Back to Multiple platform build/check report for BioC 3.22:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-11-24 12:05 -0500 (Mon, 24 Nov 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.2 (2025-10-31) -- "[Not] Part in a Rumble" 4873
merida1macOS 12.7.6 Montereyx86_644.5.2 Patched (2025-11-05 r88990) -- "[Not] Part in a Rumble" 4654
kjohnson1macOS 13.7.5 Venturaarm644.5.2 Patched (2025-11-04 r88984) -- "[Not] Part in a Rumble" 4600
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4668
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2033/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.20.0  (landing page)
Joshua David Campbell
Snapshot Date: 2025-11-20 15:01 -0500 (Thu, 20 Nov 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_22
git_last_commit: e2bff7b
git_last_commit_date: 2025-10-29 11:29:49 -0500 (Wed, 29 Oct 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.6 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.7.5 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    NA  


CHECK results for singleCellTK on merida1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.20.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.20.0.tar.gz
StartedAt: 2025-11-21 11:52:45 -0500 (Fri, 21 Nov 2025)
EndedAt: 2025-11-21 12:24:13 -0500 (Fri, 21 Nov 2025)
EllapsedTime: 1887.7 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.20.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.2 Patched (2025-11-05 r88990)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.20.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.5Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 90.178  0.758  91.688
plotDoubletFinderResults 54.455  0.266  56.454
plotScDblFinderResults   51.690  1.082  56.592
runDoubletFinder         47.750  0.182  48.545
runScDblFinder           34.196  0.506  35.025
importExampleData        21.562  2.295  25.172
plotBatchCorrCompare     19.346  0.170  19.537
plotScdsHybridResults    15.714  0.204  16.449
plotBcdsResults          14.784  0.235  15.053
plotDecontXResults       13.764  0.098  14.013
plotDEGViolin            12.973  0.166  13.207
plotDEGRegression        12.259  0.092  12.462
plotTSCANClusterDEG      12.203  0.125  13.453
plotCxdsResults          12.023  0.099  12.309
plotEmptyDropsResults    10.386  0.043  11.157
plotEmptyDropsScatter    10.220  0.052  10.903
plotFindMarkerHeatmap     9.962  0.055  10.743
runDecontX                9.659  0.062   9.855
runUMAP                   9.406  0.093   9.545
convertSCEToSeurat        9.135  0.358   9.768
runEmptyDrops             9.412  0.031   9.708
plotUMAP                  9.256  0.087   9.846
detectCellOutlier         8.591  0.161   8.908
plotRunPerCellQCResults   7.513  0.042   7.922
runSeuratSCTransform      7.151  0.124   7.329
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.20.0’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.2 Patched (2025-11-05 r88990) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.352   0.113   0.436 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.5.2 Patched (2025-11-05 r88990) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
557.601   9.771 582.894 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0040.0060.011
SEG0.0040.0050.009
calcEffectSizes0.4510.0250.478
