Back to Multiple platform build/check report for BioC 3.11 |
|
This page was generated on 2020-10-17 11:59:43 -0400 (Sat, 17 Oct 2020).
TO THE DEVELOPERS/MAINTAINERS OF THE STATegRa PACKAGE: Please make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 1744/1905 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
STATegRa 1.24.0 David Gomez-Cabrero
| malbec2 | Linux (Ubuntu 18.04.4 LTS) / x86_64 | OK | OK | OK | |||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | NA | |||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | [ OK ] | OK |
Package: STATegRa |
Version: 1.24.0 |
Command: /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/Library/Frameworks/R.framework/Versions/Current/Resources/library --no-vignettes --timings STATegRa_1.24.0.tar.gz |
StartedAt: 2020-10-17 05:41:32 -0400 (Sat, 17 Oct 2020) |
EndedAt: 2020-10-17 05:46:37 -0400 (Sat, 17 Oct 2020) |
EllapsedTime: 304.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: STATegRa.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/Library/Frameworks/R.framework/Versions/Current/Resources/library --no-vignettes --timings STATegRa_1.24.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.11-bioc/meat/STATegRa.Rcheck’ * using R version 4.0.3 (2020-10-10) * using platform: x86_64-apple-darwin17.0 (64-bit) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘STATegRa/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘STATegRa’ version ‘1.24.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘STATegRa’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE modelSelection,list-numeric-character: no visible binding for global variable ‘components’ modelSelection,list-numeric-character: no visible binding for global variable ‘mylabel’ plotVAF,caClass: no visible binding for global variable ‘comp’ plotVAF,caClass: no visible binding for global variable ‘VAF’ plotVAF,caClass: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comps’ selectCommonComps,list-numeric: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comp’ selectCommonComps,list-numeric: no visible binding for global variable ‘ratio’ Undefined global functions or variables: VAF block comp components comps mylabel ratio * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed plotRes 7.085 0.204 7.299 plotVAF 5.870 0.161 6.035 omicsCompAnalysis 5.539 0.177 5.726 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘STATEgRa_Example.omicsCLUST.R’ Running ‘STATEgRa_Example.omicsPCA.R’ Running ‘STATegRa_Example.omicsNPC.R’ Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/Users/biocbuild/bbs-3.11-bioc/meat/STATegRa.Rcheck/00check.log’ for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD INSTALL STATegRa ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.0/Resources/library’ * installing *source* package ‘STATegRa’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (STATegRa)
STATegRa.Rcheck/tests/runTests.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") Common components [1] 2 Distinctive components [[1]] [1] 0 [[2]] [1] 0 Common components [1] 2 Distinctive components [[1]] [1] 1 [[2]] [1] 1 Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 RUNIT TEST PROTOCOL -- Sat Oct 17 05:46:28 2020 *********************************************** Number of test functions: 4 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures Number of test functions: 4 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 4.408 0.298 4.687
