Back to Multiple platform build/check report for BioC 3.11 |
|
This page was generated on 2020-10-17 11:55:52 -0400 (Sat, 17 Oct 2020).
TO THE DEVELOPERS/MAINTAINERS OF THE STATegRa PACKAGE: Please make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 1744/1905 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
STATegRa 1.24.0 David Gomez-Cabrero
| malbec2 | Linux (Ubuntu 18.04.4 LTS) / x86_64 | OK | OK | [ OK ] | |||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | NA | |||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK |
Package: STATegRa |
Version: 1.24.0 |
Command: /home/biocbuild/bbs-3.11-bioc/R/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/home/biocbuild/bbs-3.11-bioc/R/library --no-vignettes --timings STATegRa_1.24.0.tar.gz |
StartedAt: 2020-10-17 05:50:59 -0400 (Sat, 17 Oct 2020) |
EndedAt: 2020-10-17 05:54:39 -0400 (Sat, 17 Oct 2020) |
EllapsedTime: 219.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: STATegRa.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.11-bioc/R/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/home/biocbuild/bbs-3.11-bioc/R/library --no-vignettes --timings STATegRa_1.24.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.11-bioc/meat/STATegRa.Rcheck’ * using R version 4.0.3 (2020-10-10) * using platform: x86_64-pc-linux-gnu (64-bit) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘STATegRa/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘STATegRa’ version ‘1.24.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘STATegRa’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE modelSelection,list-numeric-character: no visible binding for global variable ‘components’ modelSelection,list-numeric-character: no visible binding for global variable ‘mylabel’ plotVAF,caClass: no visible binding for global variable ‘comp’ plotVAF,caClass: no visible binding for global variable ‘VAF’ plotVAF,caClass: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comps’ selectCommonComps,list-numeric: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comp’ selectCommonComps,list-numeric: no visible binding for global variable ‘ratio’ Undefined global functions or variables: VAF block comp components comps mylabel ratio * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘STATEgRa_Example.omicsCLUST.R’ Running ‘STATEgRa_Example.omicsPCA.R’ Running ‘STATegRa_Example.omicsNPC.R’ Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/home/biocbuild/bbs-3.11-bioc/meat/STATegRa.Rcheck/00check.log’ for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.11-bioc/R/bin/R CMD INSTALL STATegRa ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.11-bioc/R/library’ * installing *source* package ‘STATegRa’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (STATegRa)
STATegRa.Rcheck/tests/runTests.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") Common components [1] 2 Distinctive components [[1]] [1] 0 [[2]] [1] 0 Common components [1] 2 Distinctive components [[1]] [1] 1 [[2]] [1] 1 Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 RUNIT TEST PROTOCOL -- Sat Oct 17 05:54:36 2020 *********************************************** Number of test functions: 4 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures Number of test functions: 4 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 3.277 0.107 3.381
