558e-02
sample26 0.0188220043 2.146985e-02
sample27 -0.0257763219 -1.999228e-03
sample28 0.0120888648 1.125834e-02
sample29 -0.0236482520 4.426726e-02
sample30 -0.0385486305 -2.055935e-02
sample31 -0.0181539336 -5.877838e-03
sample32 -0.0302630460 -2.607192e-03
sample33 -0.0319565715 -1.562628e-02
sample34 -0.0197970124 9.906813e-03
sample35 -0.0247412713 -5.434440e-03
sample36 -0.0386259060 -3.190394e-02
sample37 -0.0566199273 -4.192574e-02
sample38 -0.0142060273 2.259644e-02
sample39 0.0053589035 1.076485e-02
sample40 -0.0552546493 -3.819896e-02
sample41 -0.0013089975 9.278818e-05
sample42 0.0137252142 -1.664652e-02
sample43 -0.0151259626 -6.290953e-03
sample44 0.0617391754 -1.442883e-02
sample45 0.0231410886 1.163143e-03
sample46 -0.0148898209 -1.384176e-04
sample47 -0.0187252536 1.221690e-02
sample48 0.0432839432 1.416671e-02
sample49 0.0160818605 -3.588745e-02
sample50 0.0059333545 4.067003e-02
sample51 -0.0142914866 7.776270e-03
sample52 -0.0086339952 7.208917e-03
sample53 -0.0207386980 6.272432e-03
sample54 -0.0039856719 -1.316934e-02
sample55 -0.0056217017 5.692315e-03
sample56 0.0000123292 8.978290e-04
sample57 -0.0095805555 1.324253e-02
sample58 -0.0124160295 -7.326376e-03
sample59 -0.0400195442 -1.349736e-02
sample60 -0.0460063358 2.770091e-02
sample61 -0.0245266456 1.470710e-02
sample62 -0.0366022783 -3.437352e-03
sample63 0.0013742171 3.288796e-02
sample64 -0.0070599859 2.739588e-02
sample65 0.0041201911 1.498268e-02
sample66 0.0143173351 -1.968812e-02
sample67 -0.0467477531 -1.929938e-02
sample68 -0.0306751978 -1.436184e-02
sample69 -0.0125317217 4.130407e-03
sample70 -0.0068071487 8.080857e-03
sample71 0.0169170264 -7.027348e-03
sample72 -0.0346909749 -1.333770e-02
sample73 -0.0280506153 1.493843e-02
sample74 -0.0182611498 3.294697e-03
sample75 -0.0120563964 8.974612e-03
sample76 0.0001437236 -4.253184e-02
sample77 0.0065330299 -5.252886e-02
sample78 0.0288278141 -1.127782e-02
sample79 0.0503961481 -1.023318e-02
sample80 -0.0207693429 3.648391e-02
sample81 0.0163562768 -9.074596e-03
sample82 -0.0084317129 -1.478976e-02
sample83 -0.0474097918 -1.103126e-02
sample84 0.0177181395 -7.191197e-03
sample85 -0.0342718548 -3.082360e-02
sample86 -0.0261671791 -1.089491e-02
sample87 -0.0009486358 -2.411514e-02
sample88 0.0020528931 -2.894615e-02
sample89 -0.0189361111 -2.638639e-03
sample90 -0.0009863658 -2.390075e-02
sample91 -0.0124352695 8.153234e-02
sample92 0.0564264106 -8.909537e-03
sample93 -0.0081461774 1.570851e-02
sample94 -0.0054896581 1.547251e-02
sample95 0.0224073150 -4.374348e-04
sample96 0.0173528924 -3.050441e-03
sample97 0.0067948115 5.008237e-03
sample98 -0.0116030825 1.498764e-02
sample99 0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101 0.0124923691 3.091503e-02
sample102 0.0650835386 -1.367400e-02
sample103 -0.0042741828 7.855985e-03
sample104 0.0250591040 -4.171938e-03
sample105 0.0157516368 -3.121990e-02
sample106 0.0060593853 -5.101693e-03
sample107 -0.0098329626 1.044506e-02
sample108 0.0044269853 4.142036e-03
sample109 0.0572473486 1.517542e-02
sample110 0.0090474827 -5.119868e-03
sample111 0.0444263015 7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113 0.0241047399 6.706740e-03
sample114 0.0074558775 -4.728652e-03
sample115 0.0611851433 1.117210e-02
sample116 0.0432646951 -1.380556e-02
sample117 0.0516750066 -3.575617e-02
sample118 0.0139942100 -3.279138e-03
sample119 0.0291722987 5.587946e-02
sample120 0.0103515853 -1.690016e-03
sample121 -0.0091396331 3.552116e-02
sample122 0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124 0.0283466326 3.127845e-03
sample125 0.0016472378 -2.770692e-02
sample126 -0.0286529417 3.489336e-02
sample127 -0.0010224500 7.483214e-03
sample128 0.0209049296 2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968 4.637390e-03
sample132 0.0198526786 5.723983e-04
sample133 0.0088812957 -9.988115e-03
sample134 -0.0137484514 1.172591e-02
sample135 -0.0220314568 1.347465e-02
sample136 -0.0185173353 5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138 0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762 2.456863e-02
sample141 0.0058369763 -1.420854e-02
sample142 0.0207886071 -1.188764e-02
sample143 0.0092832598 -1.324238e-02
sample144 0.0028442140 3.627979e-03
sample145 0.0199749569 2.862202e-03
sample146 -0.0182236697 1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148 0.0065435868 -1.572917e-02
sample149 0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151 0.0245166984 -6.888241e-03
sample152 0.0107259913 3.314630e-02
sample153 0.0550963965 3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574 2.642246e-03
sample156 -0.0117803505 2.698265e-02
sample157 -0.0096167165 1.433840e-02
sample158 -0.0101754772 9.137620e-03
sample159 0.0120662931 -2.565236e-02
sample160 -0.0132238202 2.916023e-03
sample161 0.0274491966 -1.748284e-02
sample162 0.0012482909 3.152261e-02
sample163 0.0042031315 1.830701e-02
sample164 0.0174896157 -1.175915e-02
sample165 0.0097517662 -6.119019e-03
sample166 0.0190134679 -1.121582e-02
sample167 -0.0044140836 4.665585e-03
sample168 0.0049689168 -1.941822e-02
sample169 -0.0209802098 3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
[,1] [,2]
sample1 -0.0515543627 -0.0305856787
sample2 -0.0144993256 0.0236342950
sample3 -0.0371833108 -0.0140263348
sample4 0.0068945388 -0.0132539692
sample5 0.0215035333 -0.0663338101
sample6 -0.0187055152 0.0088773016
sample7 -0.0061521552 0.0064029054
sample8 -0.0210874459 0.0334652901
sample9 0.0516865043 -0.0291142799
sample10 0.0059440366 -0.0527217447
sample11 0.0393010793 -0.0200624712
sample12 -0.0420837100 0.0131331362
sample13 0.0333252565 0.0818552509
sample14 -0.0190062644 0.0160202175
sample15 -0.0030968049 -0.0189230681
sample16 -0.0004452158 0.0018880102
sample17 -0.0185848615 0.0240170131
sample18 -0.0273093598 0.0230213640
sample19 -0.0217761111 -0.0445894441
sample20 0.0245820821 0.0159812738
sample21 0.0034527644 -0.0400016054
sample22 -0.0340789054 0.0039289109
sample23 -0.0010344929 -0.0310161212
sample24 0.0289468503 0.0760962436
sample25 -0.0119098496 -0.0122798760
sample26 -0.0181001057 0.0517892852
sample27 0.0050465417 -0.0086515844
sample28 0.0057491502 0.0358830107
sample29 -0.0051104246 0.0116605117
sample30 -0.0103085904 0.0039678538
sample31 -0.0319929858 0.0090606113
sample32 -0.0036232521 -0.0328202010
sample33 -0.0534742153 0.0024751837
sample34 -0.0067495749 -0.0111000311
sample35 0.0378745721 0.0465929296
sample36 0.0647886800 0.0359987924
sample37 0.0488441236 0.0492906912
sample38 -0.0251514062 0.0197110110
sample39 -0.0085428066 -0.0105117852
sample40 0.0379324087 0.0440810741
sample41 -0.0044199152 -0.0128820644
sample42 -0.0292553573 -0.0067045265
sample43 -0.0077829155 -0.0510178219
sample44 0.0045122248 0.0479660309
sample45 -0.0074444298 -0.0051116726
sample46 -0.0088025512 0.0196186661
sample47 0.0076696301 0.0215947965
sample48 0.0290108585 -0.0175568376
sample49 -0.0141754858 0.0184717099
