Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-08-21 11:40 -0400 (Thu, 21 Aug 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4824
merida1macOS 12.7.5 Montereyx86_644.5.1 RC (2025-06-05 r88288) -- "Great Square Root" 4604
kjohnson1macOS 13.6.6 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4545
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4579
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2013/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.18.1  (landing page)
Joshua David Campbell
Snapshot Date: 2025-08-18 13:40 -0400 (Mon, 18 Aug 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_21
git_last_commit: f519d00e
git_last_commit_date: 2025-07-01 15:40:07 -0400 (Tue, 01 Jul 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for singleCellTK on merida1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.18.1
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.18.1.tar.gz
StartedAt: 2025-08-19 11:27:09 -0400 (Tue, 19 Aug 2025)
EndedAt: 2025-08-19 11:58:55 -0400 (Tue, 19 Aug 2025)
EllapsedTime: 1905.9 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.18.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.1 RC (2025-06-05 r88288)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.18.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 79 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.5Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 91.162  0.868  96.542
plotDoubletFinderResults 53.112  0.257  57.586
plotScDblFinderResults   48.159  0.916  56.117
runDoubletFinder         45.245  0.210  49.076
runScDblFinder           34.232  0.465  36.379
importExampleData        23.365  2.268  27.491
plotBatchCorrCompare     17.849  0.130  18.574
plotScdsHybridResults    13.544  0.136  15.592
plotBcdsResults          13.125  0.196  13.730
plotDecontXResults       11.636  0.076  11.805
plotFindMarkerHeatmap    10.442  0.073  12.110
plotCxdsResults          10.355  0.097  11.147
plotEmptyDropsScatter    10.155  0.051  11.114
plotDEGViolin            10.006  0.174  10.954
plotEmptyDropsResults    10.034  0.041  10.784
runEmptyDrops             9.394  0.036   9.904
convertSCEToSeurat        8.866  0.427   9.749
runDecontX                9.073  0.059  10.174
plotUMAP                  9.023  0.097  10.371
plotTSCANClusterDEG       8.745  0.235  10.245
runUMAP                   8.869  0.095   9.382
plotDEGRegression         8.100  0.079   8.395
detectCellOutlier         7.236  0.169   7.794
runSeuratSCTransform      7.129  0.076   7.561
plotDEGHeatmap            5.366  0.073   5.696
plotRunPerCellQCResults   4.692  0.030   5.470
runEnrichR                0.638  0.047   8.462
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.18.1’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.349   0.123   0.441 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 22 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 22 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
520.579  10.617 582.863 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0040.0050.009
SEG0.0040.0060.010
calcEffectSizes0.4700.0320.537
combineSCE1.7060.0261.840
computeZScore0.4150.0160.454
convertSCEToSeurat8.8660.4279.749
convertSeuratToSCE0.7310.0120.748