combineSCE1.6310.0251.759
computeZScore0.4040.0190.449
convertSCEToSeurat9.1350.3589.768
convertSeuratToSCE0.7810.0120.810
dedupRowNames0.1300.0070.146
detectCellOutlier8.5910.1618.908
diffAbundanceFET0.0970.0060.103
discreteColorPalette0.0100.0010.010
distinctColors0.0030.0010.004
downSampleCells1.0620.1281.198
downSampleDepth0.8890.0710.967
expData-ANY-character-method0.2810.0100.296
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3860.0160.418
expData-set0.3500.0070.359
expData0.2880.0120.302
expDataNames-ANY-method0.2760.0140.295
expDataNames0.2790.0300.328
expDeleteDataTag0.0570.0070.068
expSetDataTag0.0450.0050.054
expTaggedData0.0450.0060.054
exportSCE0.0390.0080.050
exportSCEtoAnnData0.1200.0070.132
exportSCEtoFlatFile0.1220.0080.133
featureIndex0.0690.0090.082
generateSimulatedData0.0940.0100.112
getBiomarker0.1130.0170.133
getDEGTopTable1.5960.1291.743
getDiffAbundanceResults0.0870.0040.092
getEnrichRResult0.7000.0582.745
getFindMarkerTopTable3.3790.0913.520
getMSigDBTable0.0080.0070.014
getPathwayResultNames0.0400.0070.048
getSampleSummaryStatsTable0.4050.0070.415
getSoupX0.0000.0000.001
getTSCANResults2.2690.0632.347
getTopHVG1.8690.0271.914
importAnnData0.0020.0010.004
importBUStools0.3450.0070.353
importCellRanger1.6630.0481.726
importCellRangerV2Sample0.3500.0040.357
importCellRangerV3Sample0.6190.0220.650
importDropEst0.4690.0080.478
importExampleData21.562 2.29525.172
importGeneSetsFromCollection2.8390.1573.017
importGeneSetsFromGMT0.1290.0080.140
importGeneSetsFromList0.3020.0090.316
importGeneSetsFromMSigDB90.178 0.75891.688
importMitoGeneSet0.1180.0180.136
importOptimus0.0030.0010.004
importSEQC0.3350.0230.361
importSTARsolo0.3600.0290.391
iterateSimulations0.3690.0320.402
listSampleSummaryStatsTables0.5230.0560.580
mergeSCEColData0.8390.0500.893
mouseBrainSubsetSCE0.0680.0070.075
msigdb_table0.0020.0050.007
plotBarcodeRankDropsResults1.9780.0442.029
plotBarcodeRankScatter2.0330.0192.056
plotBatchCorrCompare19.346 0.17019.537
plotBatchVariance1.0840.0241.111
plotBcdsResults14.784 0.23515.053
plotBubble1.8540.0161.875
plotClusterAbundance3.4990.0323.546
plotCxdsResults12.023 0.09912.309
plotDEGHeatmap4.8730.0384.919
plotDEGRegression12.259 0.09212.462
plotDEGViolin12.973 0.16613.207
plotDEGVolcano1.9910.0182.013
plotDecontXResults13.764 0.09814.013
plotDimRed0.6650.0100.686
plotDoubletFinderResults54.455 0.26656.454
plotEmptyDropsResults10.386 0.04311.157
plotEmptyDropsScatter10.220 0.05210.903
plotFindMarkerHeatmap 9.962 0.05510.743
plotMASTThresholdGenes3.2400.0483.705
plotPCA0.8900.0150.993
plotPathway1.6490.0161.757
plotRunPerCellQCResults7.5130.0427.922
plotSCEBarAssayData0.7270.0090.742
plotSCEBarColData0.5500.0090.563
plotSCEBatchFeatureMean0.9430.0080.953
plotSCEDensity0.7550.0090.768
plotSCEDensityAssayData0.7310.0100.754
plotSCEDensityColData0.7540.0110.815
plotSCEDimReduceColData1.9270.0192.055
plotSCEDimReduceFeatures0.8880.0110.936
plotSCEHeatmap0.9910.0101.047
plotSCEScatter0.8840.0130.986
plotSCEViolin0.9580.0121.019
plotSCEViolinAssayData0.9180.0120.949
plotSCEViolinColData0.8840.0130.985
plotScDblFinderResults51.690 1.08256.592
plotScanpyDotPlot0.0480.0050.054
plotScanpyEmbedding0.0410.0040.047
plotScanpyHVG0.0420.0050.050
plotScanpyHeatmap0.0460.0040.050
plotScanpyMarkerGenes0.0390.0050.044