sample50 0.0006282201 -0.0233054373
sample51 0.0441995177 -0.0410022921
sample52 0.0715329391 -0.0399499475
sample53 -0.0095954087 -0.0029140909
sample54 0.0048933768 -0.0281884386
sample55 0.0327325487 -0.0532290012
sample56 0.0323068984 -0.0256595538
sample57 0.0806603122 -0.0286748097
sample58 -0.0064792049 -0.0006945349
sample59 0.0088958941 0.0067389649
sample60 0.0874124612 0.0431964341
sample61 0.0577604571 -0.0326112099
sample62 -0.0313318464 0.0224391756
sample63 -0.0233625220 0.0125110562
sample64 -0.0086426068 0.0148770341
sample65 0.0025256193 -0.0404466327
sample66 0.0006014071 -0.0471576264
sample67 0.0706087042 0.0516228406
sample68 0.0082301011 0.0033109509
sample69 -0.0475076743 0.0001452708
sample70 -0.0600773716 0.0089986962
sample71 -0.0096321627 -0.0050761187
sample72 -0.0031773546 -0.0166221542
sample73 -0.0113700517 -0.0191726684
sample74 -0.0014179662 -0.0608101325
sample75 0.0041911740 -0.0399981269
sample76 -0.0055326449 0.0353114263
sample77 -0.0260214459 0.0305731380
sample78 -0.0119267436 0.0632236007
sample79 0.0186017239 0.0027402910
sample80 0.0241047889 -0.0472697181
sample81 -0.0220288317 -0.0079577210
sample82 -0.0180751258 0.0639051029
sample83 -0.0256671713 -0.0125898269
sample84 0.0161392598 -0.0567222449
sample85 0.0139988188 0.0322763454
sample86 -0.0198382995 0.0389225776
sample87 0.0266270281 -0.0032979996
sample88 0.0515677078 0.0117902495
sample89 0.0014022125 -0.0140510488
sample90 -0.0375949749 0.0044004551
sample91 0.0310397965 0.0440610926
sample92 0.0270570567 0.0324380452
sample93 -0.0215009202 0.0063993941
sample94 -0.0415702912 -0.0037692077
sample95 -0.0168416047 0.0010019120
sample96 -0.0285582661 -0.0187991000
sample97 -0.0490843868 -0.0266760748
sample98 -0.0171579033 -0.0112897471
sample99 -0.0271316525 0.0232395583
sample100 -0.0301789816 0.0305498693
sample101 -0.0264371151 0.0170723968
sample102 0.0012767734 -0.0248949597
sample103 0.0055214687 -0.0030040587
sample104 0.0251346074 -0.0165212671
sample105 0.0062424215 -0.0400309901
sample106 0.0069768684 0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679 0.0023637162
sample109 -0.0014762845 0.0165583675
sample110 0.0036971063 0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112 0.0046098120 -0.0048009350
sample113 0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453 0.0135805368
sample116 0.0183575759 0.0665377581
sample117 0.0227640036 -0.0012287760
sample118 0.0015695248 0.0472617382
sample119 0.0190084932 0.0590034062
sample120 -0.0449645755 0.0072755697
sample121 0.0077307184 0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123 0.0016959300 0.0028593594
sample124 -0.0365091615 0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408 0.0019165544
sample127 -0.0494064872 0.0088209044
sample128 -0.0155454766 0.0186819802
sample129 -0.0184340400 0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422 0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133 0.0204029276 -0.0282209049
sample134 0.0175513332 0.0262883962
sample135 0.0029009925 0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323 0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139 0.0073103935 0.0308956174
sample140 0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142 0.0268670676 -0.0239229634
sample143 0.0421049126 -0.0110888235
sample144 0.0017253664 -0.0341766012
sample145 0.0681741320 -0.0073526377
sample146 -0.0239965222 0.0118396767
sample147 -0.0063453522 0.0183130585
sample148 0.0230825251 -0.0379753037
sample149 0.0223298673 0.0188909118
sample150 0.0055709108 0.0174179009
sample151 0.0039177786 -0.0233533275
sample152 0.0134325667 0.0302344591
sample153 0.0511990309 0.0730230140
sample154 0.0006698324 0.0154177486
sample155 0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599 0.0154934573
sample158 0.0201775524 -0.0332982124
sample159 -0.0086909001 0.0073496711
sample160 0.0295437331 -0.0555734536
sample161 0.0332754288 0.0033779619
sample162 0.0121954537 0.0433540412
sample163 -0.0173490933 0.0227219128
sample164 0.0143374783 -0.0453542590
sample165 0.0343612593 -0.0511194536
sample166 -0.0157536004 0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919 0.0060747155
sample169 0.0116231468 -0.0015112800
>
> ## 3.3 Plotting VAF
>
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
>
> # JIVE plotVAF
> plotVAF(jiveRes)
>
>
> #########################
> ## PART 4. Plot Results
>
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
>
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Combined plot for loadings from common and distinctive part (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
>
> proc.time()
user system elapsed
13.37 0.42 13.78
|
STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsPCA.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+ tmp <- ggplot_gtable(ggplot_build(a.gplot))
+ leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+ legend <- tmp$grobs[[leg]]
+ return(legend)}
>
> #########################
> ## PART 1. Load data
>
> ## Load data
> data(STATegRa_S3)
>
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend"
>
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
>
> #########################
> ## PART 2. Model Selection
>
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
>
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
>
>
> #########################
> ## PART 3. Component Analysis
>
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
>
> ## 3.2 Exploring scores structures
>
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
1 2
sample1 -0.0781578770 0.0431511332
sample2 0.1192218245 -0.0294086490
sample3 0.0531409398 0.0746847904
sample4 -0.0292975406 0.0005962626
sample5 -0.0202092646 -0.0110458734
sample6 -0.1226089392 -0.1053464507
sample7 -0.1078928111 0.0322475000
sample8 -0.1782895133 -0.1449363250
sample9 -0.0468696400 0.0455166815
sample10 0.0036029118 -0.0420105287
sample11 0.0035567786 0.0566286157
sample12 -0.1006131018 -0.0641380750
sample13 0.1174413176 -0.0907501404
sample14 -0.0981203497 -0.0617736370
sample15 -0.0085335176 0.0087011319
sample16 -0.0783148202 -0.1581297011
sample17 0.1483609791 -0.0638581524
sample18 0.0963085858 -0.0556637824
sample19 0.0217241152 0.0720096811
sample20 0.0635638168 0.0779644815
sample21 0.0201839665 -0.1566386034
sample22 -0.0218270523 0.0764108890
sample23 -0.0852043450 0.0032692851
sample24 0.1287174615 -0.1924557112
sample25 0.0430572826 0.0456572784
sample26 0.1453897228 -0.0541516818
sample27 0.0197488811 0.1185656475
sample28 0.1025337750 -0.0650691239
sample29 -0.0706018736 0.0682981248
sample30 0.1295627627 0.0066772122
sample31 -0.1147450148 -0.1232682688
sample32 0.0374310015 -0.0380174209
sample33 -0.0599518524 -0.0136858189
sample34 0.0984200263 -0.0375320305
sample35 0.0543102318 0.0378094693
sample36 -0.1403619882 0.0343744165
sample37 -0.0228936631 0.0732836300
sample38 0.0222076139 0.0962593408