STATegRa.Rcheck/tests/STATEgRa_Example.omicsCLUST.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 4: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 5: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 6: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 7: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 28.764 0.365 29.116
STATegRa.Rcheck/tests/STATegRa_Example.omicsNPC.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 82.609 0.165 82.759
STATegRa.Rcheck/tests/STATEgRa_Example.omicsPCA.Rout
R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## Select the optimal components > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE) Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 > > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 -0.0781585719 -0.0431525672 sample2 0.1192219075 0.0294033181 sample3 0.0531404184 -0.0746858118 sample4 -0.0292973805 -0.0006010821 sample5 -0.0202089769 0.0110456206 sample6 -0.1226086357 0.1053469941 sample7 -0.1078929983 -0.0322441463 sample8 -0.1782890813 0.1449335187 sample9 -0.0468695449 -0.0455136178 sample10 0.0036031612 0.0420088108 sample11 0.0035567365 -0.0566257326 sample12 -0.1006134855 0.0641413452 sample13 0.1174419355 0.0907486879 sample14 -0.0981202182 0.0617741308 sample15 -0.0085338255 -0.0086951289 sample16 -0.0783143623 0.1581332339 sample17 0.1483610483 0.0638573232 sample18 0.0963086150 0.0556649329 sample19 0.0217238118 -0.0720134068 sample20 0.0635635676 -0.0779603129 sample21 0.0201846561 0.1566374875 sample22 -0.0218275975 -0.0764089018 sample23 -0.0852043508 -0.0032730210 sample24 0.1287182583 0.1924503876 sample25 0.0430571938 -0.0456632538 sample26 0.1453896133 0.0541494852 sample27 0.0197484863 -0.1185620883 sample28 0.1025339682 0.0650680089 sample29 -0.0706025134 -0.0682913126 sample30 0.1295627787 -0.0066742103 sample31 -0.1147447868 0.1232697406 sample32 0.0374311225 0.0380212827 sample33 -0.0599521253 0.0136875949 sample34 0.0984200286 0.0375350058 sample35 0.0543103890 -0.0378055703 sample36 -0.1403614204 -0.0343690425 sample37 -0.0228933066 -0.0732774706 sample38 0.0222068805 -0.0962565087 sample39 0.0941736971 0.0215192407 sample40 -0.0643794105 -0.0687802056 sample41 0.0327632254 -0.1232190670 sample42 0.0500427891 -0.0292524349 sample43 0.0184497791 0.0233018038 sample44 -0.1487891211 0.1171265377 sample45 0.1050777233 0.1123161484 sample46 0.1151190865 -0.1094014372 sample47 0.0962593277 -0.0288423933 sample48 -0.0004836401 -0.0310314602 sample49 -0.1135201521 0.1213917192 sample50 0.0123542376 -0.1740717931 sample51 -0.0550520751 0.1258933555 sample52 -0.0499110398 0.0728595530 sample53 -0.1119769320 0.1588048590 sample54 0.0360057538 0.0228567787 sample55 -0.0210416496 0.0006756367 sample56 0.0434175283 0.0633137984 sample57 -0.0197811109 0.1150775933 sample58 -0.0030438868 0.0326105945 sample59 -0.0500249986 0.0129470518 sample60 -0.0184267218 0.0136221557 sample61 -0.0150291189 0.0635098969 sample62 0.0304759888 -0.0201284226 sample63 -0.1102253036 0.1285999098 sample64 -0.1552587313 0.0971206217 sample65 0.0058501803 0.0207120336 sample66 0.0025607344 0.0424277777 sample67 -0.1546624637 -0.0661622945 sample68 -0.0536370376 -0.0923646709 sample69 -0.0640336793 0.0081984606 sample70 -0.0163528869 -0.0663240116 sample71 0.0102531486 -0.1345957249 sample72 0.0654195585 -0.0196087681 sample73 0.1048553745 0.0220980503 sample74 -0.0123799333 0.0586138368 sample75 -0.0392080032 -0.0209729890 sample76 -0.0648951629 -0.0524799845 sample77 -0.1172921217 -0.0201248279 sample78 0.1463071881 0.0708415574 