Chapter 36 Nestorowa mouse HSC (Smart-seq2)
36.1 Introduction
This performs an analysis of the mouse haematopoietic stem cell (HSC) dataset generated with Smart-seq2 (Nestorowa et al. 2016).
36.2 Data loading
library(AnnotationHub)
ens.mm.v97 <- AnnotationHub()[["AH73905"]]
anno <- select(ens.mm.v97, keys=rownames(sce.nest),
keytype="GENEID", columns=c("SYMBOL", "SEQNAME"))
rowData(sce.nest) <- anno[match(rownames(sce.nest), anno$GENEID),]
After loading and annotation, we inspect the resulting SingleCellExperiment
object:
## class: SingleCellExperiment
## dim: 46078 1920
## metadata(0):
## assays(1): counts
## rownames(46078): ENSMUSG00000000001 ENSMUSG00000000003 ...
## ENSMUSG00000107391 ENSMUSG00000107392
## rowData names(3): GENEID SYMBOL SEQNAME
## colnames(1920): HSPC_007 HSPC_013 ... Prog_852 Prog_810
## colData names(2): cell.type FACS
## reducedDimNames(1): diffusion
## altExpNames(1): ERCC
36.3 Quality control
For some reason, no mitochondrial transcripts are available, so we will perform quality control using the spike-in proportions only.
library(scater)
stats <- perCellQCMetrics(sce.nest)
qc <- quickPerCellQC(stats, percent_subsets="altexps_ERCC_percent")
sce.nest <- sce.nest[,!qc$discard]
We examine the number of cells discarded for each reason.
## low_lib_size low_n_features high_altexps_ERCC_percent
## 146 28 241
## discard
## 264
We create some diagnostic plots for each metric (Figure 36.1).
colData(unfiltered) <- cbind(colData(unfiltered), stats)
unfiltered$discard <- qc$discard
gridExtra::grid.arrange(
plotColData(unfiltered, y="sum", colour_by="discard") +
scale_y_log10() + ggtitle("Total count"),
plotColData(unfiltered, y="detected", colour_by="discard") +
scale_y_log10() + ggtitle("Detected features"),
plotColData(unfiltered, y="altexps_ERCC_percent",
colour_by="discard") + ggtitle("ERCC percent"),
ncol=2
)
36.4 Normalization
library(scran)
set.seed(101000110)
clusters <- quickCluster(sce.nest)
sce.nest <- computeSumFactors(sce.nest, clusters=clusters)
sce.nest <- logNormCounts(sce.nest)
We examine some key metrics for the distribution of size factors, and compare it to the library sizes as a sanity check (Figure 36.2).
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.044 0.422 0.748 1.000 1.249 15.927
plot(librarySizeFactors(sce.nest), sizeFactors(sce.nest), pch=16,
xlab="Library size factors", ylab="Deconvolution factors", log="xy")
36.5 Variance modelling
We use the spike-in transcripts to model the technical noise as a function of the mean (Figure 36.3).
set.seed(00010101)
dec.nest <- modelGeneVarWithSpikes(sce.nest, "ERCC")
top.nest <- getTopHVGs(dec.nest, prop=0.1)
plot(dec.nest$mean, dec.nest$total, pch=16, cex=0.5,
xlab="Mean of log-expression", ylab="Variance of log-expression")
curfit <- metadata(dec.nest)
curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2)
points(curfit$mean, curfit$var, col="red")
36.6 Dimensionality reduction
set.seed(101010011)
sce.nest <- denoisePCA(sce.nest, technical=dec.nest, subset.row=top.nest)
sce.nest <- runTSNE(sce.nest, dimred="PCA")
We check that the number of retained PCs is sensible.
## [1] 9
36.7 Clustering
snn.gr <- buildSNNGraph(sce.nest, use.dimred="PCA")
colLabels(sce.nest) <- factor(igraph::cluster_walktrap(snn.gr)$membership)
##
## 1 2 3 4 5 6 7 8 9
## 203 472 258 175 142 229 20 83 74
36.8 Marker gene detection
markers <- findMarkers(sce.nest, colLabels(sce.nest),
test.type="wilcox", direction="up", lfc=0.5,
row.data=rowData(sce.nest)[,"SYMBOL",drop=FALSE])
To illustrate the manual annotation process, we examine the marker genes for one of the clusters. Upregulation of Car2, Hebp1 amd hemoglobins indicates that cluster 8 contains erythroid precursors.
chosen <- markers[['8']]
best <- chosen[chosen$Top <= 10,]
aucs <- getMarkerEffects(best, prefix="AUC")
rownames(aucs) <- best$SYMBOL
library(pheatmap)
pheatmap(aucs, color=viridis::plasma(100))
36.9 Cell type annotation
library(SingleR)
mm.ref <- MouseRNAseqData()
# Renaming to symbols to match with reference row names.
renamed <- sce.nest
rownames(renamed) <- uniquifyFeatureNames(rownames(renamed),
rowData(sce.nest)$SYMBOL)
labels <- SingleR(renamed, mm.ref, labels=mm.ref$label.fine)
Most clusters are not assigned to any single lineage (Figure 36.6), which is perhaps unsurprising given that HSCs are quite different from their terminal fates. Cluster 8 is considered to contain erythrocytes, which is roughly consistent with our conclusions from the marker gene analysis above.
tab <- table(labels$labels, colLabels(sce.nest))
pheatmap(log10(tab+10), color=viridis::viridis(100))
36.10 Miscellaneous analyses
This dataset also contains information about the protein abundances in each cell from FACS. There is barely any heterogeneity in the chosen markers across the clusters (Figure 36.7); this is perhaps unsurprising given that all cells should be HSCs of some sort.
