Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-08-21 11:42 -0400 (Thu, 21 Aug 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4824
merida1macOS 12.7.5 Montereyx86_644.5.1 RC (2025-06-05 r88288) -- "Great Square Root" 4604
kjohnson1macOS 13.6.6 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4545
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4579
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2013/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.18.1  (landing page)
Joshua David Campbell
Snapshot Date: 2025-08-18 13:40 -0400 (Mon, 18 Aug 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_21
git_last_commit: f519d00e
git_last_commit_date: 2025-07-01 15:40:07 -0400 (Tue, 01 Jul 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for singleCellTK on kunpeng2

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: singleCellTK
Version: 2.18.1
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings singleCellTK_2.18.1.tar.gz
StartedAt: 2025-08-19 14:09:40 -0000 (Tue, 19 Aug 2025)
EndedAt: 2025-08-19 14:29:31 -0000 (Tue, 19 Aug 2025)
EllapsedTime: 1190.2 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings singleCellTK_2.18.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck’
* using R Under development (unstable) (2025-02-19 r87757)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS-SP1)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.18.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 79 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
runSeuratSCTransform     45.285  0.337  45.719
plotScDblFinderResults   41.313  0.223  41.735
plotDoubletFinderResults 41.288  0.240  41.742
runDoubletFinder         37.524  0.221  37.834
runScDblFinder           30.220  0.451  30.717
importExampleData        15.261  1.229  22.070
plotBatchCorrCompare     13.444  0.069  13.872
plotScdsHybridResults    11.317  0.062  10.420
plotBcdsResults          10.461  0.121   9.643
plotDecontXResults        8.908  0.136   9.064
runDecontX                7.749  0.032   7.809
plotCxdsResults           7.470  0.084   7.700
runUMAP                   7.470  0.038   7.645
plotUMAP                  7.410  0.077   7.660
plotFindMarkerHeatmap     7.062  0.080   7.156
detectCellOutlier         6.617  0.215   6.846
plotDEGViolin             5.784  0.077   5.876
convertSCEToSeurat        5.507  0.244   5.763
plotEmptyDropsResults     5.547  0.033   5.591
plotEmptyDropsScatter     5.488  0.020   5.517
plotTSCANClusterDEG       5.213  0.115   5.341
runEmptyDrops             5.195  0.004   5.204
runEnrichR                0.430  0.134   9.328
getEnrichRResult          0.405  0.076   8.675
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-devel_2025-02-19/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.18.1’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.185   0.038   0.210 

singleCellTK.Rcheck/tests/testthat.Rout


R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
329.466   9.101 356.413 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0000.003
SEG0.0030.0000.003
calcEffectSizes0.2700.0160.287
combineSCE1.0840.0201.107
computeZScore0.2710.0200.292
convertSCEToSeurat5.5070.2445.763