sample39 0.0941737548 -0.0215197556
sample40 -0.0643796748 0.0687862824
sample41 0.0327637055 0.1232190343
sample42 0.0500429854 0.0292481352
sample43 0.0184496965 -0.0233003706
sample44 -0.1487897159 -0.1171357155
sample45 0.1050773600 -0.1123198968
sample46 0.1151195736 0.1094027770
sample47 0.0962594894 0.0288458210
sample48 -0.0004836863 0.0310274781
sample49 -0.1135207547 -0.1213968206
sample50 0.0123551539 0.1740741442
sample51 -0.0550528257 -0.1258890603
sample52 -0.0499118171 -0.0728552636
sample53 -0.1119773766 -0.1588013649
sample54 0.0360055253 -0.0228571588
sample55 -0.0210418827 -0.0006731812
sample56 0.0434170417 -0.0633128271
sample57 -0.0197820598 -0.1150725136
sample58 -0.0030440017 -0.0326096331
sample59 -0.0500251812 -0.0129420598
sample60 -0.0184271897 -0.0136108772
sample61 -0.0150296846 -0.0635033817
sample62 0.0304763170 0.0201321223
sample63 -0.1102253429 -0.1285978962
sample64 -0.1552588045 -0.0971172584
sample65 0.0058501747 -0.0207112995
sample66 0.0025603971 -0.0424311896
sample67 -0.1546628517 0.0661700169
sample68 -0.0536368459 0.0923682893
sample69 -0.0640333018 -0.0081976547
sample70 -0.0163521110 0.0663237394
sample71 0.0102536467 0.1345924808
sample72 0.0654195750 0.0196122847
sample73 0.1048555057 -0.0220936591
sample74 -0.0123801253 -0.0586108905
sample75 -0.0392079012 0.0209757400
sample76 -0.0648952284 0.0524766390
sample77 -0.1172922275 0.0201193738
sample78 0.1463069443 -0.0708475232
sample79 -0.0265210840 0.1603307073
sample80 -0.0279737467 0.0214201594
sample81 -0.0079213301 0.0738456755
sample82 0.1544237688 0.0361465519
sample83 0.0494210079 0.0050054350
sample84 0.0259037348 0.0346554779
sample85 -0.1116481846 0.0031494622
sample86 0.1306483440 0.0377215009
sample87 0.0554779762 0.0459748153
sample88 0.0301627566 -0.0382203362
sample89 0.1016866725 -0.0694032376
sample90 -0.0086821737 0.0201328456
sample91 -0.1578623204 0.2097807430
sample92 -0.0170935104 0.1655801302
sample93 0.0979805693 0.0121513048
sample94 -0.0131486747 0.0114937040
sample95 -0.0315683987 0.0758862128
sample96 -0.0024128158 0.0470142958
sample97 -0.0634549193 -0.0270321734
sample98 0.0359373224 0.0135490416
sample99 0.1009162550 -0.1124777126
sample100 -0.0551753747 -0.0246488446
sample101 0.0080117116 0.1627367222
sample102 0.0046443026 -0.0095626361
sample103 0.0472523153 0.0940391849
sample104 -0.0198158932 0.0591090461
sample105 0.0400236931 0.0160919801
sample106 0.0923809398 -0.0369019662
sample107 0.1019371785 -0.0224949052
sample108 0.0877090978 0.0128835449
sample109 -0.0864824893 0.0900939086
sample110 0.1223116232 0.0096084324
sample111 -0.0257356948 0.0936173932
sample112 0.0765286928 -0.0270347742
sample113 -0.0258804249 -0.0377494650
sample114 -0.0021141413 0.0882022105
sample115 -0.0303460705 0.0723583826
sample116 -0.0780505680 0.0685058242
sample117 -0.0536897265 0.0911910134
sample118 -0.0666649689 0.0236225945
sample119 -0.1021869967 0.2324920474
sample120 -0.0750218967 -0.0243372669
sample121 0.0756937184 -0.0942957351
sample122 0.0259626596 -0.0731980857
sample123 0.1037846594 0.0369198737
sample124 -0.0611210149 -0.0421718387
sample125 0.0738471624 -0.0066942088
sample126 -0.0972918872 -0.0762638041
sample127 -0.0824700293 0.0096642976
sample128 0.1249407111 -0.0929314865
sample129 0.0734066868 0.0434367347
sample130 0.0003500159 0.0309860142
sample131 -0.0930182678 -0.0155938496
sample132 -0.0736225884 -0.0733021151
sample133 0.0498398128 0.0462438927
sample134 -0.1644871403 -0.0720013408
sample135 0.0752297540 -0.0003820256
sample136 -0.0227148110 0.0495511642
sample137 -0.0564718901 0.0288921019
sample138 -0.0255988902 0.0610860226
sample139 -0.0621215769 -0.0235807957
sample140 0.0604152178 0.0435591181
sample141 -0.0246746115 -0.0532639631
sample142 0.0409561066 -0.0316279492
sample143 0.0077357215 0.0476892699
sample144 -0.0173241943 0.0156781070
sample145 -0.0485470761 -0.1202780677
sample146 -0.0419646648 0.0811283127
sample147 0.0977309082 0.0274842245
sample148 -0.0368255825 -0.0803977069
sample149 0.0072867377 0.1532983286
sample150 -0.1020824030 -0.0624777636
sample151 -0.0305399869 0.0289281389
sample152 0.0533596000 0.0638299793
sample153 0.0891632496 -0.1799598179
sample154 0.0727557970 0.0834159113
sample155 0.0880667965 0.0220821845
sample156 0.0276559204 0.0326627456
sample157 0.1155032445 -0.0183618773
sample158 0.0281507606 0.0104937980
sample159 -0.0663235765 -0.0443833571
sample160 0.0302643999 -0.0404264379
sample161 -0.0114713797 0.0591022423
sample162 0.1337089275 -0.1398145847
sample163 -0.1330124563 -0.1688783614
sample164 0.0150335370 -0.0028411551
sample165 -0.0076520036 0.0164129625
sample166 -0.0367794932 -0.0630659046
sample167 -0.1111989920 -0.0030055840
sample168 0.0672981833 -0.0446276799
sample169 0.0413005845 -0.0224396625
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
1 2
sample1 0.0420512181 0.0867864545
sample2 0.0820827815 -0.0410981470
sample3 -0.0155904094 -0.0195178158
sample4 0.1001335392 -0.0410790337
sample5 0.0153463373 -0.0253260441
sample6 -0.0340327987 -0.0408225153
sample7 -0.0722580436 0.0002335663
sample8 0.0457499023 -0.0370022617
sample9 0.0086254057 0.0820184816
sample10 0.0423596429 -0.0083925644
sample11 -0.0022544297 0.0787767049
sample12 -0.0322102827 0.1479824604
sample13 0.0293895990 -0.0306754114
sample14 -0.0337484532 -0.0367507479
sample15 -0.0815535786 0.1275625958
sample16 -0.0508449552 0.0540601327
sample17 -0.0062595844 0.0041022527
sample18 -0.0705641261 -0.0351046199
sample19 0.0476835826 -0.0509596357
sample20 -0.0522957957 0.0715525446
sample21 0.0119124601 -0.0376097993
sample22 -0.0724396196 -0.0095619294
sample23 0.0992530747 0.0134285543
sample24 0.1595128014 0.0728648919
sample25 0.0920689129 -0.0749758547
sample26 0.0595545169 0.0848962463
sample27 -0.0826486628 -0.0086728761
sample28 0.0384792629 0.0440963130
sample29 -0.0777665745 0.1735313265
sample30 -0.1229474360 -0.0819000379
sample31 -0.0579848767 -0.0238646031
sample32 -0.0970395085 -0.0111423452
sample33 -0.1017594078 -0.0630438051
sample34 -0.0637922001 0.0377943364
sample35 -0.0789980343 -0.0229720685
sample36 -0.1224938155 -0.1274952043
sample37 -0.1798821366 -0.1673420700
sample38 -0.0466302592 0.0888166140
sample39 0.0168688469 0.0421533062
sample40 -0.1756393309 -0.1526635653
sample41 -0.0042372256 0.0004933159
sample42 0.0447844982 -0.0651504682
sample43 -0.0482312186 -0.0253527421
sample44 0.1986715595 -0.0545789668
sample45 0.0741836799 0.0054697635
sample46 -0.0478772004 -0.0007066599
sample47 -0.0608185021 0.0481625474
sample48 0.1381492536 0.0578283210
sample49 0.0530515513 -0.1405538619
sample50 0.0173803634 0.1602394780
sample51 -0.0462558355 0.0303470675
sample52 -0.0280060706 0.0280385482
sample53 -0.0667620985 0.0237699493
sample54 -0.0121836219 -0.0521354322
sample55 -0.0182395457 0.0221328730
sample56 0.0001257169 0.0030904880
sample57 -0.0316668750 0.0530185864
