Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-03-06 12:12 -0500 (Thu, 06 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4769 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4504 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4527 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4480 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4416 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 2068/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
STATegRa 1.42.0 (landing page) David Gomez-Cabrero
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the STATegRa package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: STATegRa |
Version: 1.42.0 |
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings STATegRa_1.42.0.tar.gz |
StartedAt: 2025-03-04 11:15:06 -0000 (Tue, 04 Mar 2025) |
EndedAt: 2025-03-04 11:20:15 -0000 (Tue, 04 Mar 2025) |
EllapsedTime: 308.6 seconds |
RetCode: 0 |
Status: OK |
CheckDir: STATegRa.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings STATegRa_1.42.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/STATegRa.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: aarch64-unknown-linux-gnu * R was compiled by aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0 GNU Fortran (GCC) 12.3.1 (openEuler 12.3.1-36.oe2403) * running under: openEuler 24.03 (LTS) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘STATegRa/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘STATegRa’ version ‘1.42.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘STATegRa’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE modelSelection,list-numeric-character: no visible binding for global variable ‘components’ modelSelection,list-numeric-character: no visible binding for global variable ‘mylabel’ plotVAF,caClass: no visible binding for global variable ‘comp’ plotVAF,caClass: no visible binding for global variable ‘VAF’ plotVAF,caClass: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comps’ selectCommonComps,list-numeric: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comp’ selectCommonComps,list-numeric: no visible binding for global variable ‘ratio’ Undefined global functions or variables: VAF block comp components comps mylabel ratio * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘STATEgRa_Example.omicsCLUST.R’ Running ‘STATEgRa_Example.omicsPCA.R’ Running ‘STATegRa_Example.omicsNPC.R’ Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/home/biocbuild/bbs-3.20-bioc/meat/STATegRa.Rcheck/00check.log’ for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL STATegRa ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.4.2/site-library’ * installing *source* package ‘STATegRa’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (STATegRa)
STATegRa.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") Common components [1] 2 Distinctive components [[1]] [1] 0 [[2]] [1] 0 Common components [1] 2 Distinctive components [[1]] [1] 1 [[2]] [1] 1 Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 RUNIT TEST PROTOCOL -- Tue Mar 4 11:20:09 2025 *********************************************** Number of test functions: 4 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures Number of test functions: 4 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 2.996 0.115 3.591
STATegRa.Rcheck/tests/STATEgRa_Example.omicsCLUST.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 61.617 0.367 75.998
STATegRa.Rcheck/tests/STATegRa_Example.omicsNPC.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 89.450 0.381 104.027