convertSeuratToSCE0.4840.0080.492
dedupRowNames0.0760.0000.076
detectCellOutlier6.6170.2156.846
diffAbundanceFET0.0760.0000.075
discreteColorPalette0.0080.0000.008
distinctColors0.0030.0000.003
downSampleCells0.7380.0720.812
downSampleDepth0.6240.0040.630
expData-ANY-character-method0.1820.0000.182
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.2390.0000.240
expData-set0.2170.0040.221
expData0.1710.0000.171
expDataNames-ANY-method0.1620.0000.162
expDataNames0.1580.0000.158
expDeleteDataTag0.0430.0000.043
expSetDataTag0.030.000.03
expTaggedData0.0310.0000.031
exportSCE0.0260.0000.026
exportSCEtoAnnData0.0740.0040.078
exportSCEtoFlatFile0.0790.0000.078
featureIndex0.0410.0040.044
generateSimulatedData0.0660.0000.066
getBiomarker0.0710.0000.070
getDEGTopTable0.9450.0440.991
getDiffAbundanceResults0.0610.0120.074
getEnrichRResult0.4050.0768.675
getFindMarkerTopTable2.1080.1972.310
getMSigDBTable0.0040.0000.005
getPathwayResultNames0.0370.0040.041
getSampleSummaryStatsTable0.2660.0160.282
getSoupX000
getTSCANResults1.5050.1511.661
getTopHVG1.1890.0601.251
importAnnData0.0010.0000.002
importBUStools0.2100.0160.228
importCellRanger1.0910.1081.206
importCellRangerV2Sample0.2140.0200.235
importCellRangerV3Sample0.4200.0280.449
importDropEst0.3060.0360.343
importExampleData15.261 1.22922.070
importGeneSetsFromCollection2.3410.1002.446
importGeneSetsFromGMT0.0780.0030.082
importGeneSetsFromList0.1640.0000.164
importGeneSetsFromMSigDB1.2260.1121.341
importMitoGeneSet0.0580.0040.062
importOptimus0.0020.0000.002
importSEQC0.1800.0160.198
importSTARsolo0.2610.0080.271
iterateSimulations0.2320.0030.236
listSampleSummaryStatsTables0.3320.0000.332
mergeSCEColData0.5100.0080.519
mouseBrainSubsetSCE0.0430.0040.047
msigdb_table0.0010.0000.002
plotBarcodeRankDropsResults0.8400.0040.847
plotBarcodeRankScatter0.9700.0160.988
plotBatchCorrCompare13.444 0.06913.872
plotBatchVariance0.4500.0080.459
plotBcdsResults10.461 0.121 9.643
plotBubble0.9440.0200.966
plotClusterAbundance1.2490.0081.260
plotCxdsResults7.4700.0847.700
plotDEGHeatmap3.0150.0173.039
plotDEGRegression4.6980.0324.742
plotDEGViolin5.7840.0775.876
plotDEGVolcano1.0690.0081.079
plotDecontXResults8.9080.1369.064
plotDimRed0.2540.0080.262
plotDoubletFinderResults41.288 0.24041.742
plotEmptyDropsResults5.5470.0335.591
plotEmptyDropsScatter5.4880.0205.517
plotFindMarkerHeatmap7.0620.0807.156
plotMASTThresholdGenes1.8380.0201.862
plotPCA0.4300.0040.435
plotPathway0.7390.0120.753
plotRunPerCellQCResults2.8280.0362.869
plotSCEBarAssayData0.2610.0000.261
plotSCEBarColData0.2440.0030.247
plotSCEBatchFeatureMean0.3250.0000.327
plotSCEDensity0.3010.0040.306
plotSCEDensityAssayData0.2390.0000.239
plotSCEDensityColData0.30.00.3
plotSCEDimReduceColData0.7120.0040.717
plotSCEDimReduceFeatures0.4010.0000.401
plotSCEHeatmap0.5930.0030.598
plotSCEScatter0.3470.0010.347
plotSCEViolin0.3520.0000.353
plotSCEViolinAssayData0.3690.0000.370
plotSCEViolinColData0.3480.0000.348
plotScDblFinderResults41.313 0.22341.735
plotScanpyDotPlot0.0280.0000.028
plotScanpyEmbedding0.0280.0000.028
plotScanpyHVG0.0270.0000.028
plotScanpyHeatmap0.0290.0000.029
plotScanpyMarkerGenes0.0290.0000.029
plotScanpyMarkerGenesDotPlot0.0250.0000.025