sample79 -0.0265214134 -0.1603378508 sample80 -0.0279739024 -0.0214134688 sample81 -0.0079216854 -0.0738493327 sample82 0.1544235701 -0.0361477770 sample83 0.0494208416 -0.0050006114 sample84 0.0259038246 -0.0346579578 sample85 -0.1116478996 -0.0031462970 sample86 0.1306480973 -0.0377198934 sample87 0.0554781926 -0.0459758925 sample88 0.0301635061 0.0382192822 sample89 0.1016869446 0.0694054367 sample90 -0.0086823650 -0.0201357059 sample91 -0.1578634783 -0.2097712310 sample92 -0.0170938097 -0.1655878862 sample93 0.0979802335 -0.0121499993 sample94 -0.0131491550 -0.0114929928 sample95 -0.0315687853 -0.0758898081 sample96 -0.0024131632 -0.0470178186 sample97 -0.0634552198 0.0270303500 sample98 0.0359370249 -0.0135468933 sample99 0.1009164939 0.1124726761 sample100 -0.0551755332 0.0246489532 sample101 0.0080106858 -0.1627369631 sample102 0.0046445095 0.0095525536 sample103 0.0472519562 -0.0940379909 sample104 -0.0198158555 -0.0591119954 sample105 0.0400239448 -0.0160964790 sample106 0.0923811612 0.0369006114 sample107 0.1019369370 0.0224957449 sample108 0.0877089378 -0.0128845168 sample109 -0.0864829045 -0.0901005204 sample110 0.1223116544 -0.0096104687 sample111 -0.0257361011 -0.0936230444 sample112 0.0765288236 0.0270364613 sample113 -0.0258802370 0.0377470456 sample114 -0.0021146421 -0.0882044980 sample115 -0.0303463788 -0.0723660068 sample116 -0.0780505697 -0.0685122466 sample117 -0.0536895790 -0.0912000886 sample118 -0.0666650303 -0.0236246033 sample119 -0.1021881169 -0.2324909382 sample120 -0.0750221399 0.0243345493 sample121 0.0756938483 0.0942997019 sample122 0.0259629997 0.0731937605 sample123 0.1037846509 -0.0369203916 sample124 -0.0611211463 0.0421671753 sample125 0.0738473661 0.0066914581 sample126 -0.0972922454 0.0762694422 sample127 -0.0824705067 -0.0096648517 sample128 0.1249407474 0.0929295657 sample129 0.0734064966 -0.0434358913 sample130 0.0003497957 -0.0309882078 sample131 -0.0930183303 0.0155960955 sample132 -0.0736226390 0.0732983240 sample133 0.0498398954 -0.0462453859 sample134 -0.1644868506 0.0720052614 sample135 0.0752296607 0.0003859605 sample136 -0.0227153258 -0.0495492300 sample137 -0.0564722177 -0.0288902680 sample138 -0.0255990344 -0.0610911910 sample139 -0.0621211739 0.0235805921 sample140 0.0604148958 -0.0435536097 sample141 -0.0246744334 0.0532616563 sample142 0.0409565445 0.0316248696 sample143 0.0077359836 -0.0476902775 sample144 -0.0173242481 -0.0156780196 sample145 -0.0485461128 0.1202778419 sample146 -0.0419651787 -0.0811262549 sample147 0.0977309388 -0.0274830716 sample148 -0.0368249725 0.0803965241 sample149 0.0072865138 -0.1533015704 sample150 -0.1020821310 0.0624805185 sample151 -0.0305399822 -0.0289318096 sample152 0.0533592209 -0.0638287589 sample153 0.0891640341 0.1799561375 sample154 0.0727554871 -0.0834144180 sample155 0.0880667187 -0.0220791717 sample156 0.0276556010 -0.0326590489 sample157 0.1155031555 0.0183637330 sample158 0.0281508183 -0.0104910639 sample159 -0.0663232856 0.0443796267 sample160 0.0302647693 0.0404294565 sample161 -0.0114711887 -0.0591063599 sample162 0.1337092810 0.1398166376 sample163 -0.1330121175 0.1688790905 sample164 0.0150337792 0.0028382950 sample165 -0.0076517224 -0.0164135693 sample166 -0.0367792937 0.0630620232 sample167 -0.1111991571 0.0030063969 sample168 0.0672984661 0.0446250915 sample169 0.0413007148 0.0224430893 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 0.0420498498 0.0867867581 sample2 