Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-03-06 12:09 -0500 (Thu, 06 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4769 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4504 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4527 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4480 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4416 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 2068/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
STATegRa 1.42.0 (landing page) David Gomez-Cabrero
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the STATegRa package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: STATegRa |
Version: 1.42.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings STATegRa_1.42.0.tar.gz |
StartedAt: 2025-03-04 11:01:03 -0500 (Tue, 04 Mar 2025) |
EndedAt: 2025-03-04 11:07:56 -0500 (Tue, 04 Mar 2025) |
EllapsedTime: 413.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: STATegRa.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings STATegRa_1.42.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/STATegRa.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘STATegRa/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘STATegRa’ version ‘1.42.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘STATegRa’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE modelSelection,list-numeric-character: no visible binding for global variable ‘components’ modelSelection,list-numeric-character: no visible binding for global variable ‘mylabel’ plotVAF,caClass: no visible binding for global variable ‘comp’ plotVAF,caClass: no visible binding for global variable ‘VAF’ plotVAF,caClass: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comps’ selectCommonComps,list-numeric: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comp’ selectCommonComps,list-numeric: no visible binding for global variable ‘ratio’ Undefined global functions or variables: VAF block comp components comps mylabel ratio * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed plotRes 8.494 0.285 8.931 modelSelection 3.676 4.226 8.111 plotVAF 7.372 0.245 7.672 omicsCompAnalysis 6.495 0.281 6.817 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘STATEgRa_Example.omicsCLUST.R’ Running ‘STATEgRa_Example.omicsPCA.R’ Running ‘STATegRa_Example.omicsNPC.R’ Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/Users/biocbuild/bbs-3.20-bioc/meat/STATegRa.Rcheck/00check.log’ for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL STATegRa ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘STATegRa’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (STATegRa)
STATegRa.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") Common components [1] 2 Distinctive components [[1]] [1] 0 [[2]] [1] 0 Common components [1] 2 Distinctive components [[1]] [1] 1 [[2]] [1] 1 Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 RUNIT TEST PROTOCOL -- Tue Mar 4 11:07:41 2025 *********************************************** Number of test functions: 4 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures Number of test functions: 4 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 6.164 0.471 6.900