STATegRa.Rcheck/tests/STATEgRa_Example.omicsCLUST.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 4: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 5: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 6: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 7: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 34.097 0.819 34.945
STATegRa.Rcheck/tests/STATegRa_Example.omicsNPC.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 121.180 1.519 122.810
STATegRa.Rcheck/tests/STATEgRa_Example.omicsPCA.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## Select the optimal components > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE) Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 > > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 -0.0781574289 0.0431501288 sample2 0.1192218348 -0.0294089729 sample3 0.0531412173 0.0746839855 sample4 -0.0292975203 0.0005958611 sample5 -0.0202091758 -0.0110463966 sample6 -0.1226089074 -0.1053466616 sample7 -0.1078928059 0.0322476803 sample8 -0.1782895385 -0.1449364573 sample9 -0.0468698124 0.0455174335 sample10 0.0036030490 -0.0420111688 sample11 0.0035566484 0.0566292723 sample12 -0.1006128901 -0.0641380463 sample13 0.1174408248 -0.0907488538 sample14 -0.0981203263 -0.0617737657 sample15 -0.0085334254 0.0087014568 sample16 -0.0783148696 -0.1581293743 sample17 0.1483609897 -0.0638581932 sample18 0.0963086272 -0.0556639267 sample19 0.0217244121 0.0720085340 sample20 0.0635636447 0.0779653955 sample21 0.0201840286 -0.1566391586 sample22 -0.0218268649 0.0764105322 sample23 -0.0852042059 0.0032687362 sample24 0.1287170432 -0.1924545623 sample25 0.0430574127 0.0456564764 sample26 0.1453896775 -0.0541513045 sample27 0.0197488902 0.1185657983 sample28 0.1025336243 -0.0650686040 sample29 -0.0706018423 0.0682989196 sample30 0.1295627603 0.0066770989 sample31 -0.1147449129 -0.1232685860 sample32 0.0374310927 -0.0380176677 sample33 -0.0599515920 -0.0136865922 sample34 0.0984200844 -0.0375320255 sample35 0.0543098394 0.0378107280 sample36 -0.1403625406 0.0343758305 sample37 -0.0228941794 0.0732849204 sample38 0.0222077323 0.0962595389 sample39 0.0941738481 -0.0215199539 sample40 -0.0643801065 0.0687873817 sample41 0.0327638083 0.1232188165 sample42 0.0500431842 0.0292472576 sample43 0.0184498863 -0.0233010516 sample44 -0.1487898957 -0.1171356970 sample45 0.1050774095 -0.1123202700 sample46 0.1151195785 0.1094029409 sample47 0.0962593762 0.0288464635 sample48 -0.0004837397 0.0310275922 sample49 -0.1135207866 -0.1213973683 sample50 0.0123553195 0.1740743344 sample51 -0.0550529900 -0.1258885911 sample52 -0.0499121261 -0.0728543900 sample53 -0.1119773677 -0.1588012880 sample54 0.0360055681 -0.0228575453 sample55 -0.0210418980 -0.0006731427 sample56 0.0434169199 -0.0633125998 sample57 -0.0197824671 -0.1150712836 sample58 -0.0030439880 -0.0326097423 sample59 -0.0500253060 -0.0129416815 sample60 -0.0184278640 -0.0136082605 sample61 -0.0150299411 -0.0635024442 sample62 0.0304763979 0.0201321000 sample63 -0.1102252525 -0.1285977072 sample64 -0.1552588117 -0.0971167954 sample65 0.0058503054 -0.0207115749 sample66 0.0025605321 -0.0424320750 sample67 -0.1546634764 0.0661719313 sample68 -0.0536369182 0.0923685360 sample69 -0.0640330325 -0.0081982630 sample70 -0.0163517675 0.0663230199 sample71 0.0102537663 0.1345920460 sample72 0.0654196126 0.0196121257 sample73 0.1048556197 -0.0220936964 sample74 -0.0123799443 -0.0586114311 sample75 -0.0392077891 0.0209755611 sample76 -0.0648953371 0.0524764517 