sample58 -0.0393919584 -0.0297798178
sample59 -0.1278292022 -0.0546524234
sample60 -0.1486972969 0.1069158472
sample61 -0.0793117697 0.0569796117
sample62 -0.1172802680 -0.0149192989
sample63 0.0028730611 0.1300515947
sample64 -0.0237360803 0.1073285226
sample65 0.0126535348 0.0589807755
sample66 0.0468189974 -0.0771075152
sample67 -0.1494260646 -0.0769855813
sample68 -0.0977963124 -0.0577345061
sample69 -0.0403090285 0.0156044466
sample70 -0.0221534321 0.0315445347
sample71 0.0546432120 -0.0272393827
sample72 -0.1107490622 -0.0537314366
sample73 -0.0906760455 0.0579969944
sample74 -0.0586557807 0.0121422659
sample75 -0.0390493893 0.0349285125
sample76 0.0022955583 -0.1676557647
sample77 0.0232087967 -0.2067302910
sample78 0.0929756431 -0.0434945092
sample79 0.1619496112 -0.0378115614
sample80 -0.0680361196 0.1424666416
sample81 0.0530780489 -0.0358349746
sample82 -0.0266821825 -0.0577442905
sample83 -0.1517239085 -0.0448547785
sample84 0.0570964459 -0.0273813917
sample85 -0.1086291936 -0.1228116382
sample86 -0.0833860752 -0.0442910422
sample87 -0.0022020063 -0.0943905906
sample88 0.0078225308 -0.1140509505
sample89 -0.0611057531 -0.0094584776
sample90 -0.0022934018 -0.0936252310
sample91 -0.0433576080 0.3205989150
sample92 0.1815337062 -0.0334682762
sample93 -0.0267629479 0.0614431116
sample94 -0.0181878820 0.0605092584
sample95 0.0720374104 -0.0013045469
sample96 0.0559711215 -0.0118790935
sample97 0.0217406841 0.0195414048
sample98 -0.0379176979 0.0588359577
sample99 0.0792426767 -0.0151279432
sample100 -0.0222117247 -0.0023321063
sample101 0.0387231308 0.1224230482
sample102 0.2094611251 -0.0516450127
sample103 -0.0138480117 0.0301055386
sample104 0.0807987103 -0.0162720501
sample105 0.0520487505 -0.1229666128
sample106 0.0192614348 -0.0185240186
sample107 -0.0319018080 0.0405124980
sample108 0.0140691167 0.0163421766
sample109 0.1831932346 0.0613003486
sample110 0.0292791339 -0.0199849837
sample111 0.1423250548 0.0327338724
sample112 -0.0426332486 -0.0029082657
sample113 0.0771904281 0.0268729871
sample114 0.0241637515 -0.0184077512
sample115 0.1959017481 0.0460125733
sample116 0.1394478076 -0.0530810112
sample117 0.1672357823 -0.1386540258
sample118 0.0448345943 -0.0117623549
sample119 0.0910397229 0.2217435951
sample120 0.0331389026 -0.0057275455
sample121 -0.0307568175 0.1392504532
sample122 0.0839778399 -0.0291999108
sample123 -0.0239652253 -0.0642161551
sample124 0.0909148671 0.0130415759
sample125 0.0065345302 -0.1092631562
sample126 -0.0935310098 0.1368286015
sample127 -0.0035390239 0.0292757138
sample128 0.0660299760 0.1018561568
sample129 -0.0693642134 -0.0695417266
sample130 -0.0008498375 -0.0669702423
sample131 -0.0431023511 0.0174065760
sample132 0.0637036459 0.0029371367
sample133 0.0289493424 -0.0390818534
sample134 -0.0446199122 0.0456332661
sample135 -0.0712334556 0.0521637561
sample136 -0.0596273531 0.0197304052
sample137 -0.0793155750 -0.0380623828
sample138 0.0973545794 -0.0454219697
sample139 -0.0539908325 -0.1534326888
sample140 -0.0850824080 0.0955819157
sample141 0.0192676780 -0.0554451514
sample142 0.0672261370 -0.0461324669
sample143 0.0303730840 -0.0519260848
sample144 0.0089363446 0.0145815399
sample145 0.0638775193 0.0122250448
sample146 -0.0585857691 0.0063088405
sample147 -0.0894136712 -0.1124611461
sample148 0.0216364743 -0.0615970695
sample149 0.0515419582 -0.0839901357
sample150 -0.0568282637 -0.0124469451
sample151 0.0789530375 -0.0261833001
sample152 0.0330760511 0.1306443803
sample153 0.1751944876 0.1497718161
sample154 -0.0421423767 -0.0037006110
sample155 -0.0680178114 0.0095714801
sample156 -0.0388909813 0.1057566036
sample157 -0.0314766494 0.0561368190
sample158 -0.0329619407 0.0353948724
sample159 0.0398412653 -0.1007376584
sample160 -0.0424938691 0.0108496330
sample161 0.0888371119 -0.0679702478
sample162 0.0027484373 0.1237838859
sample163 0.0126107986 0.0725428512
sample164 0.0566776897 -0.0458326120
sample165 0.0315335404 -0.0236363331
sample166 0.0612056094 -0.0425236953
sample167 -0.0142730902 0.0179308934
sample168 0.0169501202 -0.0769619716
sample169 -0.0675078891 0.0131506827
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
1 2
sample1 -0.0012327701 -1.635713e-01
sample2 -0.0724349259 -6.022173e-03
sample3 -0.0188459776 -1.080032e-01
sample4 0.0390145604 3.111745e-04
sample5 0.1774812187 -2.996371e-02
sample6 -0.0451443118 -3.455903e-02
sample7 -0.0226466892 -7.019462e-03
sample8 -0.1033678586 -9.857717e-03
sample9 0.1350010070 8.979167e-02
sample10 0.1259888564 -5.097881e-02
sample11 0.0979786847 7.086597e-02
sample12 -0.0863017339 -8.620324e-02
sample13 -0.1381402454 1.827994e-01
sample14 -0.0615073102 -2.642825e-02
sample15 0.0381599059 -3.101610e-02
sample16 -0.0048775299 1.271116e-03
sample17 -0.0788479927 -1.547644e-02
sample18 -0.0884187850 -3.795543e-02
sample19 0.0703045314 -1.084001e-01
sample20 -0.0025587538 7.975939e-02
sample21 0.0941603937 -4.126853e-02
sample22 -0.0550273471 -7.806668e-02
sample23 0.0679496155 -4.102003e-02
sample24 -0.1310962192 1.649286e-01
sample25 0.0113585750 -4.426877e-02
sample26 -0.1402945163 2.016439e-02
sample27 0.0261559525 1.589540e-03
sample28 -0.0724198537 5.850503e-02
sample29 -0.0330059567 2.061884e-03
sample30 -0.0228752776 -2.015429e-02
sample31 -0.0635066077 -6.670387e-02
sample32 0.0685100382 -4.955270e-02
sample33 -0.0777763835 -1.272076e-01
sample34 0.0157843108 -3.024338e-02
sample35 -0.0529635510 1.500975e-01
sample36 0.0070896869 2.025316e-01
sample37 -0.0442424737 1.802098e-01
sample38 -0.0781511910 -3.676343e-02
sample39 0.0120332751 -3.388879e-02
sample40 -0.0473295721 1.471571e-01
sample41 0.0228188479 -2.673470e-02
sample42 -0.0245359284 -7.960883e-02
sample43 0.1036363997 -8.229571e-02
sample44 -0.1012227926 7.049320e-02
sample45 0.0013733984 -2.451040e-02
sample46 -0.0558511301 2.947961e-03
sample47 -0.0380482220 4.554190e-02
sample48 0.0784341674 4.888975e-02
sample49 -0.0605162525 -1.162455e-02
sample50 0.0530077999 -2.737792e-02
sample51 0.1514646877 5.678307e-02
sample52 0.1860934155 1.246717e-01
sample53 -0.0064175387 -2.701056e-02
sample54 0.0697038851 -2.308406e-02
sample55 0.1633576776 1.366477e-02
sample56 0.1011485179 4.682163e-02
sample57 0.1730373119 1.609599e-01
sample58 -0.0071384313 -1.666969e-02
sample59 -0.0030462564 3.005323e-02
sample60 0.0215831084 2.665883e-01
sample61 0.1510582650 1.002386e-01
sample62 -0.0925533946 -4.845811e-02
sample63 -0.0596309841 -4.137082e-02
sample64 -0.0449224890 -2.600764e-03
sample65 0.0939384694 -4.406910e-02
sample66 0.1063402119 -5.710033e-02
sample67 -0.0201594793 2.361740e-01
sample68 0.0037201392 2.418494e-02
sample69 -0.0645159738 -1.155620e-01
sample70 -0.1013438937 -1.351784e-01
sample71 -0.0016468700 -2.976769e-02
sample72 0.0328892785 -2.835825e-02
sample73 0.0275080784 -5.148188e-02
sample74 0.1341721166 -7.895280e-02
sample75 0.0951575816 -3.943130e-02
sample76 -0.0864723137 3.035014e-02