STATegRa.Rcheck/tests/STATEgRa_Example.omicsCLUST.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 4: In plot.window(...) : axis(2, *): range of values ( 0) is small wrt |M| = 3e-09 --> not pretty() 5: In plot.window(...) : axis(2, *): range of values ( 0) is small wrt |M| = 3e-09 --> not pretty() 6: In plot.window(...) : axis(2, *): range of values ( 0) is small wrt |M| = 3e-09 --> not pretty() 7: In plot.window(...) : axis(2, *): range of values ( 0) is small wrt |M| = 3e-09 --> not pretty() > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 40.544 1.057 42.436
STATegRa.Rcheck/tests/STATegRa_Example.omicsNPC.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 164.297 2.256 169.627
STATegRa.Rcheck/tests/STATEgRa_Example.omicsPCA.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## Select the optimal components > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE) Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 > > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 0.0781575727 -0.0431552726 sample2 -0.1192221618 0.0294015917 sample3 -0.0531408408 -0.0746837407 sample4 0.0292971511 -0.0006040540 sample5 0.0202090673 0.0110454501 sample6 0.1226088402 0.1053495507 sample7 0.1078931601 -0.0322414053 sample8 0.1782890805 0.1449327446 sample9 0.0468697220 -0.0455171504 sample10 -0.0036032860 0.0420074810 sample11 -0.0035566358 -0.0566284467 sample12 0.1006129740 0.0641395198 sample13 -0.1174413172 0.0907474276 sample14 0.0981203584 0.0617765856 sample15 0.0085337499 -0.0086951022 sample16 0.0783146673 0.1581337008 sample17 -0.1483610726 0.0638579978 sample18 -0.0963084241 0.0556692261 sample19 -0.0217242990 -0.0720132432 sample20 -0.0635633735 -0.0779606355 sample21 -0.0201844283 0.1566381151 sample22 0.0218274258 -0.0764051409 sample23 0.0852038804 -0.0032771918 sample24 -0.1287182391 0.1924415608 sample25 -0.0430575764 -0.0456645195 sample26 -0.1453900028 0.0541453996 sample27 -0.0197483192 -0.1185587039 sample28 -0.1025339680 0.0650652614 sample29 0.0706022775 -0.0682927932 sample30 -0.1295622606 -0.0066669286 sample31 0.1147449331 0.1232730969 sample32 -0.0374307990 0.0380256107 sample33 0.0599521160 0.0136942432 sample34 -0.0984199180 0.0375368586 sample35 -0.0543096260 -0.0378028705 sample36 0.1403628266 -0.0343628229 sample37 0.0228948157 -0.0732675252 sample38 -0.0222072687 -0.0962564711 sample39 -0.0941739279 0.0215178830 sample40 0.0643807567 -0.0687706010 sample41 -0.0327634731 -0.1232187120 sample42 -0.0500431617 -0.0292517468 sample43 -0.0184497042 0.0233047435 sample44 0.1487888575 0.1171196981 sample45 -0.1050779170 0.1123134777 sample46 -0.1151191264 -0.1093992735 sample47 -0.0962591348 -0.0288413841 sample48 0.0004832225 -0.0310388727 sample49 0.1135203558 0.1213933291 sample50 -0.0123549670 -0.1740764748 sample51 0.0550527250 0.1258934817 sample52 0.0499118271 0.0728584283 sample53 0.1119772593 0.1588068924 sample54 -0.0360055716 0.0228586560 sample55 0.0210418821 0.0006752453 sample56 -0.0434171677 0.0633131740 sample57 0.0197820378 0.1150757653 sample58 0.0030440774 0.0326130287 sample59 0.0500257045 0.0129531109 sample60 0.0184280208 0.0136230315 sample61 0.0150298889 0.0635103473 sample62 -0.0304758327 -0.0201228442 sample63 0.1102249926 0.1285967564 sample64 0.1552586725 0.0971186784 sample65 -0.0058503880 0.0207101544 sample66 -0.0025607641 0.0424281314 sample67 0.1546638993 -0.0661565436 sample68 0.0536374667 -0.0923596739 sample69 0.0640333214 0.0082005781 sample70 0.0163522062 -0.0663226934 sample71 -0.0102535997 -0.1345968948 sample72 -0.0654191394 -0.0196028511 sample73 -0.1048553002 0.0221005743 sample74 0.0123800596 0.0586160722 sample75 0.0392079889 -0.0209723529 sample76 0.0648954675 -0.0524758985 sample77 