sample77 -0.1172922132 0.0201186420 sample78 0.1463067985 -0.0708473906 sample79 -0.0265211232 0.1603305408 sample80 -0.0279737095 0.0214206195 sample81 -0.0079211477 0.0738449878 sample82 0.1544236524 0.0361468366 sample83 0.0494211514 0.0050050875 sample84 0.0259038467 0.0346548574 sample85 -0.1116484306 0.0031499786 sample86 0.1306483098 0.0377216542 sample87 0.0554778209 0.0459749100 sample88 0.0301623789 -0.0382197395 sample89 0.1016866727 -0.0694032859 sample90 -0.0086819846 0.0201320035 sample91 -0.1578625249 0.2097828948 sample92 -0.0170936900 0.1655804061 sample93 0.0979806853 0.0121512545 sample94 -0.0131484052 0.0114932176 sample95 -0.0315682629 0.0758857802 sample96 -0.0024125604 0.0470134422 sample97 -0.0634545398 -0.0270332550 sample98 0.0359374684 0.0135488953 sample99 0.1009163224 -0.1124781546 sample100 -0.0551753123 -0.0246489221 sample101 0.0080118956 0.1627367697 sample102 0.0046444178 -0.0095635706 sample103 0.0472523231 0.0940393529 sample104 -0.0198159517 0.0591090246 sample105 0.0400237785 0.0160911038 sample106 0.0923808374 -0.0369018036 sample107 0.1019373983 -0.0224953838 sample108 0.0877091656 0.0128833847 sample109 -0.0864824473 0.0900938446 sample110 0.1223115514 0.0096085189 sample111 -0.0257354662 0.0936166414 sample112 0.0765286620 -0.0270346812 sample113 -0.0258803301 -0.0377498696 sample114 -0.0021138867 0.0882014267 sample115 -0.0303460308 0.0723582093 sample116 -0.0780508530 0.0685064102 sample117 -0.0536898191 0.0911905527 sample118 -0.0666651194 0.0236230388 sample119 -0.1021871618 0.2324935292 sample120 -0.0750216565 -0.0243379920 sample121 0.0756936363 -0.0942950066 sample122 0.0259628009 -0.0731988861 sample123 0.1037846290 0.0369197649 sample124 -0.0611207989 -0.0421725500 sample125 0.0738472728 -0.0066950341 sample126 -0.0972916386 -0.0762638518 sample127 -0.0824697597 0.0096637166 sample128 0.1249407554 -0.0929314065 sample129 0.0734067599 0.0434364121 sample130 0.0003502044 0.0309852549 sample131 -0.0930182792 -0.0155936295 sample132 -0.0736222859 -0.0733031239 sample133 0.0498397982 0.0462436952 sample134 -0.1644873521 -0.0720004563 sample135 0.0752297248 -0.0003816467 sample136 -0.0227145677 0.0495506934 sample137 -0.0564717320 0.0288917120 sample138 -0.0255988143 0.0610855201 sample139 -0.0621217795 -0.0235806453 sample140 0.0604152625 0.0435594744 sample141 -0.0246743979 -0.0532649204 sample142 0.0409560260 -0.0316281040 sample143 0.0077355203 0.0476895922 sample144 -0.0173240808 0.0156777698 sample145 -0.0485474667 -0.1202771451 sample146 -0.0419645540 0.0811282318 sample147 0.0977308425 0.0274841742 sample148 -0.0368256238 -0.0803980002 sample149 0.0072865812 0.1532985244 sample150 -0.1020825292 -0.0624773437 sample151 -0.0305399096 0.0289276703 sample152 0.0533594785 0.0638308536 sample153 0.0891627367 -0.1799581315 sample154 0.0727557537 0.0834161699 sample155 0.0880668637 0.0220820749 sample156 0.0276561117 0.0326625844 sample157 0.1155032197 -0.0183615572 sample158 0.0281507554 0.0104939241 sample159 -0.0663235758 -0.0443838024 sample160 0.0302643907 -0.0404264691 sample161 -0.0114715622 0.0591024017 sample162 0.1337087021 -0.1398135502 sample163 -0.1330124575 -0.1688781514 sample164 0.0150336066 -0.0028417271 sample165 -0.0076520284 0.0164127863 sample166 -0.0367794442 -0.0630663209 sample167 -0.1111988845 -0.0030057633 sample168 0.0672981566 -0.0446279630 sample169 0.0413005002 -0.0224392981 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 