pyspark.pandas.to_numeric¶
- 
pyspark.pandas.to_numeric(arg, errors='raise')[source]¶
- Convert argument to a numeric type. - Parameters
- argscalar, list, tuple, 1-d array, or Series
- Argument to be converted. 
- errors{‘raise’, ‘coerce’}, default ‘raise’
- If ‘coerce’, then invalid parsing will be set as NaN. 
- If ‘raise’, then invalid parsing will raise an exception. 
- If ‘ignore’, then invalid parsing will return the input. 
 - Note - ‘ignore’ doesn’t work yet when arg is pandas-on-Spark Series. 
 
- Returns
- retnumeric if parsing succeeded.
 
 - See also - DataFrame.astype
- Cast argument to a specified dtype. 
- to_datetime
- Convert argument to datetime. 
- to_timedelta
- Convert argument to timedelta. 
- numpy.ndarray.astype
- Cast a numpy array to a specified type. 
 - Examples - >>> psser = ps.Series(['1.0', '2', '-3']) >>> psser 0 1.0 1 2 2 -3 dtype: object - >>> ps.to_numeric(psser) 0 1.0 1 2.0 2 -3.0 dtype: float32 - If given Series contains invalid value to cast float, just cast it to np.nan when errors is set to “coerce”. - >>> psser = ps.Series(['apple', '1.0', '2', '-3']) >>> psser 0 apple 1 1.0 2 2 3 -3 dtype: object - >>> ps.to_numeric(psser, errors="coerce") 0 NaN 1 1.0 2 2.0 3 -3.0 dtype: float32 - Also support for list, tuple, np.array, or a scalar - >>> ps.to_numeric(['1.0', '2', '-3']) array([ 1., 2., -3.]) - >>> ps.to_numeric(('1.0', '2', '-3')) array([ 1., 2., -3.]) - >>> ps.to_numeric(np.array(['1.0', '2', '-3'])) array([ 1., 2., -3.]) - >>> ps.to_numeric('1.0') 1.0