plotScanpyMarkerGenesDotPlot0.0420.0050.048
plotScanpyMarkerGenesHeatmap0.0430.0060.049
plotScanpyMarkerGenesMatrixPlot0.0420.0080.050
plotScanpyMarkerGenesViolin0.0410.0060.048
plotScanpyMatrixPlot0.0400.0050.045
plotScanpyPCA0.0400.0040.044
plotScanpyPCAGeneRanking0.0450.0030.049
plotScanpyPCAVariance0.0410.0050.046
plotScanpyViolin0.0390.0040.044
plotScdsHybridResults15.714 0.20416.449
plotScrubletResults0.0430.0040.048
plotSeuratElbow0.0400.0050.049
plotSeuratHVG0.0390.0030.046
plotSeuratJackStraw0.0390.0040.046
plotSeuratReduction0.0390.0040.049
plotSoupXResults0.0000.0000.001
plotTSCANClusterDEG12.203 0.12513.453
plotTSCANClusterPseudo3.3170.0503.937
plotTSCANDimReduceFeatures3.4080.0333.469
plotTSCANPseudotimeGenes4.2460.0374.494
plotTSCANPseudotimeHeatmap3.1470.0423.608
plotTSCANResults3.0740.0343.213
plotTSNE0.9180.0160.958
plotTopHVG1.4150.0241.470
plotUMAP9.2560.0879.846
readSingleCellMatrix0.0100.0010.022
reportCellQC0.1800.0070.207
reportDropletQC0.0400.0050.046
reportQCTool0.1770.0080.217
retrieveSCEIndex0.0540.0050.067
runBBKNN0.0000.0010.001
runBarcodeRankDrops0.4810.0080.561
runBcds3.4150.0513.889
runCellQC0.1780.0060.213
runClusterSummaryMetrics0.9000.0161.032
runComBatSeq0.9980.0191.145
runCxds0.6890.0170.747
runCxdsBcdsHybrid3.4600.1083.734
runDEAnalysis0.9300.0681.040
runDecontX9.6590.0629.855
runDimReduce0.6430.0080.655
runDoubletFinder47.750 0.18248.545
runDropletQC0.0390.0040.043
runEmptyDrops9.4120.0319.708
runEnrichR0.6580.0513.869
runFastMNN4.0310.0744.149
runFeatureSelection0.4570.0070.466
runFindMarker3.2940.0473.407
runGSVA1.5510.0511.613
runHarmony0.0940.0020.097
runKMeans0.5100.0250.537
runLimmaBC0.1870.0020.190
runMNNCorrect0.8920.0060.903
runModelGeneVar0.6930.0090.707
runNormalization3.5730.0613.650
runPerCellQC0.7610.0140.829
runSCANORAMA000
runSCMerge0.0070.0020.009
runScDblFinder34.196 0.50635.025
runScanpyFindClusters0.0410.0040.044
runScanpyFindHVG0.0400.0050.046
runScanpyFindMarkers0.0410.0100.051
runScanpyNormalizeData0.2220.0050.228
runScanpyPCA0.0400.0070.047
runScanpyScaleData0.0400.0060.047
runScanpyTSNE0.0380.0040.042
runScanpyUMAP0.0410.0040.044
runScranSNN0.6460.0200.671
runScrublet0.0410.0030.044
runSeuratFindClusters0.0400.0070.047
runSeuratFindHVG1.0710.0161.090
runSeuratHeatmap0.0430.0050.048
runSeuratICA0.0530.0050.058
runSeuratJackStraw0.0400.0040.044
runSeuratNormalizeData0.0400.0040.043
runSeuratPCA0.0400.0030.044
runSeuratSCTransform7.1510.1247.329
runSeuratScaleData0.0410.0050.045
runSeuratUMAP0.0410.0070.049
runSingleR0.0840.0040.089
runSoupX000
runTSCAN1.5310.0191.595
runTSCANClusterDEAnalysis1.7260.0241.770
runTSCANDEG1.6710.0361.752
runTSNE1.2950.0181.316
runUMAP9.4060.0939.545
runVAM0.6930.0100.707
runZINBWaVE0.0060.0020.008
sampleSummaryStats0.3540.0080.363
scaterCPM0.2130.0080.224
scaterPCA1.0420.0131.075
scaterlogNormCounts0.4260.0080.437
sce0.0380.0080.045
sctkListGeneSetCollections0.1780.0090.187
sctkPythonInstallConda0.0000.0000.001
sctkPythonInstallVirtualEnv0.0010.0010.001
selectSCTKConda0.0000.0010.001
selectSCTKVirtualEnvironment0.0000.0010.001
setRowNames0.1920.0090.202
setSCTKDisplayRow1.0050.0251.035
singleCellTK0.0010.0000.001
subDiffEx0.6720.0380.714
subsetSCECols0.1850.0090.195
subsetSCERows0.5860.0320.622
summarizeSCE0.1360.0080.145
trimCounts0.3430.0160.363