0.0420515975 0.0867863022 sample2 0.0820828088 -0.0410978209 sample3 -0.0155898232 -0.0195182307 sample4 0.1001337008 -0.0410786884 sample5 0.0153465712 -0.0253259724 sample6 -0.0340327869 -0.0408223175 sample7 -0.0722579235 0.0002332399 sample8 0.0457497144 -0.0370016380 sample9 0.0086250056 0.0820184905 sample10 0.0423597884 -0.0083923392 sample11 -0.0022547565 0.0787766073 sample12 -0.0322106553 0.1479824723 sample13 0.0293887860 -0.0306748713 sample14 -0.0337483895 -0.0367506817 sample15 -0.0815538655 0.1275622658 sample16 -0.0508455059 0.0540604686 sample17 -0.0062597712 0.0041023702 sample18 -0.0705640762 -0.0351047570 sample19 0.0476843128 -0.0509598156 sample20 -0.0522961316 0.0715522006 sample21 0.0119123767 -0.0376093189 sample22 -0.0724391573 -0.0095624932 sample23 0.0992532237 0.0134288586 sample24 0.1595114534 0.0728661613 sample25 0.0920694168 -0.0749757435 sample26 0.0595539394 0.0848965900 sample27 -0.0826483465 -0.0086735203 sample28 0.0384787060 0.0440966770 sample29 -0.0777669939 0.1735308708 sample30 -0.1229471200 -0.0819005265 sample31 -0.0579848673 -0.0238644692 sample32 -0.0970393804 -0.0111426120 sample33 -0.1017588188 -0.0630442365 sample34 -0.0637923367 0.0377941825 sample35 -0.0789984022 -0.0229723033 sample36 -0.1224939407 -0.1274954666 sample37 -0.1798820099 -0.1673427015 sample38 -0.0466302383 0.0888161088 sample39 0.0168687463 0.0421533709 sample40 -0.1756391443 -0.1526641953 sample41 -0.0042368388 0.0004928867 sample42 0.0447850315 -0.0651505087 sample43 -0.0482308787 -0.0253529188 sample44 0.1986712227 -0.0545778333 sample45 0.0741834443 0.0054703076 sample46 -0.0478769949 -0.0007071865 sample47 -0.0608187866 0.0481622780 sample48 0.1381490019 0.0578287499 sample49 0.0530517745 -0.1405533001 sample50 0.0173803556 0.1602389712 sample51 -0.0462563583 0.0303473872 sample52 -0.0280066717 0.0280388416 sample53 -0.0667624462 0.0237702106 sample54 -0.0121834067 -0.0521354310 sample55 -0.0182395975 0.0221328467 sample56 0.0001254251 0.0030907327 sample57 -0.0316677966 0.0530190293 sample58 -0.0393918836 -0.0297798678 sample59 -0.1278291383 -0.0546527689 sample60 -0.1486985670 0.1069156871 sample61 -0.0793123867 0.0569796660 sample62 -0.1172800515 -0.0149198230 sample63 0.0028724557 0.1300519767 sample64 -0.0237366449 0.1073287724 sample65 0.0126534691 0.0589808397 sample66 0.0468193860 -0.0771072816 sample67 -0.1494264020 -0.0769859941 sample68 -0.0977959597 -0.0577350802 sample69 -0.0403087232 0.0156042197 sample70 -0.0221529614 0.0315441036 sample71 0.0546437259 -0.0272396489 sample72 -0.1107487434 -0.0537319134 sample73 -0.0906761387 0.0579966786 sample74 -0.0586556436 0.0121421764 sample75 -0.0390492764 0.0349282902 sample76 0.0022961308 -0.1676558770 sample77 0.0232096157 -0.2067302833 sample78 0.0929753521 -0.0434939711 sample79 0.1619499784 -0.0378114497 sample80 -0.0680364850 0.1424663644 sample81 0.0530785583 -0.0358350924 sample82 -0.0266821253 -0.0577445027 sample83 -0.1517234999 -0.0448554020 sample84 0.0570967777 -0.0273813348 sample85 -0.1086290126 -0.1228119098 sample86 -0.0833859139 -0.0442914788 sample87 -0.0022017781 -0.0943906828 sample88 0.0078223622 -0.1140506565 sample89 -0.0611058565 -0.0094585059 sample90 -0.0022927721 -0.0936253978 sample91 -0.0433585944 0.3205982982 sample92 0.1815338556 -0.0334680586 sample93 -0.0267630193 0.0614429088 sample94 -0.0181877189 0.0605090450 sample95 0.0720377301 -0.0013045767 sample96 0.0559715880 -0.0118791512 