pyspark.pandas.Series.duplicated¶
- 
Series.duplicated(keep: Union[bool, str] = 'first') → pyspark.pandas.series.Series[source]¶
- Indicate duplicate Series values. - Duplicated values are indicated as - Truevalues in the resulting Series. Either all duplicates, all except the first or all except the last occurrence of duplicates can be indicated.- New in version 3.4.0. - Parameters
- keep{‘first’, ‘last’, False}, default ‘first’
- Method to handle marking duplicates: - ‘first’ : Mark duplicates as - Trueexcept for the first occurrence. - ‘last’ : Mark duplicates as- Trueexcept for the last occurrence. -- False: Mark all duplicates as- True.
 
- Returns
- Series
- Series indicating whether each value has occurred in the preceding values 
 
 - See also - Index.drop_duplicates
- Remove duplicate values from Index. 
- DataFrame.duplicated
- Equivalent method on DataFrame. 
- Series.drop_duplicates
- Remove duplicate values from Series. 
 - Examples - By default, for each set of duplicated values, the first occurrence is set on False and all others on True: - >>> animals = ps.Series(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> animals.duplicated().sort_index() 0 False 1 False 2 True 3 False 4 True dtype: bool - which is equivalent to - >>> animals.duplicated(keep='first').sort_index() 0 False 1 False 2 True 3 False 4 True dtype: bool - By using ‘last’, the last occurrence of each set of duplicated values is set on False and all others on True: - >>> animals.duplicated(keep='last').sort_index() 0 True 1 False 2 True 3 False 4 False dtype: bool - By setting keep on - False, all duplicates are True:- >>> animals.duplicated(keep=False).sort_index() 0 True 1 False 2 True 3 False 4 True dtype: bool