0.1172922694 -0.0201201567 sample78 -0.1463072999 0.0708392857 sample79 0.0265208633 -0.1603436279 sample80 0.0279739390 -0.0214148609 sample81 0.0079212201 -0.0738499622 sample82 -0.1544234444 -0.0361448949 sample83 -0.0494204913 -0.0049928759 sample84 -0.0259039833 -0.0346595466 sample85 0.1116487706 -0.0031395500 sample86 -0.1306478724 -0.0377150476 sample87 -0.0554777832 -0.0459738759 sample88 -0.0301626745 0.0382207585 sample89 -0.1016866140 0.0694082345 sample90 0.0086821789 -0.0201324132 sample91 0.1578630128 -0.2097788932 sample92 0.0170933221 -0.1655948339 sample93 -0.0979804958 -0.0121499382 sample94 0.0131486392 -0.0114929227 sample95 0.0315682442 -0.0758922487 sample96 0.0024125856 -0.0470189759 sample97 0.0634545839 0.0270301093 sample98 -0.0359372383 -0.0135464486 sample99 -0.1009167971 0.1124706469 sample100 0.0551754174 0.0246503289 sample101 -0.0080115764 -0.1627410812 sample102 -0.0046451757 0.0095458375 sample103 -0.0472520679 -0.0940382632 sample104 0.0198157287 -0.0591152295 sample105 -0.0400239085 -0.0160952493 sample106 -0.0923810282 0.0369002604 sample107 -0.1019372237 0.0224968500 sample108 -0.0877091504 -0.0128851145 sample109 0.0864819925 -0.0901093708 sample110 -0.1223116558 -0.0096110578 sample111 0.0257352245 -0.0936291393 sample112 -0.0765285861 0.0270382254 sample113 0.0258799568 0.0377433026 sample114 0.0021141271 -0.0882042449 sample115 0.0303454873 -0.0723748847 sample116 0.0780504124 -0.0685171043 sample117 0.0536893729 -0.0912036001 sample118 0.0666649784 -0.0236263791 sample119 0.1021872631 -0.2325009893 sample120 0.0750216311 0.0243342611 sample121 -0.0756938007 0.0942972218 sample122 -0.0259632391 0.0731915199 sample123 -0.1037844554 -0.0369177046 sample124 0.0611204938 0.0421640117 sample125 -0.0738472607 0.0066943751 sample126 0.0972919356 0.0762704173 sample127 0.0824699586 -0.0096645346 sample128 -0.1249411851 0.0929248466 sample129 -0.0734063375 -0.0434309111 sample130 -0.0003500106 -0.0309857605 sample131 0.0930184151 0.0155973084 sample132 0.0736220422 0.0732966915 sample133 -0.0498398389 -0.0462457616 sample134 0.1644872557 0.0720050682 sample135 -0.0752294864 0.0003874293 sample136 0.0227150321 -0.0495466114 sample137 0.0564722067 -0.0288855603 sample138 0.0255986347 -0.0610937210 sample139 0.0621218864 0.0235862351 sample140 -0.0604148645 -0.0435526862 sample141 0.0246742971 0.0532628669 sample142 -0.0409564160 0.0316230145 sample143 -0.0077356486 -0.0476909974 sample144 0.0173241021 -0.0156786597 sample145 0.0485467146 0.1202734958 sample146 0.0419650342 -0.0811237267 sample147 -0.0977304338 -0.0274765043 sample148 0.0368253050 0.0803968589 sample149 -0.0072864803 -0.1533019787 sample150 0.1020825534 0.0624826884 sample151 0.0305397003 -0.0289342349 sample152 -0.0533595252 -0.0638337391 sample153 -0.0891640424 0.1799441881 sample154 -0.0727554144 -0.0834126569 sample155 -0.0880665589 -0.0220765935 sample156 -0.0276558664 -0.0326599728 sample157 -0.1155031512 0.0183637263 sample158 -0.0281506629 -0.0104909556 sample159 0.0663233618 0.0443807256 sample160 -0.0302644011 0.0404304549 sample161 0.0114712737 -0.0591088316 sample162 -0.1337091327 0.1398131045 sample163 0.1330120440 0.1688768233 sample164 -0.0150338313 0.0028371707 sample165 0.0076518722 -0.0164147417 sample166 0.0367791256 0.0630609922 sample167 0.1111989898 0.0030067212 sample168 -0.0672983090 0.0446265611 sample169 -0.0413003523 0.0224451830 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 