sample97 0.0217410773 0.0195414084 sample98 -0.0379176851 0.0588357190 sample99 0.0792425181 -0.0151274018 sample100 -0.0222116861 -0.0023321396 sample101 0.0387232265 0.1224226218 sample102 0.2094613900 -0.0516443059 sample103 -0.0138479242 0.0301052028 sample104 0.0807988055 -0.0162719057 sample105 0.0520493466 -0.1229665269 sample106 0.0192612522 -0.0185238242 sample107 -0.0319017252 0.0405123343 sample108 0.0140691415 0.0163421359 sample109 0.1831931976 0.0613007229 sample110 0.0292790796 -0.0199849136 sample111 0.1423254068 0.0327340078 sample112 -0.0426333356 -0.0029083366 sample113 0.0771903834 0.0268733467 sample114 0.0241643344 -0.0184080424 sample115 0.1959017109 0.0460130313 sample116 0.1394476983 -0.0530806054 sample117 0.1672363166 -0.1386536700 sample118 0.0448344587 -0.0117622010 sample119 0.0910391257 0.2217433314 sample120 0.0331391880 -0.0057274575 sample121 -0.0307576456 0.1392506563 sample122 0.0839779735 -0.0291994632 sample123 -0.0239649745 -0.0642163659 sample124 0.0909149947 0.0130419295 sample125 0.0065350620 -0.1092631833 sample126 -0.0935312906 0.1368284202 sample127 -0.0035387458 0.0292755649 sample128 0.0660293999 0.1018566147 sample129 -0.0693637728 -0.0695421577 sample130 -0.0008492800 -0.0669704312 sample131 -0.0431024341 0.0174064949 sample132 0.0637038854 0.0029374556 sample133 0.0289495596 -0.0390818870 sample134 -0.0446204628 0.0456334566 sample135 -0.0712336823 0.0521635100 sample136 -0.0596269771 0.0197299467 sample137 -0.0793151349 -0.0380628130 sample138 0.0973549475 -0.0454218431 sample139 -0.0539905684 -0.1534327262 sample140 -0.0850825861 0.0955814724 sample141 0.0192680771 -0.0554450136 sample142 0.0672261207 -0.0461321067 sample143 0.0303731076 -0.0519260277 sample144 0.0089364968 0.0145814901 sample145 0.0638767177 0.0122258224 sample146 -0.0585854598 0.0063083508 sample147 -0.0894132959 -0.1124615506 sample148 0.0216365117 -0.0615967211 sample149 0.0515423452 -0.0839903522 sample150 -0.0568284766 -0.0124468835 sample151 0.0789532914 -0.0261831333 sample152 0.0330754981 0.1306443552 sample153 0.1751927677 0.1497731672 sample154 -0.0421422639 -0.0037010069 sample155 -0.0680176930 0.0095711375 sample156 -0.0388910137 0.1057563050 sample157 -0.0314769560 0.0561367480 sample158 -0.0329620276 0.0353947392 sample159 0.0398415431 -0.1007373874 sample160 -0.0424939567 0.0108496239 sample161 0.0888372166 -0.0679700322 sample162 0.0027473364 0.1237843795 sample163 0.0126101979 0.0725434242 sample164 0.0566779521 -0.0458324301 sample165 0.0315336574 -0.0236362409 sample166 0.0612056814 -0.0425233189 sample167 -0.0142729884 0.0179308303 sample168 0.0169502486 -0.0769617953 sample169 -0.0675080794 0.0131505456 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 -0.0012329656 -1.635717e-01 sample2 -0.0724350090 -6.021244e-03 sample3 -0.0188460443 -1.080036e-01 sample4 0.0390145286 3.114229e-04 sample5 0.1774811630 -2.996384e-02 sample6 -0.0451444455 -3.455857e-02 sample7 -0.0226466230 -7.020175e-03 sample8 -0.1033680270 -9.856762e-03 sample9 0.1350011776 8.979097e-02 sample10 0.1259887226 -5.097852e-02 sample11 0.0979788401 7.086533e-02 sample12 -0.0863019125 -8.620317e-02 sample13 -0.1381401125 1.828007e-01 sample14 -0.0615073878 -2.642802e-02 sample15 0.0381598952 -3.101665e-02 sample16 -0.0048776775 1.271854e-03 sample17 -0.0788480989 -1.547553e-02 sample18 -0.0884188793 -3.795486e-02 sample19 0.0703044422 -1.084004e-01 sample20 -0.0025585490 7.975873e-02 sample21 