sample77 -0.1035749626 -2.545355e-02
sample78 -0.1575643575 4.939451e-02
sample79 0.0189135278 4.874747e-02
sample80 0.1384140174 4.344135e-05
sample81 -0.0118846197 -6.357899e-02
sample82 -0.1675309041 3.533879e-02
sample83 -0.0065672975 -7.812575e-02
sample84 0.1486891901 -3.109039e-02
sample85 -0.0532726124 7.417928e-02
sample86 -0.1138477975 -1.914105e-05
sample87 0.0432862624 6.080488e-02
sample88 0.0433448811 1.402486e-01
sample89 0.0331206566 -1.395452e-02
sample90 -0.0607411936 -8.610415e-02
sample91 -0.0566276753 1.303770e-01
sample92 -0.0359585063 1.061610e-01
sample93 -0.0433645836 -4.443641e-02
sample94 -0.0477289998 -1.059572e-01
sample95 -0.0249595781 -3.980490e-02
sample96 0.0035220000 -9.293912e-02
sample97 -0.0066046319 -1.527232e-01
sample98 0.0020367375 -5.579530e-02
sample99 -0.0886613967 -3.728370e-02
sample100 -0.1091258527 -3.560432e-02
sample101 -0.0739727369 -4.317893e-02
sample102 0.0574462440 -2.783987e-02
sample103 0.0142729898 9.706213e-03
sample104 0.0710394305 4.068380e-02
sample105 0.0980831801 -3.452967e-02
sample106 -0.0254259261 3.628923e-02
sample107 -0.0160651931 -9.173423e-02
sample108 -0.0200987307 -2.379710e-02
sample109 -0.0389781160 1.692387e-02
sample110 -0.0326305136 2.988070e-02
sample111 0.0676937963 -6.038172e-02
sample112 0.0167883555 5.336714e-03
sample113 0.0969218106 -2.757633e-02
sample114 -0.0026397947 -9.209103e-02
sample115 -0.0308047526 1.603819e-02
sample116 -0.1240309233 1.273000e-01
sample117 0.0334727860 5.392724e-02
sample118 -0.1037153934 6.252434e-02
sample119 -0.1064180360 1.196220e-01
sample120 -0.0771353393 -1.004935e-01
sample121 -0.0129350113 3.181913e-02
sample122 0.0847494182 -5.568404e-02
sample123 -0.0041337322 7.693191e-03
sample124 -0.0583456078 -8.396440e-02
sample125 0.0634845408 -5.232568e-02
sample126 -0.0662578986 -1.091732e-01
sample127 -0.0865023273 -1.094174e-01
sample128 -0.0627815760 -1.471080e-02
sample129 -0.0336276621 -4.007836e-02
sample130 -0.0293517026 -8.046106e-02
sample131 -0.0469197721 -2.209541e-03
sample132 -0.0241737988 -1.248604e-01
sample133 0.0907302648 1.466720e-02
sample134 -0.0350842659 7.539665e-02
sample135 0.0001333118 9.185478e-03
sample136 -0.0335875476 -9.860216e-02
sample137 -0.0640148582 -7.554423e-02
sample138 0.0060964756 -1.742748e-02
sample139 -0.0592085388 5.614960e-02
sample140 0.0427985411 -1.099491e-02
sample141 0.0618798247 -9.301074e-02
sample142 0.0898554588 3.573371e-02
sample143 0.0817387565 8.880552e-02
sample144 0.0787755171 -3.821366e-02
sample145 0.1085820919 1.569468e-01
sample146 -0.0589558479 -4.373280e-02
sample147 -0.0495331186 7.277256e-03
sample148 0.1161593528 9.078622e-03
sample149 -0.0121582031 7.788454e-02
sample150 -0.0314512698 3.520205e-02
sample151 0.0575382394 -1.945344e-02
sample152 -0.0494543460 7.025567e-02
sample153 -0.0941332868 2.153277e-01
sample154 -0.0335933288 2.078779e-02
sample155 0.0690457622 -2.780383e-02
sample156 0.1039902098 -6.292470e-02
sample157 -0.0408645660 8.065207e-03
sample158 0.1018105012 7.817168e-03
sample159 -0.0281729886 -1.207249e-02
sample160 0.1643053272 2.978117e-03
sample161 0.0374327730 8.524625e-02
sample162 -0.0804534728 8.349623e-02
sample163 -0.0743225995 -1.406319e-02
sample164 0.1208806543 -2.139472e-02
sample165 0.1608115558 2.025215e-02
sample166 -0.0425943423 -2.660781e-02
sample167 -0.0226848989 -4.464253e-02
sample168 -0.0180735019 -7.472677e-04
sample169 0.0190778664 2.645402e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
[,1] [,2]
sample1 -0.0572060227 -1.729087e-02
sample2 0.0875245208 1.112588e-02
sample3 0.0403482602 -3.168994e-02
sample4 -0.0218345996 4.052760e-06
sample5 -0.0150905011 4.795041e-03
sample6 -0.0924362933 4.511003e-02
sample7 -0.0793066751 -1.243823e-02
sample8 -0.1342997187 6.215220e-02
sample9 -0.0338886944 -1.854401e-02
sample10 0.0020547173 1.749421e-02
sample11 0.0037275602 -2.364116e-02
sample12 -0.0753094533 2.772698e-02
sample13 0.0856160091 3.679963e-02
sample14 -0.0737457307 2.668452e-02
sample15 -0.0062111746 -3.554864e-03
sample16 -0.0602355268 6.675115e-02
sample17 0.1086768843 2.524534e-02
sample18 0.0702999472 2.231671e-02
sample19 0.0173785882 -3.024846e-02
sample20 0.0484173812 -3.310904e-02
sample21 0.0124657042 6.517144e-02
sample22 -0.0140989936 -3.159137e-02
sample23 -0.0627028403 -5.393710e-04
sample24 0.0919972100 7.909297e-02
sample25 0.0326998483 -1.945206e-02
sample26 0.1064741246 2.120849e-02
sample27 0.0166058995 -4.964993e-02
sample28 0.0743504770 2.614211e-02
sample29 -0.0511008491 -2.782647e-02
sample30 0.0962250842 -3.974893e-03
sample31 -0.0869563008 5.250819e-02
sample32 0.0271858919 1.552005e-02
sample33 -0.0448364581 6.243160e-03
sample34 0.0718415218 1.469396e-02
sample35 0.0403086451 -1.632629e-02
sample36 -0.1036402827 -1.304320e-02
sample37 -0.0159385744 -3.036525e-02
sample38 0.0182198369 -4.034805e-02
sample39 0.0690363619 8.058350e-03
sample40 -0.0467312750 -2.810325e-02
sample41 0.0263674438 -5.171216e-02
sample42 0.0374578960 -1.268634e-02
sample43 0.0132336869 9.536642e-03
sample44 -0.1119154428 5.028683e-02
sample45 0.0759639367 4.587903e-02
sample46 0.0871885519 -4.670385e-02
sample47 0.0721490571 -1.288540e-02
sample48 0.0005086144 -1.290565e-02
sample49 -0.0858177028 5.173760e-02
sample50 0.0118992665 -7.276215e-02
sample51 -0.0426446855 5.306205e-02
sample52 -0.0381605826 3.086785e-02
sample53 -0.0855757630 6.730043e-02
sample54 0.0261723092 9.184260e-03
sample55 -0.0156418304 4.682404e-04
sample56 0.0307831193 2.597550e-02
sample57 -0.0157242103 4.829381e-02
sample58 -0.0031174404 1.359898e-02
sample59 -0.0373001859 5.868397e-03
sample60 -0.0142609099 5.831654e-03
sample61 -0.0122255144 2.663579e-02
sample62 0.0228002942 -8.692265e-03
sample63 -0.0833127581 5.473229e-02
sample64 -0.1166548159 4.196500e-02
sample65 0.0038808902 8.568590e-03
sample66 0.0011561811 1.766612e-02
sample67 -0.1129311062 -2.608702e-02
sample68 -0.0382526429 -3.804045e-02
sample69 -0.0476502440 4.003241e-03
sample70 -0.0110329882 -2.752719e-02
sample71 0.0096850282 -5.627056e-02
sample72 0.0487124704 -8.800131e-03
sample73 0.0773058132 8.239864e-03
sample74 -0.0102488176 2.454957e-02
sample75 -0.0286613976 -8.387293e-03
sample76 -0.0472655595 -2.129315e-02
sample77 -0.0865043074 -7.296820e-03
sample78 0.1070293698 2.818346e-02
sample79 -0.0165060681 -6.659721e-02
sample80 -0.0206765949 -8.712112e-03
sample81 -0.0050943615 -3.079175e-02
sample82 0.1153622361 -1.647054e-02
sample83 0.0367979217 -2.538114e-03
sample84 0.0199463070 -1.468961e-02
sample85 -0.0827122185 -2.709824e-04
sample86 0.0969487314 -1.699897e-02
sample87 0.0421957457 -1.965953e-02
sample88 0.0215934743 1.566050e-02
sample89 0.0751559502 2.811652e-02
sample90 -0.0057328000 -8.283795e-03
sample91 -0.1134005268 -8.603522e-02
sample92 -0.0101689918 -6.894992e-02
sample93 0.0725967502 -6.003176e-03
sample94 -0.0096878852 -4.693081e-03
sample95 -0.0223502239 -3.139636e-02