0.0420459018 0.0867866330 sample2 0.0820851137 -0.0410968136 sample3 -0.0155970678 -0.0195186657 sample4 0.1001343161 -0.0410775607 sample5 0.0153480631 -0.0253257583 sample6 -0.0340233247 -0.0408223368 sample7 -0.0722603922 0.0002323301 sample8 0.0457627556 -0.0370006222 sample9 0.0086214466 0.0820184458 sample10 0.0423633382 -0.0083917219 sample11 -0.0022596503 0.0787763964 sample12 -0.0322074198 0.1479823306 sample13 0.0293975669 -0.0306742457 sample14 -0.0337427394 -0.0367508462 sample15 -0.0815561663 0.1275613202 sample16 -0.0508323921 0.0540604344 sample17 -0.0062552433 0.0041024960 sample18 -0.0705598231 -0.0351053772 sample19 0.0476779792 -0.0509595251 sample20 -0.0523031499 0.0715513477 sample21 0.0119259395 -0.0376086623 sample22 -0.0724462371 -0.0095635650 sample23 0.0992529354 0.0134299725 sample24 0.1595275466 0.0728685888 sample25 0.0920658920 -0.0749748669 sample26 0.0595568817 0.0848974237 sample27 -0.0826583207 -0.0086748480 sample28 0.0384836689 0.0440973174 sample29 -0.0777745617 0.1735297745 sample30 -0.1229474524 -0.0819019459 sample31 -0.0579744072 -0.0238647001 sample32 -0.0970363909 -0.0111435802 sample33 -0.1017579571 -0.0630453346 sample34 -0.0637901317 0.0377935798 sample35 -0.0790004638 -0.0229733196 sample36 -0.1224932602 -0.1274969372 sample37 -0.1798849194 -0.1673449616 sample38 -0.0466399914 0.0888152571 sample39 0.0168695172 0.0421536218 sample40 -0.1756419637 -0.1526663896 sample41 -0.0042475972 0.0004924227 sample42 0.0447823900 -0.0651501115 sample43 -0.0482290917 -0.0253533859 sample44 0.1986826502 -0.0545751913 sample45 0.0741923566 0.0054715059 sample46 -0.0478868146 -0.0007081040 sample47 -0.0608218500 0.0481614884 sample48 0.1381463069 0.0578302027 sample49 0.0530638380 -0.1405522869 sample50 0.0173636208 0.1602385827 sample51 -0.0462449640 0.0303472991 sample52 -0.0279991405 0.0280387838 sample53 -0.0667490473 0.0237700021 sample54 -0.0121810221 -0.0521354947 sample55 -0.0182391982 0.0221326497 sample56 0.0001312470 0.0030909451 sample57 -0.0316568034 0.0530190695 sample58 -0.0393889189 -0.0297802020 sample59 -0.1278270066 -0.0546541567 sample60 -0.1486963252 0.1069140723 sample61 -0.0793063865 0.0569789948 sample62 -0.1172823271 -0.0149212158 sample63 0.0028818371 0.1300524483 sample64 -0.0237291705 0.1073288458 sample65 0.0126544195 0.0589810510 sample66 0.0468236495 -0.0771066133 sample67 -0.1494287347 -0.0769878718 sample68 -0.0978027633 -0.0577364825 sample69 -0.0403090705 0.0156037953 sample70 -0.0221602446 0.0315436275 sample71 0.0546323082 -0.0272394871 sample72 -0.1107501902 -0.0537332315 sample73 -0.0906756398 0.0579957207 sample74 -0.0586510629 0.0121417142 sample75 -0.0390513961 0.0349277855 sample76 0.0022938213 -0.1676560207 sample77 0.0232101884 -0.2067300804 sample78 0.0929813488 -0.0434927052 sample79 0.1619373125 -0.0378101606 sample80 -0.0680394642 0.1424655333 sample81 0.0530721661 -0.0358347444 sample82 -0.0266852310 -0.0577449419 sample83 -0.1517242495 -0.0448571327 sample84 0.0570941616 -0.0273808097 sample85 -0.1086270265 -0.1228131286 sample86 -0.0833893737 -0.0442925585 sample87 -0.0022042229 -0.0943908643 sample88 0.0078280324 -0.1140504380 sample89 -0.0611002473 -0.0094589711 sample90 -0.0022942496 -0.0936254943 sample91 -0.0433785444 0.3205971284 sample92 0.1815209916 -0.0334665669 sample93 -0.0267655638 0.0614425546 sample94 -0.0181903084 0.0605087988 sample95 0.0720310220 -0.0013040193 sample96 0.0559669869 -0.0118786821 