0.0941601599 -4.126739e-02 sample22 -0.0550273402 -7.806745e-02 sample23 0.0679495312 -4.102005e-02 sample24 -0.1310962838 1.649310e-01 sample25 0.0113585283 -4.426862e-02 sample26 -0.1402945942 2.016545e-02 sample27 0.0261561162 1.588420e-03 sample28 -0.0724198738 5.850594e-02 sample29 -0.0330058540 2.060807e-03 sample30 -0.0228752578 -2.015431e-02 sample31 -0.0635067987 -6.670333e-02 sample32 0.0685099623 -4.955273e-02 sample33 -0.0777765242 -1.272078e-01 sample34 0.0157842385 -3.024314e-02 sample35 -0.0529632732 1.500972e-01 sample36 0.0070900813 2.025307e-01 sample37 -0.0442420550 1.802088e-01 sample38 -0.0781511276 -3.676422e-02 sample39 0.0120331837 -3.388841e-02 sample40 -0.0473292027 1.471561e-01 sample41 0.0228189441 -2.673556e-02 sample42 -0.0245360254 -7.960866e-02 sample43 0.1036362782 -8.229577e-02 sample44 -0.1012228805 7.049455e-02 sample45 0.0013731993 -2.450908e-02 sample46 -0.0558509996 2.947366e-03 sample47 -0.0380481173 4.554173e-02 sample48 0.0784342107 4.888981e-02 sample49 -0.0605163993 -1.162353e-02 sample50 0.0530079321 -2.737935e-02 sample51 0.1514646505 5.678346e-02 sample52 0.1860935237 1.246717e-01 sample53 -0.0064177141 -2.700992e-02 sample54 0.0697038327 -2.308388e-02 sample55 0.1633577036 1.366441e-02 sample56 0.1011485085 4.682206e-02 sample57 0.1730374204 1.609603e-01 sample58 -0.0071384721 -1.666955e-02 sample59 -0.0030461684 3.005284e-02 sample60 0.0215835174 2.665877e-01 sample61 0.1510583634 1.002385e-01 sample62 -0.0925533960 -4.845843e-02 sample63 -0.0596311823 -4.137021e-02 sample64 -0.0449225812 -2.600573e-03 sample65 0.0939383748 -4.406909e-02 sample66 0.1063400730 -5.709992e-02 sample67 -0.0201589948 2.361727e-01 sample68 0.0037203237 2.418387e-02 sample69 -0.0645161222 -1.155622e-01 sample70 -0.1013440013 -1.351789e-01 sample71 -0.0016467840 -2.976843e-02 sample72 0.0328893011 -2.835859e-02 sample73 0.0275080018 -5.148186e-02 sample74 0.1341719656 -7.895280e-02 sample75 0.0951575667 -3.943185e-02 sample76 -0.0864721941 3.034991e-02 sample77 -0.1035749557 -2.545353e-02 sample78 -0.1575644161 4.939597e-02 sample79 0.0189137142 4.874679e-02 sample80 0.1384140596 4.263941e-05 sample81 -0.0118846444 -6.357932e-02 sample82 -0.1675308171 3.533911e-02 sample83 -0.0065673431 -7.812611e-02 sample84 0.1486891617 -3.109057e-02 sample85 -0.0532724404 7.417883e-02 sample86 -0.1138477343 -1.916464e-05 sample87 0.0432863999 6.080472e-02 sample88 0.0433450373 1.402491e-01 sample89 0.0331205743 -1.395400e-02 sample90 -0.0607412823 -8.610414e-02 sample91 -0.0566272536 1.303747e-01 sample92 -0.0359582432 1.061604e-01 sample93 -0.0433646374 -4.443635e-02 sample94 -0.0477291312 -1.059574e-01 sample95 -0.0249595749 -3.980525e-02 sample96 0.0035219012 -9.293928e-02 sample97 -0.0066048777 -1.527231e-01 sample98 0.0020366808 -5.579550e-02 sample99 -0.0886616136 -3.728223e-02 sample100 -0.1091259143 -3.560420e-02 sample101 -0.0739726440 -4.318000e-02 sample102 0.0574461156 -2.783911e-02 sample103 0.0142731045 9.705544e-03 sample104 0.0710395239 4.068351e-02 sample105 0.0980831345 -3.452952e-02 sample106 -0.0254259325 3.628985e-02 sample107 -0.0160653478 -9.173394e-02 sample108 -0.0200987663 -2.379692e-02 sample109 -0.0389780608 1.692360e-02 sample110 -0.0326304849 2.988110e-02 sample111 0.0676937592 -6.038212e-02 sample112 0.0167883417 5.336938e-03 sample113 0.0969217010 -2.757602e-02 sample114 -0.0026398340 -9.209158e-02 sample115 -0.0308047282 1.603824e-02 sample116 -0.1240307124 