STATegRa.Rcheck/tests/STATEgRa_Example.omicsPCA.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## Select the optimal components > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE) Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 > > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 0.0781574402 -0.0431503541 sample2 -0.1192218548 0.0294086225 sample3 -0.0531411992 -0.0746839707 sample4 0.0292975068 -0.0005962844 sample5 0.0202091824 0.0110462881 sample6 0.1226088974 0.1053468110 sample7 0.1078928204 -0.0322473633 sample8 0.1782895069 0.1449363034 sample9 0.0468698196 -0.0455174445 sample10 -0.0036030517 0.0420109466 sample11 -0.0035566388 -0.0566292461 sample12 0.1006128895 0.0641381861 sample13 -0.1174408606 0.0907488145 sample14 0.0981203209 0.0617739173 sample15 0.0085334445 -0.0087011260 sample16 0.0783148560 0.1581296024 sample17 -0.1483610004 0.0638582075 sample18 -0.0963086269 0.0556642054 sample19 -0.0217243997 -0.0720087976 sample20 -0.0635636304 -0.0779651472 sample21 -0.0201840450 0.1566390686 sample22 0.0218268881 -0.0764102504 sample23 0.0852041979 -0.0032691666 sample24 -0.1287171091 0.1924539789 sample25 -0.0430574179 -0.0456568920 sample26 -0.1453897007 0.0541510777 sample27 -0.0197488607 -0.1185654617 sample28 -0.1025336455 0.0650684709 sample29 0.0706018641 -0.0682985655 sample30 -0.1295627423 -0.0066766151 sample31 0.1147449053 0.1232688255 sample32 -0.0374310772 0.0380180325 sample33 0.0599516084 0.0136869810 sample34 -0.0984200768 0.0375322652 sample35 -0.0543098351 -0.0378103361 sample36 0.1403625490 -0.0343752284 sample37 0.0228941999 -0.0732840982 sample38 -0.0222077124 -0.0962593415 sample39 -0.0941738502 0.0215198578 sample40 0.0643801278 -0.0687865835 sample41 -0.0327637880 -0.1232188187 sample42 -0.0500431840 -0.0292474845 sample43 -0.0184498723 0.0233011946 sample44 0.1487898399 0.1171349338 sample45 -0.1050774341 0.1123199367 sample46 -0.1151195595 -0.1094027457 sample47 -0.0962593673 -0.0288461936 sample48 0.0004837252 -0.0310281573 sample49 0.1135207577 0.1213971583 sample50 -0.0123552915 -0.1740744172 sample51 0.0550529841 0.1258887890 sample52 0.0499121221 0.0728545327 sample53 0.1119773576 0.1588015731 sample54 -0.0360055653 0.0228575645 sample55 0.0210419083 0.0006731985 sample56 -0.0434169264 0.0633125942 sample57 0.0197824553 0.1150714569 sample58 0.0030439896 0.0326098989 sample59 0.0500253203 0.0129422295 sample60 0.0184278700 0.0136089972 sample61 0.0150299462 0.0635027945 sample62 -0.0304763796 -0.0201316197 sample63 0.1102252361 0.1285977144 sample64 0.1552588015 0.0971169311 sample65 -0.0058503018 0.0207114903 sample66 -0.0025605371 0.0424318302 sample67 0.1546634904 -0.0661711922 sample68 0.0536369431 -0.0923681165 sample69 0.0640330417 0.0081984049 sample70 0.0163517839 -0.0663229602 sample71 -0.0102537546 -0.1345922892 sample72 -0.0654195909 -0.0196116955 sample73 -0.1048556038 0.0220940378 sample74 0.0123799569 0.0586116203 sample75 0.0392078055 -0.0209754245 sample76 0.0648953351 -0.0524764369 sample77 0.1172922058 -0.0201187300 sample78 -0.1463068336 0.0708470298 sample79 0.0265211184 -0.1603311979 sample80 0.0279737316 -0.0214203469 sample81 0.0079211529 -0.0738452347 sample82 -0.1544236550 -0.0361467053 sample83 -0.0494211243 -0.0050044971 sample84 -0.0259038414 -0.0346551414 sample85 0.1116484378 -0.0031494799 sample86 -0.1306482987 -0.0377213071 sample87 -0.0554778175 -0.0459748986 sample88 -0.0301623937 0.0382197440 sample89 -0.1016866707 0.0694035138 sample90 0.0086819887 -0.0201320245 sample91 0.1578625538 -0.2097826030 sample92 0.0170936767 -0.1655811117 sample93 -0.0979806781 -0.0121511620 sample94 0.0131484148 -0.0114931704 sample95 0.0315682638 -0.0758860879 sample96 0.0024125644 -0.0470137151 sample97 0.0634545426 0.0270331125 sample98 -0.0359374564 -0.0135487612 