0.0820830498 -0.0410998637 sample3 -0.0155947836 -0.0195157411 sample4 0.1001329098 -0.0410808977 sample5 0.0153467220 -0.0253266758 sample6 -0.0340292368 -0.0408240441 sample7 -0.0722595365 0.0002353074 sample8 0.0457552608 -0.0370060735 sample9 0.0086258628 0.0820187805 sample10 0.0423613891 -0.0083941294 sample11 -0.0022547621 0.0787775848 sample12 -0.0322056247 0.1479818897 sample13 0.0293937399 -0.0306777327 sample14 -0.0337467308 -0.0367513998 sample15 -0.0815517697 0.1275642297 sample16 -0.0508370564 0.0540578507 sample17 -0.0062570906 0.0041015272 sample18 -0.0705628468 -0.0351040818 sample19 0.0476790414 -0.0509588844 sample20 -0.0522974538 0.0715549172 sample21 0.0119186665 -0.0376129864 sample22 -0.0724437919 -0.0095589825 sample23 0.0992531372 0.0134267165 sample24 0.1595231420 0.0728583541 sample25 0.0920653220 -0.0749764453 sample26 0.0595580642 0.0848945119 sample27 -0.0826539242 -0.0086691179 sample28 0.0384830224 0.0440945098 sample29 -0.0777665462 0.1735339188 sample30 -0.1229494159 -0.0818974113 sample31 -0.0579804902 -0.0238659454 sample32 -0.0970381594 -0.0111412365 sample33 -0.1017609579 -0.0630420083 sample34 -0.0637900543 0.0377949864 sample35 -0.0789993189 -0.0229701186 sample36 -0.1224962438 -0.1274930894 sample37 -0.1798873047 -0.1673378644 sample38 -0.0466333694 0.0888194963 sample39 0.0168703356 0.0421528333 sample40 -0.1756442496 -0.1526595224 sample41 -0.0042427211 0.0004958602 sample42 0.0447814657 -0.0651504053 sample43 -0.0482308636 -0.0253522155 sample44 0.1986758973 -0.0545850912 sample45 0.0741885162 0.0054665346 sample46 -0.0478821829 -0.0007034393 sample47 -0.0608187589 0.0481643001 sample48 0.1381494716 0.0578262721 sample49 0.0530541387 -0.1405572676 sample50 0.0173755755 0.1602425490 sample51 -0.0462489507 0.0303450884 sample52 -0.0280010141 0.0280370874 sample53 -0.0667548847 0.0237679393 sample54 -0.0121834937 -0.0521356046 sample55 -0.0182385362 0.0221329528 sample56 0.0001291361 0.0030891445 sample57 -0.0316593423 0.0530163669 sample58 -0.0393911871 -0.0297797055 sample59 -0.1278294129 -0.0546505568 sample60 -0.1486930350 0.1069175760 sample61 -0.0793068780 0.0569793984 sample62 -0.1172820104 -0.0149165679 sample63 0.0028805904 0.1300490151 sample64 -0.0237300311 0.1073268357 sample65 0.0126554934 0.0589801691 sample66 0.0468194416 -0.0771091363 sample67 -0.1494288514 -0.0769824512 sample68 -0.0978012048 -0.0577311486 sample69 -0.0403093047 0.0156052089 sample70 -0.0221569360 0.0315465774 sample71 0.0546366377 -0.0272376783 sample72 -0.1107509743 -0.0537289354 sample73 -0.0906743174 0.0579984676 sample74 -0.0586530911 0.0121422032 sample75 -0.0390496389 0.0349295313 sample76 0.0022902264 -0.1676549006 sample77 0.0232037937 -0.2067303775 sample78 0.0929777707 -0.0434972059 sample79 0.1619422923 -0.0378115364 sample80 -0.0680340969 0.1424680742 sample81 0.0530737403 -0.0358343588 sample82 -0.0266851144 -0.0577427442 sample83 -0.1517254544 -0.0448517087 sample84 0.0570946869 -0.0273817694 sample85 -0.1086311770 -0.1228099687 sample86 -0.0833888929 -0.0442884754 sample87 -0.0022051955 -0.0943897423 sample88 0.0078231898 -0.1140521258 sample89 -0.0611028974 -0.0094585360 sample90 -0.0022966773 -0.0936245659 sample91 -0.0433603918 0.3206031878 sample92 0.1815264311 -0.0334685555 sample93 -0.0267628257 0.0614441479 sample94 -0.0181881230 0.0605100633 sample95 0.0720337443 -0.0013043141 sample96 0.0559682724 -0.0118789843 sample97 0.0217412414 0.0195407283 