sample96 -0.0013232863 -1.963604e-02
sample97 -0.0476541710 1.183660e-02
sample98 0.0269546160 -5.978398e-03
sample99 0.0728179461 4.597884e-02
sample100 -0.0413398038 1.079347e-02
sample101 0.0087536994 -6.796076e-02
sample102 0.0032509529 3.932612e-03
sample103 0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105 0.0294940465 -7.140722e-03
sample106 0.0686472054 1.462895e-02
sample107 0.0748635927 8.401339e-03
sample108 0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110 0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112 0.0570870472 1.066018e-02
sample113 -0.0200110554 1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586 1.089843e-02
sample121 0.0542443861 3.861344e-02
sample122 0.0178575357 3.027138e-02
sample123 0.0775020581 -1.636852e-02
sample124 -0.0460701050 1.814758e-02
sample125 0.0543846585 2.075898e-03
sample126 -0.0729417144 3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128 0.0908136899 3.758801e-02
sample129 0.0552445878 -1.879062e-02
sample130 0.0007128089 -1.294308e-02
sample131 -0.0693311345 7.357082e-03
sample132 -0.0556565156 3.126995e-02
sample133 0.0375870104 -1.977240e-02
sample134 -0.1229130924 3.159495e-02
sample135 0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201 1.040683e-02
sample140 0.0452288969 -1.876279e-02
sample141 -0.0189142561 2.247042e-02
sample142 0.0297545566 1.280524e-02
sample143 0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491 5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147 0.0726083535 -1.239968e-02
sample148 -0.0284795794 3.389732e-02
sample149 0.0082261455 -6.399305e-02
sample150 -0.0765013197 2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152 0.0403422737 -2.714879e-02
sample153 0.0629117719 7.425085e-02
sample154 0.0551622927 -3.548984e-02
sample155 0.0654439133 -1.005306e-02
sample156 0.0209310714 -1.390213e-02
sample157 0.0851522597 6.577150e-03
sample158 0.0208354599 -4.663078e-03
sample159 -0.0498794349 1.913257e-02
sample160 0.0216074437 1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162 0.0963663017 5.705881e-02
sample163 -0.1009542191 7.174224e-02
sample164 0.0109881996 1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357 2.673084e-02
sample167 -0.0825048036 2.278863e-03
sample168 0.0486147429 1.793843e-02
sample169 0.0302506727 8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
[,1] [,2]
sample1 -0.0621842115 -1.364509e-02
sample2 0.0944623785 9.720892e-03
sample3 0.0406196267 -2.236338e-02
sample4 -0.0229316496 -3.932487e-04
sample5 -0.0157330047 3.231033e-03
sample6 -0.0945794025 3.120720e-02
sample7 -0.0854427118 -1.052880e-02
sample8 -0.1376625920 4.286608e-02
sample9 -0.0377115311 -1.415134e-02
sample10 0.0035244506 1.280825e-02
sample11 0.0016639987 -1.717895e-02
sample12 -0.0781403168 1.884368e-02
sample13 0.0938400516 2.838858e-02
sample14 -0.0759839772 1.810989e-02
sample15 -0.0068340837 -2.705361e-03
sample16 -0.0590150849 4.757848e-02
sample17 0.1178805097 2.040526e-02
sample18 0.0767858320 1.756604e-02
sample19 0.0157112113 -2.172867e-02
sample20 0.0485318300 -2.327033e-02
sample21 0.0185928176 4.777095e-02
sample22 -0.0191358702 -2.329775e-02
sample23 -0.0672994194 -1.535656e-03
sample24 0.1047476642 5.935707e-02
sample25 0.0329844953 -1.358036e-02
sample26 0.1154952052 1.741529e-02
sample27 0.0133849853 -3.590922e-02
sample28 0.0821554039 2.042376e-02
sample29 -0.0567643690 -2.123848e-02
sample30 0.1016073931 -1.134728e-03
sample31 -0.0880396372 3.670548e-02
sample32 0.0300363338 1.182406e-02
sample33 -0.0467252272 3.739254e-03
sample34 0.0783666394 1.203777e-02
sample35 0.0424227097 -1.118559e-02
sample36 -0.1107646166 -1.143464e-02
sample37 -0.0191667664 -2.246060e-02
sample38 0.0155968095 -2.909621e-02
sample39 0.0746847148 7.148218e-03
sample40 -0.0517028178 -2.137267e-02
sample41 0.0234979494 -3.723018e-02
sample42 0.0388797356 -8.557228e-03
sample43 0.0149555568 7.210002e-03
sample44 -0.1150305613 3.461805e-02
sample45 0.0846146236 3.486020e-02
sample46 0.0884426404 -3.246853e-02
sample47 0.0748644971 -8.083045e-03
sample48 -0.0012033198 -9.403647e-03
sample49 -0.0872662737 3.616245e-02
sample50 0.0066941314 -5.284863e-02
sample51 -0.0411777630 3.791830e-02
sample52 -0.0379355780 2.180834e-02
sample53 -0.0851639886 4.751761e-02
sample54 0.0288006248 7.184424e-03
sample55 -0.0164920835 5.919925e-05
sample56 0.0355115616 1.951043e-02
sample57 -0.0141146068 3.492409e-02
sample58 -0.0015636132 9.862883e-03
sample59 -0.0390656483 3.590929e-03
sample60 -0.0139454780 3.963030e-03
sample61 -0.0106410274 1.919705e-02
sample62 0.0236748439 -5.922677e-03
sample63 -0.0846790877 3.839102e-02
sample64 -0.1202581015 2.846469e-02
sample65 0.0050548584 6.328644e-03
sample66 0.0028013072 1.291807e-02
sample67 -0.1231623009 -2.112565e-02
sample68 -0.0437782161 -2.845072e-02
sample69 -0.0501199692 2.053469e-03
sample70 -0.0140278645 -2.027157e-02
sample71 0.0057489505 -4.085977e-02
sample72 0.0511212704 -5.522408e-03
sample73 0.0828141409 7.431582e-03
sample74 -0.0085959456 1.772951e-02
sample75 -0.0312180394 -6.636869e-03
sample76 -0.0519051781 -1.640191e-02
sample77 -0.0925924762 -6.907800e-03
sample78 0.1163971046 2.251122e-02
sample79 -0.0240906926 -4.887766e-02
sample80 -0.0221327065 -6.730703e-03
sample81 -0.0072114968 -2.254399e-02
sample82 0.1204416674 -9.907422e-03
sample83 0.0386739485 -1.171663e-03
sample84 0.0195988488 -1.033806e-02
sample85 -0.0877680171 -1.725057e-03
sample86 0.1023541048 -1.062501e-02
sample87 0.0425213089 -1.356865e-02
sample88 0.0244788514 1.180820e-02
sample89 0.0804276691 2.188588e-02
sample90 -0.0074639871 -6.140721e-03
sample91 -0.1278832404 -6.485140e-02
sample92 -0.0162199697 -5.048358e-02
sample93 0.0769344893 -3.045135e-03
sample94 -0.0104345587 -3.593172e-03
sample95 -0.0260058453 -2.330475e-02
sample96 -0.0025018700 -1.433516e-02
sample97 -0.0492358305 7.774183e-03
sample98 0.0279220220 -3.862141e-03
sample99 0.0813921923 3.487339e-02
sample100 -0.0428797405 7.112807e-03
sample101 0.0032855240 -4.940743e-02
sample102 0.0038439317 2.938008e-03
sample103 0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105 0.0314853405 -4.656633e-03
sample106 0.0726456731 1.192390e-02
sample107 0.0807342975 7.508627e-03
sample108 0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110 0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112 0.0599954082 8.820317e-03
sample113 -0.0195006577 1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131 6.937326e-03
sample121 0.0613899126 2.915307e-02
sample122 0.0218424338 2.241775e-02
sample123 0.0809008460 -1.051759e-02
sample124 -0.0472109313 1.239887e-02
sample125 0.0583180947 2.521167e-03
sample126 -0.0753941872 2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128 0.1000212216 2.908091e-02
sample129 0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877 4.091672e-03
sample132 -0.0566219024 2.179861e-02
sample133 0.0384172955 -1.372840e-02