dedupRowNames0.1130.0060.119
detectCellOutlier7.2360.1697.794
diffAbundanceFET0.1090.0050.121
discreteColorPalette0.0110.0010.013
distinctColors0.0040.0000.005
downSampleCells1.0700.1021.238
downSampleDepth0.9120.0420.999
expData-ANY-character-method0.2850.0090.312
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3640.0090.390
expData-set0.3440.0070.374
expData0.2840.0060.299
expDataNames-ANY-method0.2810.0080.302
expDataNames0.2620.0090.281
expDeleteDataTag0.0590.0050.069
expSetDataTag0.0430.0040.048
expTaggedData0.0490.0050.057
exportSCE0.0420.0070.050
exportSCEtoAnnData0.1230.0100.143
exportSCEtoFlatFile0.1200.0110.146
featureIndex0.0700.0080.082
generateSimulatedData0.0990.0110.116
getBiomarker0.1270.0170.158
getDEGTopTable1.6500.1191.854
getDiffAbundanceResults0.1050.0040.112
getEnrichRResult0.6820.0532.782
getFindMarkerTopTable3.4910.0633.699
getMSigDBTable0.0080.0070.015
getPathwayResultNames0.0450.0060.053
getSampleSummaryStatsTable0.4490.0070.475
getSoupX0.0000.0000.001
getTSCANResults2.2980.0632.456
getTopHVG1.8630.0221.984
importAnnData0.0030.0010.004
importBUStools0.3900.0080.459
importCellRanger1.7870.0591.941
importCellRangerV2Sample0.3360.0040.373
importCellRangerV3Sample0.7120.0220.775
importDropEst0.4670.0050.496
importExampleData23.365 2.26827.491
importGeneSetsFromCollection1.6110.1371.919
importGeneSetsFromGMT0.1370.0100.148
importGeneSetsFromList0.2810.0080.290
importGeneSetsFromMSigDB91.162 0.86896.542
importMitoGeneSet0.1100.0170.133
importOptimus0.0030.0010.004
importSEQC0.3220.0280.368
importSTARsolo0.3750.0390.436
iterateSimulations0.4020.0490.478
listSampleSummaryStatsTables0.5840.0670.683
mergeSCEColData0.920.091.03
mouseBrainSubsetSCE0.0600.0070.067
msigdb_table0.0020.0050.007
plotBarcodeRankDropsResults1.3390.0371.525
plotBarcodeRankScatter1.6250.0191.712
plotBatchCorrCompare17.849 0.13018.574
plotBatchVariance0.7400.0390.781
plotBcdsResults13.125 0.19613.730
plotBubble1.6810.0531.807
plotClusterAbundance2.0210.0122.128
plotCxdsResults10.355 0.09711.147
plotDEGHeatmap5.3660.0735.696
plotDEGRegression8.1000.0798.395
plotDEGViolin10.006 0.17410.954
plotDEGVolcano1.8030.0201.839
plotDecontXResults11.636 0.07611.805
plotDimRed0.4060.0070.416
plotDoubletFinderResults53.112 0.25757.586
plotEmptyDropsResults10.034 0.04110.784
plotEmptyDropsScatter10.155 0.05111.114
plotFindMarkerHeatmap10.442 0.07312.110
plotMASTThresholdGenes3.2170.0433.812
plotPCA0.7120.0130.856
plotPathway1.3600.0161.613
plotRunPerCellQCResults4.6920.0305.470
plotSCEBarAssayData0.4030.0100.489
plotSCEBarColData0.3290.0090.392
plotSCEBatchFeatureMean0.5250.0050.608
plotSCEDensity0.5730.0100.674
plotSCEDensityAssayData0.3730.0090.414
plotSCEDensityColData0.4750.0090.551
plotSCEDimReduceColData1.1890.0191.479
plotSCEDimReduceFeatures0.6100.0140.753
plotSCEHeatmap1.0840.0151.269
plotSCEScatter0.5530.0120.652
plotSCEViolin0.5430.0090.660
plotSCEViolinAssayData0.5850.0120.718
plotSCEViolinColData0.5570.0110.641
plotScDblFinderResults48.159 0.91656.117
plotScanpyDotPlot0.0390.0040.051
plotScanpyEmbedding0.0410.0060.055
plotScanpyHVG0.0420.0040.049
plotScanpyHeatmap0.0420.0060.053
plotScanpyMarkerGenes0.0450.0030.056
plotScanpyMarkerGenesDotPlot0.0410.0050.050
plotScanpyMarkerGenesHeatmap0.0410.0060.055