sample98 -0.0379176022 0.0588370835 sample99 0.0792468010 -0.0151311552 sample100 -0.0222112289 -0.0023321010 sample101 0.0387176832 0.1224256745 sample102 0.2094606204 -0.0516489081 sample103 -0.0138515009 0.0301076464 sample104 0.0807963112 -0.0162725493 sample105 0.0520459253 -0.1229671735 sample106 0.0192628508 -0.0185249538 sample107 -0.0319007602 0.0405130461 sample108 0.0140686086 0.0163424122 sample109 0.1831903923 0.0612986609 sample110 0.0292784171 -0.0199851248 sample111 0.1423213658 0.0327331615 sample112 -0.0426320518 -0.0029079122 sample113 0.0771926835 0.0268708054 sample114 0.0241589696 -0.0184062793 sample115 0.1958994149 0.0460104177 sample116 0.1394443177 -0.0530824838 sample117 0.1672297807 -0.1386555016 sample118 0.0448334516 -0.0117628610 sample119 0.0910339527 0.2217460921 sample120 0.0331390139 -0.0057284421 sample121 -0.0307500683 0.1392492702 sample122 0.0839804211 -0.0292027225 sample123 -0.0239679746 -0.0642148370 sample124 0.0909162513 0.0130392790 sample125 0.0065327200 -0.1092632079 sample126 -0.0935261054 0.1368289263 sample127 -0.0035398617 0.0292761389 sample128 0.0660355411 0.1018535246 sample129 -0.0693677275 -0.0695393962 sample130 -0.0008529856 -0.0669694209 sample131 -0.0431014905 0.0174069195 sample132 0.0637060601 0.0029347597 sample133 0.0289469771 -0.0390815080 sample134 -0.0446155324 0.0456322315 sample135 -0.0712324715 0.0521651363 sample136 -0.0596298938 0.0197326308 sample137 -0.0793181760 -0.0380602893 sample138 0.0973510110 -0.0454225415 sample139 -0.0539923356 -0.1534323660 sample140 -0.0850825709 0.0955843627 sample141 0.0192686263 -0.0554464173 sample142 0.0672271892 -0.0461343632 sample143 0.0303708817 -0.0519259735 sample144 0.0089359174 0.0145816578 sample145 0.0638843411 0.0122210444 sample146 -0.0585896542 0.0063115207 sample147 -0.0894170039 -0.1124588108 sample148 0.0216393172 -0.0615992051 sample149 0.0515342083 -0.0839882532 sample150 -0.0568255946 -0.0124473755 sample151 0.0789513634 -0.0261842188 sample152 0.0330758634 0.1306450109 sample153 0.1752060914 0.1497650156 sample154 -0.0421460831 -0.0036981338 sample155 -0.0680185986 0.0095732742 sample156 -0.0388906225 0.1057580139 sample157 -0.0314749490 0.0561372649 sample158 -0.0329614202 0.0353955952 sample159 0.0398412717 -0.1007392902 sample160 -0.0424913981 0.0108494990 sample161 0.0888339728 -0.0679709412 sample162 0.0027570135 0.1237812911 sample163 0.0126192034 0.0725392341 sample164 0.0566772244 -0.0458337182 sample165 0.0315330183 -0.0236367972 sample166 0.0612073258 -0.0425259642 sample167 -0.0142729631 0.0179310034 sample168 0.0169506282 -0.0769629855 sample169 -0.0675064575 0.0131514512 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 -0.0012328614 -1.635707e-01 sample2 -0.0724355943 -6.023149e-03 sample3 -0.0188458497 -1.080025e-01 sample4 0.0390142655 3.104159e-04 sample5 0.1774810279 -2.996439e-02 sample6 -0.0451448195 -3.455949e-02 sample7 -0.0226461250 -7.018386e-03 sample8 -0.1033687028 -9.858760e-03 sample9 0.1350016586 8.979198e-02 sample10 0.1259883142 -5.097984e-02 sample11 0.0979793095 7.086642e-02 sample12 -0.0863019730 -8.620284e-02 sample13 -0.1381406210 1.827984e-01 sample14 -0.0615075561 -2.642830e-02 sample15 0.0381602631 -3.101529e-02 sample16 -0.0048781949 1.270269e-03 sample17 -0.0788486346 -1.547713e-02 sample18 -0.0884192019 -3.795558e-02 sample19 0.0703044661 -1.084000e-01 sample20 -0.0025579170 7.976048e-02 sample21 0.0941591960 -4.127046e-02 sample22 -0.0550268340 -7.806533e-02 sample23 0.0679493671 -4.102059e-02 sample24 -0.1310975893 1.649260e-01 sample25 0.0113583260 -4.426923e-02 sample26 -0.1402951165 2.016373e-02 sample27 0.0261569131 1.591045e-03 sample28 -0.0724203321 5.850423e-02 sample29 -0.0330050097 2.063664e-03 sample30 -0.0228751931 -2.015388e-02 sample31 -0.0635072366 -6.670427e-02 sample32 0.0685098930 -4.955273e-02 sample33 -0.0777764749 -1.272069e-01 sample34 0.0157840768 -3.024352e-02 sample35 -0.0529627768 1.500983e-01 sample36 0.0070909000 2.025327e-01 sample37 -0.0442411180 1.802114e-01 sample38 -0.0781504894 -3.676187e-02 sample39 0.0120328987 -3.388926e-02 sample40 -0.0473282693 1.471588e-01 sample41 0.0228195143 -2.673365e-02 sample42 -0.0245362329 -7.960904e-02 sample43 0.1036361261 -8.229600e-02 sample44 -0.1012237711 7.049133e-02 sample45 0.0013722509 -2.451217e-02 sample46 -0.0558504637 2.949173e-03 sample47 -0.0380478316 4.554254e-02 sample48 0.0784341334 4.888909e-02 sample49 -0.0605171752 -1.162592e-02 sample50 0.0530089071 -2.737620e-02 sample51 0.1514643017 5.678197e-02 sample52 0.1860934791 1.246709e-01 sample53 -0.0064182150 -2.701130e-02 sample54 0.0697036110 -2.308459e-02 sample55 0.1633578185 1.366454e-02 sample56 0.1011481833 4.682067e-02 sample57 0.1730371982 1.609588e-01 sample58 -0.0071385865 -1.666979e-02 sample59 -0.0030458497 3.005393e-02 sample60 0.0215843199 2.665894e-01 sample61 0.1510584534 1.002383e-01 sample62 -0.0925531038 -4.845704e-02 sample63 -0.0596316172 -4.137134e-02 sample64 -0.0449226951 -2.600802e-03 sample65 0.0939382326 -4.406951e-02 sample66 0.1063395709 -5.710149e-02 sample67 -0.0201578236 2.361758e-01 sample68 0.0037211031 2.418642e-02 sample69 -0.0645161014 -1.155615e-01 sample70 -0.1013437166 -1.351773e-01 sample71 -0.0016463120 -2.976685e-02 sample72 0.0328895094 -2.835772e-02 sample73 0.0275079761 -5.148170e-02 sample74 0.1341717450 -7.895328e-02 sample75 0.0951578191 -3.943094e-02 sample76 -0.0864719784 3.035063e-02 sample77 -0.1035750032 -2.545342e-02 sample78 -0.1575652137 4.939323e-02 sample79 0.0189141779 4.874787e-02 sample80 0.1384145406 4.408981e-05 sample81 -0.0118845103 -6.357867e-02 sample82 -0.1675307904 3.533925e-02 sample83 -0.0065671349 -7.812494e-02 sample84 0.1486890859 -3.109095e-02 sample85 -0.0532720195 7.418013e-02 sample86 -0.1138475482 -1.835704e-05 sample87 0.0432865441 6.080487e-02 sample88 0.0433448350 1.402478e-01 sample89 0.0331202064 -1.395513e-02 sample90 -0.0607413704 -8.610398e-02 sample91 -0.0566253239 1.303805e-01 sample92 -0.0359577386 1.061614e-01 sample93 -0.0433646315 -4.443610e-02 sample94 -0.0477290769 -1.059567e-01 sample95 -0.0249593799 -3.980450e-02 sample96 0.0035218689 -9.293907e-02 sample97 -0.0066051620 -1.527233e-01 sample98 0.0020367921 -5.579489e-02 sample99 -0.0886626088 -3.728530e-02 sample100 -0.1091259552 -3.560400e-02 sample101 -0.0739718386 -4.317719e-02 sample102 0.0574454179 -2.784157e-02 sample103 0.0142736072 9.707105e-03 sample104 0.0710396800 4.068366e-02 sample105 0.0980828497 -3.453049e-02 sample106 -0.0254262758 3.628857e-02 sample107 -0.0160655964 -9.173434e-02 sample108 -0.0200988714 -2.379718e-02 sample109 -0.0389778686 1.692400e-02 sample110 -0.0326306649 2.988036e-02 sample111 0.0676938631 -6.038179e-02 sample112 0.0167882113 5.336500e-03 sample113 0.0969213316 -2.757731e-02 sample114 -0.0026395756 -9.209038e-02 sample115 -0.0308047567 1.603789e-02 sample116 -0.1240305093 1.273001e-01 