sample134 -0.1280862736 2.077912e-02
sample135 0.0592633273 6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861 6.729304e-03
sample140 0.0468926306 -1.285498e-02
sample141 -0.0186248693 1.605439e-02
sample142 0.0328031246 9.887746e-03
sample143 0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310 3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147 0.0765025670 -7.714769e-03
sample148 -0.0276016641 2.420589e-02
sample149 0.0027545308 -4.653007e-02
sample150 -0.0792296010 1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152 0.0409796547 -1.907063e-02
sample153 0.0734301757 5.528780e-02
sample154 0.0557740684 -2.487723e-02
sample155 0.0689436560 -6.127635e-03
sample156 0.0212272938 -9.747423e-03
sample157 0.0911931194 6.355708e-03
sample158 0.0220840645 -3.016357e-03
sample159 -0.0513244242 1.304175e-02
sample160 0.0246213576 1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162 0.1078802043 4.337260e-02
sample163 -0.1017965082 5.047171e-02
sample164 0.0119430799 9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180 1.899222e-02
sample167 -0.0872832229 1.516582e-04
sample168 0.0540714512 1.397701e-02
sample169 0.0328432652 7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
[,1] [,2]
sample1 0.0133684846 2.195848e-02
sample2 0.0254157197 -1.058416e-02
sample3 -0.0049551479 -4.840017e-03
sample4 0.0310390570 -1.063929e-02
sample5 0.0046941318 -6.488426e-03
sample6 -0.0107406753 -1.026702e-02
sample7 -0.0225157631 2.624712e-04
sample8 0.0141320952 -9.505821e-03
sample9 0.0029681280 2.078210e-02
sample10 0.0131729174 -2.275042e-03
sample11 -0.0004164298 1.994019e-02
sample12 -0.0095211620 3.759883e-02
sample13 0.0091018604 -7.953956e-03
sample14 -0.0106557524 -9.181659e-03
sample15 -0.0249924121 3.262724e-02
sample16 -0.0156216400 1.375700e-02
sample17 -0.0019382446 1.073994e-03
sample18 -0.0221072481 -8.703592e-03
sample19 0.0146917619 -1.311712e-02
sample20 -0.0160353760 1.826290e-02
sample21 0.0035947899 -9.616341e-03
sample22 -0.0225060762 -2.532589e-03
sample23 0.0310000683 3.033060e-03
sample24 0.0499544372 1.809450e-02
sample25 0.0284442301 -1.932558e-02
sample26 0.0188220043 2.146985e-02
sample27 -0.0257763219 -1.999228e-03
sample28 0.0120888648 1.125834e-02
sample29 -0.0236482520 4.426726e-02
sample30 -0.0385486305 -2.055935e-02
sample31 -0.0181539336 -5.877838e-03
sample32 -0.0302630460 -2.607192e-03
sample33 -0.0319565715 -1.562628e-02
sample34 -0.0197970124 9.906813e-03
sample35 -0.0247412713 -5.434440e-03
sample36 -0.0386259060 -3.190394e-02
sample37 -0.0566199273 -4.192574e-02
sample38 -0.0142060273 2.259644e-02
sample39 0.0053589035 1.076485e-02
sample40 -0.0552546493 -3.819896e-02
sample41 -0.0013089975 9.278818e-05
sample42 0.0137252142 -1.664652e-02
sample43 -0.0151259626 -6.290953e-03
sample44 0.0617391754 -1.442883e-02
sample45 0.0231410886 1.163143e-03
sample46 -0.0148898209 -1.384176e-04
sample47 -0.0187252536 1.221690e-02
sample48 0.0432839432 1.416671e-02
sample49 0.0160818605 -3.588745e-02
sample50 0.0059333545 4.067003e-02
sample51 -0.0142914866 7.776270e-03
sample52 -0.0086339952 7.208917e-03
sample53 -0.0207386980 6.272432e-03
sample54 -0.0039856719 -1.316934e-02
sample55 -0.0056217017 5.692315e-03
sample56 0.0000123292 8.978290e-04
sample57 -0.0095805555 1.324253e-02
sample58 -0.0124160295 -7.326376e-03
sample59 -0.0400195442 -1.349736e-02
sample60 -0.0460063358 2.770091e-02
sample61 -0.0245266456 1.470710e-02
sample62 -0.0366022783 -3.437352e-03
sample63 0.0013742171 3.288796e-02
sample64 -0.0070599859 2.739588e-02
sample65 0.0041201911 1.498268e-02
sample66 0.0143173351 -1.968812e-02
sample67 -0.0467477531 -1.929938e-02
sample68 -0.0306751978 -1.436184e-02
sample69 -0.0125317217 4.130407e-03
sample70 -0.0068071487 8.080857e-03
sample71 0.0169170264 -7.027348e-03
sample72 -0.0346909749 -1.333770e-02
sample73 -0.0280506153 1.493843e-02
sample74 -0.0182611498 3.294697e-03
sample75 -0.0120563964 8.974612e-03
sample76 0.0001437236 -4.253184e-02
sample77 0.0065330299 -5.252886e-02
sample78 0.0288278141 -1.127782e-02
sample79 0.0503961481 -1.023318e-02
sample80 -0.0207693429 3.648391e-02
sample81 0.0163562768 -9.074596e-03
sample82 -0.0084317129 -1.478976e-02
sample83 -0.0474097918 -1.103126e-02
sample84 0.0177181395 -7.191197e-03
sample85 -0.0342718548 -3.082360e-02
sample86 -0.0261671791 -1.089491e-02
sample87 -0.0009486358 -2.411514e-02
sample88 0.0020528931 -2.894615e-02
sample89 -0.0189361111 -2.638639e-03
sample90 -0.0009863658 -2.390075e-02
sample91 -0.0124352695 8.153234e-02
sample92 0.0564264106 -8.909537e-03
sample93 -0.0081461774 1.570851e-02
sample94 -0.0054896581 1.547251e-02
sample95 0.0224073150 -4.374348e-04
sample96 0.0173528924 -3.050441e-03
sample97 0.0067948115 5.008237e-03
sample98 -0.0116030825 1.498764e-02
sample99 0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101 0.0124923691 3.091503e-02
sample102 0.0650835386 -1.367400e-02
sample103 -0.0042741828 7.855985e-03
sample104 0.0250591040 -4.171938e-03
sample105 0.0157516368 -3.121990e-02
sample106 0.0060593853 -5.101693e-03
sample107 -0.0098329626 1.044506e-02
sample108 0.0044269853 4.142036e-03
sample109 0.0572473486 1.517542e-02
sample110 0.0090474827 -5.119868e-03
sample111 0.0444263015 7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113 0.0241047399 6.706740e-03
sample114 0.0074558775 -4.728652e-03
sample115 0.0611851433 1.117210e-02
sample116 0.0432646951 -1.380556e-02
sample117 0.0516750066 -3.575617e-02
sample118 0.0139942100 -3.279138e-03
sample119 0.0291722987 5.587946e-02
sample120 0.0103515853 -1.690016e-03
sample121 -0.0091396331 3.552116e-02
sample122 0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124 0.0283466326 3.127845e-03
sample125 0.0016472378 -2.770692e-02
sample126 -0.0286529417 3.489336e-02
sample127 -0.0010224500 7.483214e-03
sample128 0.0209049296 2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968 4.637390e-03
sample132 0.0198526786 5.723983e-04
sample133 0.0088812957 -9.988115e-03
sample134 -0.0137484514 1.172591e-02
sample135 -0.0220314568 1.347465e-02
sample136 -0.0185173353 5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138 0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762 2.456863e-02
sample141 0.0058369763 -1.420854e-02
sample142 0.0207886071 -1.188764e-02
sample143 0.0092832598 -1.324238e-02
sample144 0.0028442140 3.627979e-03
sample145 0.0199749569 2.862202e-03
sample146 -0.0182236697 1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148 0.0065435868 -1.572917e-02
sample149 0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151 0.0245166984 -6.888241e-03
sample152 0.0107259913 3.314630e-02
sample153 0.0550963965 3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574 2.642246e-03
sample156 -0.0117803505 2.698265e-02
sample157 -0.0096167165 1.433840e-02
sample158 -0.0101754772 9.137620e-03
sample159 0.0120662931 -2.565236e-02
sample160 -0.0132238202 2.916023e-03