sample99 -0.1009163518 0.1124778107 sample100 0.0551753090 0.0246490275 sample101 -0.0080118782 -0.1627369266 sample102 -0.0046444463 0.0095626713 sample103 -0.0472523077 -0.0940392980 sample104 0.0198159485 -0.0591093560 sample105 -0.0400237788 -0.0160913682 sample106 -0.0923808492 0.0369017291 sample107 -0.1019373910 0.0224954708 sample108 -0.0877091652 -0.0128834601 sample109 0.0864824304 -0.0900945766 sample110 -0.1223115582 -0.0096086406 sample111 0.0257354657 -0.0936172657 sample112 -0.0765286589 0.0270348471 sample113 0.0258803206 0.0377495243 sample114 0.0021139006 -0.0882015662 sample115 0.0303460098 -0.0723590050 sample116 0.0780508266 -0.0685069085 sample117 0.0536898029 -0.0911912366 sample118 0.0666651066 -0.0236231721 sample119 0.1021871706 -0.2324938077 sample120 0.0750216507 0.0243378364 sample121 -0.0756936451 0.0942951508 sample122 -0.0259628160 0.0731984917 sample123 -0.1037846221 -0.0369196804 sample124 0.0611207823 0.0421721567 sample125 -0.0738472699 0.0066949548 sample126 0.0972916478 0.0762642323 sample127 0.0824697646 -0.0096637176 sample128 -0.1249407785 0.0929311280 sample129 -0.0734067439 -0.0434361491 sample130 -0.0003501974 -0.0309852845 sample131 0.0930182815 0.0155938309 sample132 0.0736222732 0.0733028216 sample133 -0.0498397932 -0.0462438364 sample134 0.1644873430 0.0720007060 sample135 -0.0752297141 0.0003819410 sample136 0.0227145882 -0.0495504751 sample137 0.0564717487 -0.0288913964 sample138 0.0255988089 -0.0610859340 sample139 0.0621217754 0.0235809009 sample140 -0.0604152396 -0.0435591334 sample141 0.0246743959 0.0532647891 sample142 -0.0409560387 0.0316278129 sample143 -0.0077355207 -0.0476897022 sample144 0.0173240882 -0.0156778340 sample145 0.0485474364 0.1202769315 sample146 0.0419645737 -0.0811279888 sample147 -0.0977308302 -0.0274838118 sample148 0.0368256139 0.0803978924 sample149 -0.0072865747 -0.1532987120 sample150 0.1020825251 0.0624776138 sample151 0.0305399056 -0.0289280158 sample152 -0.0533594796 -0.0638309501 sample153 -0.0891628033 0.1799575082 sample154 -0.0727557391 -0.0834159897 sample155 -0.0880668452 -0.0220818273 sample156 -0.0276560907 -0.0326624634 sample157 -0.1155032193 0.0183616878 sample158 -0.0281507439 -0.0104938036 sample159 0.0663235616 0.0443836379 sample160 -0.0302643818 0.0404266134 sample161 0.0114715525 -0.0591027470 sample162 -0.1337087291 0.1398135798 sample163 0.1330124308 0.1688781307 sample164 -0.0150336087 0.0028414540 sample165 0.0076520324 -0.0164129400 sample166 0.0367794254 0.0630660646 sample167 0.1111988882 0.0030058250 sample168 -0.0672981673 0.0446278802 sample169 -0.0413004938 0.0224395821 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 -0.0420513421 0.0867863190 sample2 -0.0820829226 -0.0410977997 sample3 0.0155901789 -0.0195182263 sample4 -0.1001337138 -0.0410786614 sample5 -0.0153466147 -0.0253259670 sample6 0.0340323323 -0.0408223366 sample7 0.0722580445 0.0002332211 sample8 -0.0457503510 -0.0370016406 sample9 -0.0086248353 0.0820184952 sample10 -0.0423599448 -0.0083923287 sample11 0.0022549869 0.0787766107 sample12 0.0322104467 0.1479824579 sample13 -0.0293892267 -0.0306748737 sample14 0.0337481179 -0.0367506972 sample15 0.0815539473 0.1275622453 sample16 0.0508448498 0.0540604412 sample17 0.0062595341 0.0041023653 sample18 0.0705638637 -0.0351047791 sample19 -0.0476839809 -0.0509597939 sample20 0.0522964540 0.0715521919 sample21 -0.0119130198 -0.0376093258 sample22 0.0724395000 -0.0095625062 sample23 -0.0992532028 0.0134288859 sample24 -0.1595122809 0.0728661869 sample25 -0.0920692233 -0.0749757134 sample26 -0.0595541288 0.0848966024 sample27 0.0826488403 -0.0086735329 sample28 -0.0384789729 0.0440966820 