1.273000e-01 sample117 0.0334729125 5.392711e-02 sample118 -0.1037152895 6.252431e-02 sample119 -0.1064176556 1.196202e-01 sample120 -0.0771355104 -1.004932e-01 sample121 -0.0129350780 3.181977e-02 sample122 0.0847492264 -5.568324e-02 sample123 -0.0041336779 7.693175e-03 sample124 -0.0583458014 -8.396388e-02 sample125 0.0634844583 -5.232540e-02 sample126 -0.0662580979 -1.091733e-01 sample127 -0.0865024610 -1.094176e-01 sample128 -0.0627817467 -1.470961e-02 sample129 -0.0336276456 -4.007860e-02 sample130 -0.0293517752 -8.046117e-02 sample131 -0.0469197664 -2.209754e-03 sample132 -0.0241740707 -1.248598e-01 sample133 0.0907303223 1.466700e-02 sample134 -0.0350842076 7.539662e-02 sample135 0.0001333397 9.185372e-03 sample136 -0.0335876061 -9.860275e-02 sample137 -0.0640148912 -7.554471e-02 sample138 0.0060964865 -1.742762e-02 sample139 -0.0592084460 5.614969e-02 sample140 0.0427985929 -1.099552e-02 sample141 0.0618796359 -9.301037e-02 sample142 0.0898554465 3.573419e-02 sample143 0.0817389241 8.880524e-02 sample144 0.0787754783 -3.821392e-02 sample145 0.1085821578 1.569476e-01 sample146 -0.0589557924 -4.373362e-02 sample147 -0.0495330450 7.277190e-03 sample148 0.1161592775 9.079095e-03 sample149 -0.0121579403 7.788372e-02 sample150 -0.0314512547 3.520212e-02 sample151 0.0575382184 -1.945352e-02 sample152 -0.0494542072 7.025537e-02 sample153 -0.0941332753 2.153298e-01 sample154 -0.0335931992 2.078727e-02 sample155 0.0690457639 -2.780411e-02 sample156 0.1039901618 -6.292526e-02 sample157 -0.0408645799 8.065517e-03 sample158 0.1018105307 7.816870e-03 sample159 -0.0281730545 -1.207205e-02 sample160 0.1643052994 2.978104e-03 sample161 0.0374329285 8.524611e-02 sample162 -0.0804535359 8.349757e-02 sample163 -0.0743228007 -1.406223e-02 sample164 0.1208806010 -2.139459e-02 sample165 0.1608115924 2.025192e-02 sample166 -0.0425944654 -2.660713e-02 sample167 -0.0226849479 -4.464282e-02 sample168 -0.0180735601 -7.466095e-04 sample169 0.0190778995 2.645402e-02 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Combined plot for loadings from common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ## Plot scores and loadings togheter: Common components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Common components O2PLS > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Distintive components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > > proc.time() user system elapsed 17.363 0.642 18.098
STATegRa.Rcheck/STATegRa-Ex.timings
name | user | system | elapsed | |
STATegRaUsersGuide | 0.001 | 0.001 | 0.001 | |
STATegRa_data | 0.259 | 0.010 | 0.270 | |
STATegRa_data_TCGA_BRCA | 0.003 | 0.001 | 0.004 | |
bioDist | 0.834 | 0.039 | 0.873 | |
bioDistFeature | 0.496 | 0.039 | 0.536 | |
bioDistFeaturePlot | 0.479 | 0.026 | 0.506 | |
bioDistW | 0.526 | 0.028 | 0.555 | |
bioDistWPlot | 0.532 | 0.026 | 0.559 | |
bioMap | 0.005 | 0.001 | 0.006 | |
combiningMappings | 0.023 | 0.003 | 0.026 | |
createOmicsExpressionSet | 0.202 | 0.005 | 0.207 | |
getInitialData | 0.905 | 0.207 | 1.116 | |
getLoadings | 0.883 | 0.193 | 1.076 | |
getMethodInfo | 0.906 | 0.172 | 1.078 | |
getPreprocessing | 1.359 | 1.054 | 2.455 | |
getScores | 0.896 | 0.097 | 0.991 | |
getVAF | 0.778 | 0.104 | 0.883 | |
holistOmics | 0.003 | 0.001 | 0.005 | |
modelSelection | 2.274 | 2.093 | 4.444 | |
omicsCompAnalysis | 5.539 | 0.177 | 5.726 | |
omicsNPC | 0.004 | 0.002 | 0.005 | |
plotRes | 7.085 | 0.204 | 7.299 | |
plotVAF | 5.870 | 0.161 | 6.035 | |