sample97 0.0217421257 0.0195417445 sample98 -0.0379200760 0.0588352417 sample99 0.0792513638 -0.0151261479 sample100 -0.0222099257 -0.0023323045 sample101 0.0387074536 0.1224225087 sample102 0.2094626820 -0.0516419189 sample103 -0.0138563121 0.0301047280 sample104 0.0807945414 -0.0162711902 sample105 0.0520491794 -0.1229659989 sample106 0.0192644972 -0.0185234930 sample107 -0.0319014203 0.0405120367 sample108 0.0140673041 0.0163422406 sample109 0.1831852012 0.0613024900 sample110 0.0292782099 -0.0199846289 sample111 0.1423168496 0.0327352967 sample112 -0.0426311949 -0.0029087330 sample113 0.0771933985 0.0268743446 sample114 0.0241562963 -0.0184080690 sample115 0.1958952053 0.0460149950 sample116 0.1394434798 -0.0530792566 sample117 0.1672308377 -0.1386520867 sample118 0.0448330740 -0.0117617688 sample119 0.0910179454 0.2217435896 sample120 0.0331405830 -0.0057270006 sample121 -0.0307512413 0.1392506191 sample122 0.0839841874 -0.0291982769 sample123 -0.0239677114 -0.0642167696 sample124 0.0909178254 0.0130430953 sample125 0.0065363259 -0.1092630957 sample126 -0.0935270477 0.1368276288 sample127 -0.0035407034 0.0292754958 sample128 0.0660354299 0.1018576534 sample129 -0.0693673558 -0.0695430927 sample130 -0.0008518888 -0.0669705479 sample131 -0.0431011038 0.0174060712 sample132 0.0637092731 0.0029384202 sample133 0.0289462325 -0.0390817192 sample134 -0.0446137380 0.0456332150 sample135 -0.0712344316 0.0521627028 sample136 -0.0596322138 0.0197291086 sample137 -0.0793177321 -0.0380637996 sample138 0.0973502308 -0.0454209507 sample139 -0.0539863052 -0.1534332471 sample140 -0.0850875640 0.0955803640 sample141 0.0192727139 -0.0554446181 sample142 0.0672296933 -0.0461312462 sample143 0.0303705339 -0.0519258420 sample144 0.0089349467 0.0145815401 sample145 0.0638885232 0.0122269559 sample146 -0.0585927773 0.0063074221 sample147 -0.0894147820 -0.1124626589 sample148 0.0216445321 -0.0615962022 sample149 0.0515308352 -0.0839902841 sample150 -0.0568224502 -0.0124473021 sample151 0.0789512205 -0.0261823387 sample152 0.0330688600 0.1306445093 sample153 0.1752075771 0.1497757358 sample154 -0.0421494885 -0.0037017675 sample155 -0.0680200493 0.0095702900 sample156 -0.0388953329 0.1057557553 sample157 -0.0314764771 0.0561364429 sample158 -0.0329631033 0.0353943328 sample159 0.0398465191 -0.1007367849 sample160 -0.0424903201 0.0108492816 sample161 0.0888337835 -0.0679692262 sample162 0.0027578283 0.1237848657 sample163 0.0126239175 0.0725441432 sample164 0.0566787800 -0.0458317832 sample165 0.0315331180 -0.0236359366 sample166 0.0612113307 -0.0425224175 sample167 -0.0142729538 0.0179306895 sample168 0.0169546148 -0.0769614627 sample169 -0.0675062058 0.0131498586 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 -0.0012331832 1.635716e-01 sample2 -0.0724353470 6.022203e-03 sample3 -0.0188459900 1.080029e-01 sample4 0.0390142947 -3.105894e-04 sample5 0.1774810546 2.996432e-02 sample6 -0.0451446623 3.455902e-02 sample7 -0.0226463257 7.019131e-03 sample8 -0.1033684911 9.858047e-03 sample9 0.1350014417 -8.979115e-02 sample10 0.1259884187 5.097944e-02 sample11 0.0979791130 -7.086570e-02 sample12 -0.0863021138 8.620322e-02 sample13 -0.1381401889 -1.827998e-01 sample14 -0.0615074806 2.642808e-02 sample15 0.0381600724 3.101596e-02 sample16 -0.0048779606 -1.270954e-03 sample17 -0.0788483408 1.547610e-02 sample18 -0.0884189550 3.795476e-02 sample19 0.0703043443 1.084003e-01 sample20 -0.0025581011 -7.975978e-02 sample21 