plotScanpyMarkerGenesHeatmap0.0250.0000.024
plotScanpyMarkerGenesMatrixPlot0.0250.0000.025
plotScanpyMarkerGenesViolin0.0240.0000.024
plotScanpyMatrixPlot0.0240.0000.025
plotScanpyPCA0.0280.0000.028
plotScanpyPCAGeneRanking0.0250.0000.025
plotScanpyPCAVariance0.0240.0000.025
plotScanpyViolin0.0240.0000.025
plotScdsHybridResults11.317 0.06210.420
plotScrubletResults0.0250.0000.026
plotSeuratElbow0.0260.0000.026
plotSeuratHVG0.0250.0000.025
plotSeuratJackStraw0.0250.0000.025
plotSeuratReduction0.0260.0000.026
plotSoupXResults000
plotTSCANClusterDEG5.2130.1155.341
plotTSCANClusterPseudo1.6820.0011.687
plotTSCANDimReduceFeatures1.7700.0041.777
plotTSCANPseudotimeGenes1.9320.0281.964
plotTSCANPseudotimeHeatmap1.8580.0161.879
plotTSCANResults1.5370.0041.545
plotTSNE0.4230.0000.424
plotTopHVG0.7050.0000.706
plotUMAP7.4100.0777.660
readSingleCellMatrix0.0020.0050.006
reportCellQC0.1170.0000.117
reportDropletQC0.0320.0000.032
reportQCTool0.1180.0000.118
retrieveSCEIndex0.0410.0000.040
runBBKNN000
runBarcodeRankDrops0.3080.0000.309
runBcds3.0220.0121.987
runCellQC0.1080.0000.109
runClusterSummaryMetrics0.5260.0000.533
runComBatSeq0.6640.0080.673
runCxds0.4340.0000.435
runCxdsBcdsHybrid3.0630.0322.025
runDEAnalysis0.5430.0280.574
runDecontX7.7490.0327.809
runDimReduce0.4070.0000.408
runDoubletFinder37.524 0.22137.834
runDropletQC0.0270.0000.027
runEmptyDrops5.1950.0045.204
runEnrichR0.4300.1349.328
runFastMNN2.5240.2682.797
runFeatureSelection0.3040.0220.334
runFindMarker2.0650.1552.228
runGSVA1.2540.1001.356
runHarmony0.0570.0040.061
runKMeans0.2640.0080.273
runLimmaBC0.1080.0160.124
runMNNCorrect0.6000.0350.636
runModelGeneVar0.4450.0320.479
runNormalization2.7000.1802.884
runPerCellQC0.4520.0080.461
runSCANORAMA0.0010.0000.000
runSCMerge0.0050.0000.005
runScDblFinder30.220 0.45130.717
runScanpyFindClusters0.0290.0000.029
runScanpyFindHVG0.0290.0000.028
runScanpyFindMarkers0.0290.0000.030
runScanpyNormalizeData0.1410.0000.141
runScanpyPCA0.0270.0000.027
runScanpyScaleData0.0280.0000.028
runScanpyTSNE0.0270.0000.027
runScanpyUMAP0.0240.0040.029
runScranSNN0.3990.0000.399
runScrublet0.0290.0000.029
runSeuratFindClusters0.0290.0000.029
runSeuratFindHVG0.6580.0040.663
runSeuratHeatmap0.0280.0000.028
runSeuratICA0.0290.0000.029
runSeuratJackStraw0.0290.0000.029
runSeuratNormalizeData0.030.000.03
runSeuratPCA0.0280.0000.028
runSeuratSCTransform45.285 0.33745.719
runSeuratScaleData0.0270.0000.027
runSeuratUMAP0.0250.0000.025
runSingleR0.0480.0000.049
runSoupX000
runTSCAN0.8870.0160.905
runTSCANClusterDEAnalysis0.9910.0040.997
runTSCANDEG0.9560.0160.974
runTSNE1.0410.0041.046
runUMAP7.4700.0387.645
runVAM0.40.00.4
runZINBWaVE0.0040.0000.005
sampleSummaryStats0.2210.0000.222
scaterCPM0.1310.0080.139
scaterPCA0.6420.0040.647
scaterlogNormCounts0.2740.0040.279
sce0.0200.0040.024
sctkListGeneSetCollections0.0970.0000.097
sctkPythonInstallConda0.0010.0000.000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment0.0000.0000.001
setRowNames0.1050.0000.106
setSCTKDisplayRow0.3910.0040.395
singleCellTK000
subDiffEx0.4010.0040.406
subsetSCECols0.1010.0000.102
subsetSCERows0.3140.0000.315
summarizeSCE0.0830.0000.082
trimCounts0.2430.0040.248