Y <- colData(sce.nest)$FACS
keep <- rowSums(is.na(Y))==0 # Removing NA intensities.
se.averaged <- sumCountsAcrossCells(t(Y[keep,]),
colLabels(sce.nest)[keep], average=TRUE)
averaged <- assay(se.averaged)
log.intensities <- log2(averaged+1)
centered <- log.intensities - rowMeans(log.intensities)
pheatmap(centered, breaks=seq(-1, 1, length.out=101))
Session Info
R version 4.0.4 (2021-02-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.2 LTS
Matrix products: default
BLAS: /home/biocbuild/bbs-3.12-books/R/lib/libRblas.so
LAPACK: /home/biocbuild/bbs-3.12-books/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] celldex_1.0.0 SingleR_1.4.1
[3] pheatmap_1.0.12 scran_1.18.5
[5] scater_1.18.6 ggplot2_3.3.3
[7] AnnotationHub_2.22.0 BiocFileCache_1.14.0
[9] dbplyr_2.1.0 ensembldb_2.14.0
[11] AnnotationFilter_1.14.0 GenomicFeatures_1.42.2
[13] AnnotationDbi_1.52.0 scRNAseq_2.4.0
[15] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0
[17] Biobase_2.50.0 GenomicRanges_1.42.0
[19] GenomeInfoDb_1.26.4 IRanges_2.24.1
[21] S4Vectors_0.28.1 BiocGenerics_0.36.0
[23] MatrixGenerics_1.2.1 matrixStats_0.58.0
[25] BiocStyle_2.18.1 rebook_1.0.0
loaded via a namespace (and not attached):
[1] igraph_1.2.6 lazyeval_0.2.2
[3] BiocParallel_1.24.1 digest_0.6.27
[5] htmltools_0.5.1.1 viridis_0.5.1
[7] fansi_0.4.2 magrittr_2.0.1
[9] memoise_2.0.0 limma_3.46.0
[11] Biostrings_2.58.0 askpass_1.1
[13] prettyunits_1.1.1 colorspace_2.0-0
[15] blob_1.2.1 rappdirs_0.3.3
[17] xfun_0.22 dplyr_1.0.5
[19] callr_3.5.1 crayon_1.4.1
[21] RCurl_1.98-1.3 jsonlite_1.7.2
[23] graph_1.68.0 glue_1.4.2
[25] gtable_0.3.0 zlibbioc_1.36.0
[27] XVector_0.30.0 DelayedArray_0.16.2
[29] BiocSingular_1.6.0 scales_1.1.1
[31] edgeR_3.32.1 DBI_1.1.1
[33] Rcpp_1.0.6 viridisLite_0.3.0
[35] xtable_1.8-4 progress_1.2.2
[37] dqrng_0.2.1 bit_4.0.4
[39] rsvd_1.0.3 httr_1.4.2
[41] RColorBrewer_1.1-2 ellipsis_0.3.1
[43] pkgconfig_2.0.3 XML_3.99-0.6
[45] farver_2.1.0 scuttle_1.0.4
[47] CodeDepends_0.6.5 sass_0.3.1
[49] locfit_1.5-9.4 utf8_1.2.1
[51] tidyselect_1.1.0 labeling_0.4.2
[53] rlang_0.4.10 later_1.1.0.1
[55] munsell_0.5.0 BiocVersion_3.12.0
[57] tools_4.0.4 cachem_1.0.4
[59] generics_0.1.0 RSQLite_2.2.4
[61] ExperimentHub_1.16.0 evaluate_0.14
[63] stringr_1.4.0 fastmap_1.1.0
[65] yaml_2.2.1 processx_3.4.5
[67] knitr_1.31 bit64_4.0.5
[69] purrr_0.3.4 sparseMatrixStats_1.2.1
[71] mime_0.10 xml2_1.3.2
[73] biomaRt_2.46.3 compiler_4.0.4
[75] beeswarm_0.3.1 curl_4.3
[77] interactiveDisplayBase_1.28.0 statmod_1.4.35
[79] tibble_3.1.0 bslib_0.2.4
[81] stringi_1.5.3 highr_0.8
[83] ps_1.6.0 lattice_0.20-41
[85] bluster_1.0.0 ProtGenerics_1.22.0
[87] Matrix_1.3-2 vctrs_0.3.6
[89] pillar_1.5.1 lifecycle_1.0.0
[91] BiocManager_1.30.10 jquerylib_0.1.3
[93] BiocNeighbors_1.8.2 cowplot_1.1.1
[95] bitops_1.0-6 irlba_2.3.3
[97] httpuv_1.5.5 rtracklayer_1.50.0
[99] R6_2.5.0 bookdown_0.21
[101] promises_1.2.0.1 gridExtra_2.3
[103] vipor_0.4.5 codetools_0.2-18
[105] assertthat_0.2.1 openssl_1.4.3
[107] withr_2.4.1 GenomicAlignments_1.26.0
[109] Rsamtools_2.6.0 GenomeInfoDbData_1.2.4
[111] hms_1.0.0 grid_4.0.4
[113] beachmat_2.6.4 rmarkdown_2.7
[115] DelayedMatrixStats_1.12.3 Rtsne_0.15
[117] shiny_1.6.0 ggbeeswarm_0.6.0
Bibliography
Nestorowa, S., F. K. Hamey, B. Pijuan Sala, E. Diamanti, M. Shepherd, E. Laurenti, N. K. Wilson, D. G. Kent, and B. Gottgens. 2016. “A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.” Blood 128 (8): 20–31.