0.0941596229 4.126906e-02 sample22 -0.0550270650 7.806606e-02 sample23 0.0679492608 4.102083e-02 sample24 -0.1310969992 -1.649280e-01 sample25 0.0113583421 4.426903e-02 sample26 -0.1402949156 -2.016452e-02 sample27 0.0261566452 -1.590087e-03 sample28 -0.0724200954 -5.850503e-02 sample29 -0.0330054458 -2.062183e-03 sample30 -0.0228750139 2.015337e-02 sample31 -0.0635070606 6.670372e-02 sample32 0.0685100041 4.955244e-02 sample33 -0.0777764896 1.272069e-01 sample34 0.0157842064 3.024310e-02 sample35 -0.0529627532 -1.500982e-01 sample36 0.0070908575 -2.025322e-01 sample37 -0.0442411073 -1.802111e-01 sample38 -0.0781508136 3.676288e-02 sample39 0.0120329922 3.388887e-02 sample40 -0.0473283155 -1.471583e-01 sample41 0.0228192418 2.673450e-02 sample42 -0.0245361993 7.960878e-02 sample43 0.1036361953 8.229577e-02 sample44 -0.1012235283 -7.049223e-02 sample45 0.0013726256 2.451082e-02 sample46 -0.0558506156 -2.948682e-03 sample47 -0.0380478510 -4.554242e-02 sample48 0.0784340321 -4.888884e-02 sample49 -0.0605168410 1.162481e-02 sample50 0.0530083210 2.737804e-02 sample51 0.1514645258 -5.678253e-02 sample52 0.1860936075 -1.246711e-01 sample53 -0.0064179916 2.701065e-02 sample54 0.0697037501 2.308414e-02 sample55 0.1633577761 -1.366432e-02 sample56 0.1011483908 -4.682128e-02 sample57 0.1730374422 -1.609593e-01 sample58 -0.0071384901 1.666950e-02 sample59 -0.0030458204 -3.005383e-02 sample60 0.0215842774 -2.665888e-01 sample61 0.1510585477 -1.002384e-01 sample62 -0.0925531383 4.845719e-02 sample63 -0.0596315739 4.137116e-02 sample64 -0.0449227405 2.600991e-03 sample65 0.0939382124 4.406953e-02 sample66 0.1063397489 5.710085e-02 sample67 -0.0201580057 -2.361748e-01 sample68 0.0037208818 -2.418555e-02 sample69 -0.0645162059 1.155618e-01 sample70 -0.1013439724 1.351779e-01 sample71 -0.0016465963 2.976768e-02 sample72 0.0328895610 2.835764e-02 sample73 0.0275080424 5.148150e-02 sample74 0.1341718265 7.895305e-02 sample75 0.0951576726 3.943145e-02 sample76 -0.0864719782 -3.035058e-02 sample77 -0.1035749500 2.545323e-02 sample78 -0.1575648178 -4.939465e-02 sample79 0.0189138470 -4.874691e-02 sample80 0.1384142951 -4.319261e-05 sample81 -0.0118846684 6.357906e-02 sample82 -0.1675306509 -3.533973e-02 sample83 -0.0065670959 7.812488e-02 sample84 0.1486890579 3.109099e-02 sample85 -0.0532720006 -7.417997e-02 sample86 -0.1138474711 1.812606e-05 sample87 0.0432866111 -6.080501e-02 sample88 0.0433451264 -1.402486e-01 sample89 0.0331204729 1.395430e-02 sample90 -0.0607413529 8.610383e-02 sample91 -0.0566263034 -1.303772e-01 sample92 -0.0359580563 -1.061605e-01 sample93 -0.0433646461 4.443608e-02 sample94 -0.0477292195 1.059570e-01 sample95 -0.0249595941 3.980508e-02 sample96 0.0035217462 9.293931e-02 sample97 -0.0066052267 1.527234e-01 sample98 0.0020367087 5.579512e-02 sample99 -0.0886622188 3.728386e-02 sample100 -0.1091259640 3.560400e-02 sample101 -0.0739723622 4.317876e-02 sample102 0.0574455257 2.784100e-02 sample103 0.0142733972 -9.706417e-03 sample104 0.0710395607 -4.068329e-02 sample105 0.0980829828 3.453000e-02 sample106 -0.0254260589 -3.628929e-02 sample107 -0.0160655164 9.173399e-02 sample108 -0.0200988363 2.379699e-02 sample109 -0.0389782059 -1.692308e-02 sample110 -0.0326305283 -2.988085e-02 sample111 0.0676935797 6.038252e-02 sample112 0.0167883522 -5.336923e-03 sample113 0.0969213703 2.757711e-02 sample114 -0.0026397946 9.209097e-02 sample115 -0.0308049760 -1.603738e-02 sample116 -0.1240306341 -1.272998e-01 