sample161 0.0274491966 -1.748284e-02
sample162 0.0012482909 3.152261e-02
sample163 0.0042031315 1.830701e-02
sample164 0.0174896157 -1.175915e-02
sample165 0.0097517662 -6.119019e-03
sample166 0.0190134679 -1.121582e-02
sample167 -0.0044140836 4.665585e-03
sample168 0.0049689168 -1.941822e-02
sample169 -0.0209802098 3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
[,1] [,2]
sample1 -0.0515543627 -0.0305856787
sample2 -0.0144993256 0.0236342950
sample3 -0.0371833108 -0.0140263348
sample4 0.0068945388 -0.0132539692
sample5 0.0215035333 -0.0663338101
sample6 -0.0187055152 0.0088773016
sample7 -0.0061521552 0.0064029054
sample8 -0.0210874459 0.0334652901
sample9 0.0516865043 -0.0291142799
sample10 0.0059440366 -0.0527217447
sample11 0.0393010793 -0.0200624712
sample12 -0.0420837100 0.0131331362
sample13 0.0333252565 0.0818552509
sample14 -0.0190062644 0.0160202175
sample15 -0.0030968049 -0.0189230681
sample16 -0.0004452158 0.0018880102
sample17 -0.0185848615 0.0240170131
sample18 -0.0273093598 0.0230213640
sample19 -0.0217761111 -0.0445894441
sample20 0.0245820821 0.0159812738
sample21 0.0034527644 -0.0400016054
sample22 -0.0340789054 0.0039289109
sample23 -0.0010344929 -0.0310161212
sample24 0.0289468503 0.0760962436
sample25 -0.0119098496 -0.0122798760
sample26 -0.0181001057 0.0517892852
sample27 0.0050465417 -0.0086515844
sample28 0.0057491502 0.0358830107
sample29 -0.0051104246 0.0116605117
sample30 -0.0103085904 0.0039678538
sample31 -0.0319929858 0.0090606113
sample32 -0.0036232521 -0.0328202010
sample33 -0.0534742153 0.0024751837
sample34 -0.0067495749 -0.0111000311
sample35 0.0378745721 0.0465929296
sample36 0.0647886800 0.0359987924
sample37 0.0488441236 0.0492906912
sample38 -0.0251514062 0.0197110110
sample39 -0.0085428066 -0.0105117852
sample40 0.0379324087 0.0440810741
sample41 -0.0044199152 -0.0128820644
sample42 -0.0292553573 -0.0067045265
sample43 -0.0077829155 -0.0510178219
sample44 0.0045122248 0.0479660309
sample45 -0.0074444298 -0.0051116726
sample46 -0.0088025512 0.0196186661
sample47 0.0076696301 0.0215947965
sample48 0.0290108585 -0.0175568376
sample49 -0.0141754858 0.0184717099
sample50 0.0006282201 -0.0233054373
sample51 0.0441995177 -0.0410022921
sample52 0.0715329391 -0.0399499475
sample53 -0.0095954087 -0.0029140909
sample54 0.0048933768 -0.0281884386
sample55 0.0327325487 -0.0532290012
sample56 0.0323068984 -0.0256595538
sample57 0.0806603122 -0.0286748097
sample58 -0.0064792049 -0.0006945349
sample59 0.0088958941 0.0067389649
sample60 0.0874124612 0.0431964341
sample61 0.0577604571 -0.0326112099
sample62 -0.0313318464 0.0224391756
sample63 -0.0233625220 0.0125110562
sample64 -0.0086426068 0.0148770341
sample65 0.0025256193 -0.0404466327
sample66 0.0006014071 -0.0471576264
sample67 0.0706087042 0.0516228406
sample68 0.0082301011 0.0033109509
sample69 -0.0475076743 0.0001452708
sample70 -0.0600773716 0.0089986962
sample71 -0.0096321627 -0.0050761187
sample72 -0.0031773546 -0.0166221542
sample73 -0.0113700517 -0.0191726684
sample74 -0.0014179662 -0.0608101325
sample75 0.0041911740 -0.0399981269
sample76 -0.0055326449 0.0353114263
sample77 -0.0260214459 0.0305731380
sample78 -0.0119267436 0.0632236007
sample79 0.0186017239 0.0027402910
sample80 0.0241047889 -0.0472697181
sample81 -0.0220288317 -0.0079577210
sample82 -0.0180751258 0.0639051029
sample83 -0.0256671713 -0.0125898269
sample84 0.0161392598 -0.0567222449
sample85 0.0139988188 0.0322763454
sample86 -0.0198382995 0.0389225776
sample87 0.0266270281 -0.0032979996
sample88 0.0515677078 0.0117902495
sample89 0.0014022125 -0.0140510488
sample90 -0.0375949749 0.0044004551
sample91 0.0310397965 0.0440610926
sample92 0.0270570567 0.0324380452
sample93 -0.0215009202 0.0063993941
sample94 -0.0415702912 -0.0037692077
sample95 -0.0168416047 0.0010019120
sample96 -0.0285582661 -0.0187991000
sample97 -0.0490843868 -0.0266760748
sample98 -0.0171579033 -0.0112897471
sample99 -0.0271316525 0.0232395583
sample100 -0.0301789816 0.0305498693
sample101 -0.0264371151 0.0170723968
sample102 0.0012767734 -0.0248949597
sample103 0.0055214687 -0.0030040587
sample104 0.0251346074 -0.0165212671
sample105 0.0062424215 -0.0400309901
sample106 0.0069768684 0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679 0.0023637162
sample109 -0.0014762845 0.0165583675
sample110 0.0036971063 0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112 0.0046098120 -0.0048009350
sample113 0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453 0.0135805368
sample116 0.0183575759 0.0665377581
sample117 0.0227640036 -0.0012287760
sample118 0.0015695248 0.0472617382
sample119 0.0190084932 0.0590034062
sample120 -0.0449645755 0.0072755697
sample121 0.0077307184 0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123 0.0016959300 0.0028593594
sample124 -0.0365091615 0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408 0.0019165544
sample127 -0.0494064872 0.0088209044
sample128 -0.0155454766 0.0186819802
sample129 -0.0184340400 0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422 0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133 0.0204029276 -0.0282209049
sample134 0.0175513332 0.0262883962
sample135 0.0029009925 0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323 0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139 0.0073103935 0.0308956174
sample140 0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142 0.0268670676 -0.0239229634
sample143 0.0421049126 -0.0110888235
sample144 0.0017253664 -0.0341766012
sample145 0.0681741320 -0.0073526377
sample146 -0.0239965222 0.0118396767
sample147 -0.0063453522 0.0183130585
sample148 0.0230825251 -0.0379753037
sample149 0.0223298673 0.0188909118
sample150 0.0055709108 0.0174179009
sample151 0.0039177786 -0.0233533275
sample152 0.0134325667 0.0302344591
sample153 0.0511990309 0.0730230140
sample154 0.0006698324 0.0154177486
sample155 0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599 0.0154934573
sample158 0.0201775524 -0.0332982124
sample159 -0.0086909001 0.0073496711
sample160 0.0295437331 -0.0555734536
sample161 0.0332754288 0.0033779619
sample162 0.0121954537 0.0433540412
sample163 -0.0173490933 0.0227219128
sample164 0.0143374783 -0.0453542590
sample165 0.0343612593 -0.0511194536
sample166 -0.0157536004 0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919 0.0060747155
sample169 0.0116231468 -0.0015112800
>
> ## 3.3 Plotting VAF
>
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
>
> # JIVE plotVAF
> plotVAF(jiveRes)
>
>
> #########################
> ## PART 4. Plot Results
>
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
>
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Combined plot for loadings from common and distinctive part (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
>
> proc.time()
user system elapsed
13.07 0.57 13.64
|
|
STATegRa.Rcheck/examples_i386/STATegRa-Ex.timings
|
STATegRa.Rcheck/examples_x64/STATegRa-Ex.timings
|