plotScanpyMarkerGenesMatrixPlot0.0410.0070.055
plotScanpyMarkerGenesViolin0.0400.0080.053
plotScanpyMatrixPlot0.0400.0030.049
plotScanpyPCA0.0400.0080.051
plotScanpyPCAGeneRanking0.0420.0050.054
plotScanpyPCAVariance0.0390.0050.055
plotScanpyViolin0.0380.0040.047
plotScdsHybridResults13.544 0.13615.592
plotScrubletResults0.0400.0060.050
plotSeuratElbow0.0410.0050.055
plotSeuratHVG0.0400.0030.048
plotSeuratJackStraw0.0400.0060.056
plotSeuratReduction0.0400.0040.050
plotSoupXResults0.0000.0000.001
plotTSCANClusterDEG 8.745 0.23510.245
plotTSCANClusterPseudo2.8350.0343.138
plotTSCANDimReduceFeatures2.9060.0443.323
plotTSCANPseudotimeGenes3.3060.0343.723
plotTSCANPseudotimeHeatmap3.1210.0353.602
plotTSCANResults2.7350.0373.115
plotTSNE0.7210.0140.832
plotTopHVG1.1520.0251.318
plotUMAP 9.023 0.09710.371
readSingleCellMatrix0.0100.0010.015
reportCellQC0.1740.0070.206
reportDropletQC0.0390.0050.048
reportQCTool0.1680.0070.202
retrieveSCEIndex0.0500.0040.059
runBBKNN0.0000.0010.001
runBarcodeRankDrops0.4630.0090.531
runBcds3.3690.0623.868
runCellQC0.1910.0080.218
runClusterSummaryMetrics0.8920.0171.030
runComBatSeq0.9770.0231.097
runCxds0.6790.0170.775
runCxdsBcdsHybrid3.4480.1373.978
runDEAnalysis0.9260.0711.140
runDecontX 9.073 0.05910.174
runDimReduce0.6320.0090.715
runDoubletFinder45.245 0.21049.076
runDropletQC0.0400.0050.048
runEmptyDrops9.3940.0369.904
runEnrichR0.6380.0478.462
runFastMNN4.0430.0734.631
runFeatureSelection0.4450.0070.496
runFindMarker3.2430.0523.643
runGSVA1.5470.0731.820
runHarmony0.2090.0150.260
runKMeans0.3730.0130.393
runLimmaBC0.1760.0020.178
runMNNCorrect0.8960.0100.962
runModelGeneVar0.6800.0120.733
runNormalization3.4320.0443.650
runPerCellQC0.7280.0160.773
runSCANORAMA0.0010.0000.001
runSCMerge0.0070.0020.008
runScDblFinder34.232 0.46536.379
runScanpyFindClusters0.0410.0050.048
runScanpyFindHVG0.0410.0040.049
runScanpyFindMarkers0.0400.0050.045
runScanpyNormalizeData0.2140.0050.241
runScanpyPCA0.0440.0040.050
runScanpyScaleData0.0400.0040.051
runScanpyTSNE0.0410.0050.049
runScanpyUMAP0.0410.0090.052
runScranSNN0.6470.0180.710
runScrublet0.0400.0050.048
runSeuratFindClusters0.0390.0060.046
runSeuratFindHVG1.0620.0151.122
runSeuratHeatmap0.0400.0070.048
runSeuratICA0.0420.0040.046
runSeuratJackStraw0.0430.0070.052
runSeuratNormalizeData0.0410.0040.045
runSeuratPCA0.0390.0050.050
runSeuratSCTransform7.1290.0767.561
runSeuratScaleData0.0410.0060.048
runSeuratUMAP0.0400.0050.048
runSingleR0.0840.0050.092
runSoupX0.0000.0000.001
runTSCAN1.5180.0211.634
runTSCANClusterDEAnalysis1.7310.0461.875
runTSCANDEG1.6730.0341.778
runTSNE1.3160.0171.432
runUMAP8.8690.0959.382
runVAM0.6900.0090.738
runZINBWaVE0.0060.0020.008
sampleSummaryStats0.3490.0080.373
scaterCPM0.2140.0090.231
scaterPCA1.0120.0131.144
scaterlogNormCounts0.4340.0120.499
sce0.0370.0130.050
sctkListGeneSetCollections0.1650.0090.186
sctkPythonInstallConda0.0000.0000.001
sctkPythonInstallVirtualEnv000
selectSCTKConda0.0000.0000.001
selectSCTKVirtualEnvironment000
setRowNames0.1850.0060.207
setSCTKDisplayRow0.6800.0130.724
singleCellTK0.0000.0000.002
subDiffEx0.6690.0380.746
subsetSCECols0.1750.0100.188
subsetSCERows0.4930.0260.541
summarizeSCE0.1280.0110.148
trimCounts0.3350.0170.365