sample117 0.0334728607 -5.392658e-02 sample118 -0.1037152100 -6.252440e-02 sample119 -0.1064170109 -1.196218e-01 sample120 -0.0771357922 1.004935e-01 sample121 -0.0129352439 -3.181910e-02 sample122 0.0847487175 5.568475e-02 sample123 -0.0041335412 -7.693582e-03 sample124 -0.0583462548 8.396483e-02 sample125 0.0634843147 5.232570e-02 sample126 -0.0662582187 1.091730e-01 sample127 -0.0865025697 1.094172e-01 sample128 -0.0627822402 1.471104e-02 sample129 -0.0336274433 4.007768e-02 sample130 -0.0293518141 8.046084e-02 sample131 -0.0469196722 2.209356e-03 sample132 -0.0241746035 1.248609e-01 sample133 0.0907303846 -1.466698e-02 sample134 -0.0350841165 -7.539660e-02 sample135 0.0001335005 -9.185853e-03 sample136 -0.0335874702 9.860174e-02 sample137 -0.0640147134 7.554364e-02 sample138 0.0060963979 1.742784e-02 sample139 -0.0592082622 -5.615009e-02 sample140 0.0427988824 1.099459e-02 sample141 0.0618793024 9.301107e-02 sample142 0.0898552349 -3.573317e-02 sample143 0.0817391211 -8.880528e-02 sample144 0.0787754450 3.821395e-02 sample145 0.1085819339 -1.569459e-01 sample146 -0.0589554764 4.373227e-02 sample147 -0.0495327701 -7.278126e-03 sample148 0.1161590301 -9.078062e-03 sample149 -0.0121575191 -7.788469e-02 sample150 -0.0314511931 -3.520220e-02 sample151 0.0575380843 1.945396e-02 sample152 -0.0494540223 -7.025568e-02 sample153 -0.0941339012 -2.153268e-01 sample154 -0.0335928573 -2.078832e-02 sample155 0.0690459162 2.780357e-02 sample156 0.1039902360 6.292485e-02 sample157 -0.0408645843 -8.065530e-03 sample158 0.1018106427 -7.817033e-03 sample159 -0.0281732689 1.207264e-02 sample160 0.1643052855 -2.977788e-03 sample161 0.0374330143 -8.524587e-02 sample162 -0.0804538500 -8.349626e-02 sample163 -0.0743232750 1.406356e-02 sample164 0.1208804141 2.139529e-02 sample165 0.1608115956 -2.025156e-02 sample166 -0.0425948198 2.660807e-02 sample167 -0.0226849510 4.464256e-02 sample168 -0.0180737508 7.471973e-04 sample169 0.0190780308 -2.645428e-02 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Combined plot for loadings from common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ## Plot scores and loadings togheter: Common components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Common components O2PLS > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Distintive components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > > proc.time() user system elapsed 24.641 0.845 26.280
STATegRa.Rcheck/STATegRa-Ex.timings
name | user | system | elapsed | |
STATegRaUsersGuide | 0.001 | 0.001 | 0.002 | |
STATegRa_data | 0.332 | 0.023 | 0.358 | |
STATegRa_data_TCGA_BRCA | 0.003 | 0.002 | 0.005 | |
bioDist | 0.997 | 0.070 | 1.085 | |
bioDistFeature | 0.609 | 0.054 | 0.672 | |
bioDistFeaturePlot | 0.586 | 0.040 | 0.631 | |
bioDistW | 0.586 | 0.037 | 0.628 | |
bioDistWPlot | 0.584 | 0.039 | 0.625 | |
bioMap | 0.005 | 0.002 | 0.007 | |
combiningMappings | 0.022 | 0.004 | 0.027 | |
createOmicsExpressionSet | 0.221 | 0.006 | 0.229 | |
getInitialData | 1.038 | 0.244 | 1.325 | |
getLoadings | 1.064 | 0.300 | 1.423 | |
getMethodInfo | 1.079 | 0.163 | 1.253 | |
getPreprocessing | 1.627 | 1.789 | 3.479 | |
getScores | 1.163 | 0.161 | 1.366 | |
getVAF | 0.984 | 0.139 | 1.243 | |
holistOmics | 0.004 | 0.003 | 0.006 | |
modelSelection | 3.676 | 4.226 | 8.111 | |
omicsCompAnalysis | 6.495 | 0.281 | 6.817 | |
omicsNPC | 0.003 | 0.004 | 0.007 | |
plotRes | 8.494 | 0.285 | 8.931 | |
plotVAF | 7.372 | 0.245 | 7.672 | |