LinearRegressionModel¶
- 
class pyspark.ml.regression.LinearRegressionModel(java_model: Optional[JavaObject] = None)[source]¶
- Model fitted by - LinearRegression.- New in version 1.4.0. - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - evaluate(dataset)- Evaluates the model on a test dataset. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Gets the value of aggregationDepth or its default value. - Gets the value of elasticNetParam or its default value. - Gets the value of epsilon or its default value. - Gets the value of featuresCol or its default value. - Gets the value of fitIntercept or its default value. - Gets the value of labelCol or its default value. - getLoss()- Gets the value of loss or its default value. - Gets the value of maxBlockSizeInMB or its default value. - Gets the value of maxIter or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of predictionCol or its default value. - Gets the value of regParam or its default value. - Gets the value of solver or its default value. - Gets the value of standardization or its default value. - getTol()- Gets the value of tol or its default value. - Gets the value of weightCol or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - predict(value)- Predict label for the given features. - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setFeaturesCol(value)- Sets the value of - featuresCol.- setPredictionCol(value)- Sets the value of - predictionCol.- transform(dataset[, params])- Transforms the input dataset with optional parameters. - write()- Returns an GeneralMLWriter instance for this ML instance. - Attributes - Model coefficients. - Indicates whether a training summary exists for this model instance. - Model intercept. - Returns the number of features the model was trained on. - Returns all params ordered by name. - The value by which \(\|y - X'w\|\) is scaled down when loss is “huber”, otherwise 1.0. - Gets summary (residuals, MSE, r-squared ) of model on training set. - Methods Documentation - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → JP¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
evaluate(dataset: pyspark.sql.dataframe.DataFrame) → pyspark.ml.regression.LinearRegressionSummary[source]¶
- Evaluates the model on a test dataset. - New in version 2.0.0. - Parameters
- datasetpyspark.sql.DataFrame
- Test dataset to evaluate model on, where dataset is an instance of - pyspark.sql.DataFrame
 
- dataset
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
getAggregationDepth() → int¶
- Gets the value of aggregationDepth or its default value. 
 - 
getElasticNetParam() → float¶
- Gets the value of elasticNetParam or its default value. 
 - 
getEpsilon() → float¶
- Gets the value of epsilon or its default value. - New in version 2.3.0. 
 - 
getFeaturesCol() → str¶
- Gets the value of featuresCol or its default value. 
 - 
getFitIntercept() → bool¶
- Gets the value of fitIntercept or its default value. 
 - 
getLabelCol() → str¶
- Gets the value of labelCol or its default value. 
 - 
getLoss() → str¶
- Gets the value of loss or its default value. 
 - 
getMaxBlockSizeInMB() → float¶
- Gets the value of maxBlockSizeInMB or its default value. 
 - 
getMaxIter() → int¶
- Gets the value of maxIter or its default value. 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
getPredictionCol() → str¶
- Gets the value of predictionCol or its default value. 
 - 
getRegParam() → float¶
- Gets the value of regParam or its default value. 
 - 
getSolver() → str¶
- Gets the value of solver or its default value. 
 - 
getStandardization() → bool¶
- Gets the value of standardization or its default value. 
 - 
getTol() → float¶
- Gets the value of tol or its default value. 
 - 
getWeightCol() → str¶
- Gets the value of weightCol or its default value. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
predict(value: T) → float¶
- Predict label for the given features. - New in version 3.0.0. 
 - 
classmethod read() → pyspark.ml.util.JavaMLReader[RL]¶
- Returns an MLReader instance for this class. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
setFeaturesCol(value: str) → P¶
- Sets the value of - featuresCol.- New in version 3.0.0. 
 - 
setPredictionCol(value: str) → P¶
- Sets the value of - predictionCol.- New in version 3.0.0. 
 - 
transform(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame¶
- Transforms the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- paramsdict, optional
- an optional param map that overrides embedded params. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- transformed dataset 
 
 
 - 
write() → pyspark.ml.util.GeneralJavaMLWriter¶
- Returns an GeneralMLWriter instance for this ML instance. 
 - Attributes Documentation - 
aggregationDepth= Param(parent='undefined', name='aggregationDepth', doc='suggested depth for treeAggregate (>= 2).')¶
 - 
coefficients¶
- Model coefficients. - New in version 2.0.0. 
 - 
elasticNetParam= Param(parent='undefined', name='elasticNetParam', doc='the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.')¶
 - 
epsilon: pyspark.ml.param.Param[float] = Param(parent='undefined', name='epsilon', doc='The shape parameter to control the amount of robustness. Must be > 1.0. Only valid when loss is huber')¶
 - 
featuresCol= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
 - 
fitIntercept= Param(parent='undefined', name='fitIntercept', doc='whether to fit an intercept term.')¶
 - 
hasSummary¶
- Indicates whether a training summary exists for this model instance. - New in version 2.1.0. 
 - 
intercept¶
- Model intercept. - New in version 1.4.0. 
 - 
labelCol= Param(parent='undefined', name='labelCol', doc='label column name.')¶
 - 
loss: pyspark.ml.param.Param[str] = Param(parent='undefined', name='loss', doc='The loss function to be optimized. Supported options: squaredError, huber.')¶
 - 
maxBlockSizeInMB= Param(parent='undefined', name='maxBlockSizeInMB', doc='maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0.')¶
 - 
maxIter= Param(parent='undefined', name='maxIter', doc='max number of iterations (>= 0).')¶
 - 
numFeatures¶
- Returns the number of features the model was trained on. If unknown, returns -1 - New in version 2.1.0. 
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
predictionCol= Param(parent='undefined', name='predictionCol', doc='prediction column name.')¶
 - 
regParam= Param(parent='undefined', name='regParam', doc='regularization parameter (>= 0).')¶
 - 
scale¶
- The value by which \(\|y - X'w\|\) is scaled down when loss is “huber”, otherwise 1.0. - New in version 2.3.0. 
 - 
solver: pyspark.ml.param.Param[str] = Param(parent='undefined', name='solver', doc='The solver algorithm for optimization. Supported options: auto, normal, l-bfgs.')¶
 - 
standardization= Param(parent='undefined', name='standardization', doc='whether to standardize the training features before fitting the model.')¶
 - 
summary¶
- Gets summary (residuals, MSE, r-squared ) of model on training set. An exception is thrown if trainingSummary is None. - New in version 2.0.0. 
 - 
tol= Param(parent='undefined', name='tol', doc='the convergence tolerance for iterative algorithms (>= 0).')¶
 - 
weightCol= Param(parent='undefined', name='weightCol', doc='weight column name. If this is not set or empty, we treat all instance weights as 1.0.')¶
 
-