sample117 0.0334729407 5.392676e-02 sample118 -0.1037151248 6.252468e-02 sample119 -0.1064161584 1.196246e-01 sample120 -0.0771357547 -1.004935e-01 sample121 -0.0129354010 3.181861e-02 sample122 0.0847484877 -5.568561e-02 sample123 -0.0041336263 7.693315e-03 sample124 -0.0583462679 -8.396505e-02 sample125 0.0634841200 -5.232637e-02 sample126 -0.0662581059 -1.091726e-01 sample127 -0.0865023964 -1.094168e-01 sample128 -0.0627824852 -1.471199e-02 sample129 -0.0336274658 -4.007774e-02 sample130 -0.0293517877 -8.046084e-02 sample131 -0.0469195890 -2.209031e-03 sample132 -0.0241746729 -1.248613e-01 sample133 0.0907303936 1.466701e-02 sample134 -0.0350840895 7.539684e-02 sample135 0.0001334882 9.185867e-03 sample136 -0.0335872666 -9.860113e-02 sample137 -0.0640145922 -7.554323e-02 sample138 0.0060965115 -1.742758e-02 sample139 -0.0592084318 5.614968e-02 sample140 0.0427990464 -1.099400e-02 sample141 0.0618791650 -9.301159e-02 sample142 0.0898550456 3.573254e-02 sample143 0.0817391390 8.880542e-02 sample144 0.0787755266 -3.821371e-02 sample145 0.1085816487 1.569452e-01 sample146 -0.0589552093 -4.373140e-02 sample147 -0.0495329139 7.277733e-03 sample148 0.1161588010 9.077364e-03 sample149 -0.0121572816 7.788549e-02 sample150 -0.0314512553 3.520212e-02 sample151 0.0575381501 -1.945382e-02 sample152 -0.0494538079 7.025636e-02 sample153 -0.0941343555 2.153252e-01 sample154 -0.0335927345 2.078875e-02 sample155 0.0690459095 -2.780356e-02 sample156 0.1039904271 -6.292425e-02 sample157 -0.0408646822 8.065199e-03 sample158 0.1018106805 7.817216e-03 sample159 -0.0281734203 -1.207316e-02 sample160 0.1643051751 2.977520e-03 sample161 0.0374330538 8.524601e-02 sample162 -0.0804542135 8.349508e-02 sample163 -0.0743234647 -1.406419e-02 sample164 0.1208803399 -2.139557e-02 sample165 0.1608116059 2.025164e-02 sample166 -0.0425949816 -2.660868e-02 sample167 -0.0226848097 -4.464211e-02 sample168 -0.0180740125 -7.480775e-04 sample169 0.0190779515 2.645412e-02 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Combined plot for loadings from common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ## Plot scores and loadings togheter: Common components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Common components O2PLS > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Distintive components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > > proc.time() user system elapsed 13.389 0.127 13.502
STATegRa.Rcheck/STATegRa-Ex.timings
name | user | system | elapsed | |
STATegRaUsersGuide | 0 | 0 | 0 | |
STATegRa_data | 0.220 | 0.004 | 0.224 | |
STATegRa_data_TCGA_BRCA | 0.002 | 0.000 | 0.002 | |
bioDist | 0.587 | 0.012 | 0.599 | |
bioDistFeature | 0.332 | 0.012 | 0.344 | |
bioDistFeaturePlot | 0.325 | 0.012 | 0.337 | |
bioDistW | 0.449 | 0.008 | 0.457 | |
bioDistWPlot | 0.358 | 0.008 | 0.366 | |
bioMap | 0.006 | 0.000 | 0.005 | |
combiningMappings | 0.014 | 0.004 | 0.018 | |
createOmicsExpressionSet | 0.145 | 0.000 | 0.145 | |
getInitialData | 0.562 | 0.008 | 0.570 | |
getLoadings | 0.624 | 0.016 | 0.640 | |
getMethodInfo | 0.891 | 0.004 | 0.894 | |
getPreprocessing | 1.161 | 0.256 | 1.417 | |
getScores | 0.977 | 0.000 | 0.978 | |
getVAF | 0.786 | 0.008 | 0.794 | |
holistOmics | 0.004 | 0.000 | 0.003 | |
modelSelection | 2.080 | 0.576 | 2.656 | |
omicsCompAnalysis | 4.077 | 0.028 | 4.109 | |
omicsNPC | 0.002 | 0.000 | 0.002 | |
plotRes | 4.513 | 0.004 | 4.517 | |
plotVAF | 3.718 | 0.000 | 3.717 | |