sample29 0.0777673139 0.1735308536 sample30 0.1229471526 -0.0819005570 sample31 0.0579843562 -0.0238644956 sample32 0.0970392441 -0.0111426390 sample33 0.1017587852 -0.0630442643 sample34 0.0637922170 0.0377941645 sample35 0.0789985028 -0.0229723244 sample36 0.1224939496 -0.1274955032 sample37 0.1798821960 -0.1673427488 sample38 0.0466306806 0.0888161040 sample39 -0.0168687973 0.0421533760 sample40 0.1756393224 -0.1526642419 sample41 0.0042373675 0.0004928965 sample42 -0.0447848889 -0.0651504921 sample43 0.0482308100 -0.0253529307 sample44 -0.1986717752 -0.0545777934 sample45 -0.0741838854 0.0054703210 sample46 0.0478774660 -0.0007071897 sample47 0.0608189161 0.0481622640 sample48 -0.1381488759 0.0578287895 sample49 -0.0530523306 -0.1405532973 sample50 -0.0173795745 0.1602389908 sample51 0.0462558125 0.0303473643 sample52 0.0280063205 0.0280388270 sample53 0.0667617852 0.0237701789 sample54 0.0121833120 -0.0521354344 sample55 0.0182395929 0.0221328427 sample56 -0.0001256994 0.0030907285 sample57 0.0316672667 0.0530190099 sample58 0.0393917458 -0.0297798808 sample59 0.1278290505 -0.0546528059 sample60 0.1486984327 0.1069156404 sample61 0.0793120969 0.0569796389 sample62 0.1172801544 -0.0149198526 sample63 -0.0028729565 0.1300519660 sample64 0.0237362474 0.1073287556 sample65 -0.0126535210 0.0589808435 sample66 -0.0468195605 -0.0771072700 sample67 0.1494265417 -0.0769860367 sample68 0.0977963114 -0.0577351007 sample69 0.0403087287 0.0156042089 sample70 0.0221532961 0.0315441042 sample71 -0.0546431597 -0.0272396228 sample72 0.1107488314 -0.0537319399 sample73 0.0906760980 0.0579966552 sample74 0.0586554322 0.0121421587 sample75 0.0390493831 0.0349282824 sample76 -0.0022959793 -0.1676558747 sample77 -0.0232095956 -0.2067302778 sample78 -0.0929756571 -0.0434939518 sample79 -0.1619493437 -0.0378113946 sample80 0.0680366091 0.1424663486 sample81 -0.0530782368 -0.0358350712 sample82 0.0266822687 -0.0577445071 sample83 0.1517235464 -0.0448554404 sample84 -0.0570966243 -0.0273813142 sample85 0.1086289468 -0.1228119427 sample86 0.0833860780 -0.0442914975 sample87 0.0022019287 -0.0943906797 sample88 -0.0078226023 -0.1140506593 sample89 0.0611055855 -0.0094585257 sample90 0.0022928627 -0.0936253959 sample91 0.0433594804 0.3205982973 sample92 -0.1815332191 -0.0334679993 sample93 0.0267631183 0.0614429045 sample94 0.0181878223 0.0605090425 sample95 -0.0720374037 -0.0013045512 sample96 -0.0559713595 -0.0118791305 sample97 -0.0217411345 0.0195414142 sample98 0.0379177846 0.0588357115 sample99 -0.0792429615 -0.0151273877 sample100 0.0222115882 -0.0023321488 sample101 -0.0387224979 0.1224226453 sample102 -0.2094614321 -0.0516442487 sample103 0.0138483273 0.0301052071 sample104 -0.0807985823 -0.0162718796 sample105 -0.0520492932 -0.1229665092 sample106 -0.0192614115 -0.0185238214 sample107 0.0319016933 0.0405123271 sample108 -0.0140690613 0.0163421423 sample109 -0.1831928253 0.0613007774 sample110 -0.0292790386 -0.0199849039 sample111 -0.1423249881 0.0327340551 sample112 0.0426332316 -0.0029083490 sample113 -0.0771905261 0.0268733657 sample114 -0.0241639365 -0.0184080272 sample115 -0.1959014080 0.0460130889 sample116 -0.1394474890 -0.0530805673 sample117 -0.1672360033 -0.1386536192 sample118 -0.0448343981 -0.0117621903 sample119 -0.0910381596 0.2217433692 sample120 -0.0331392631 -0.0057274504 sample121 0.0307572893 0.1392506410 sample122 -0.0839782603 -0.0291994438 sample123 0.0239651232 -0.0642163681 sample124 -0.0909151433 0.0130419510 sample125 -0.0065350878 -0.1092631793 sample126 0.0935310379 0.1368283889 sample127 0.0035388241 0.0292755647 sample128 -0.0660297354 0.1018566268 sample129 0.0693639612 -0.0695421714 sample130 0.0008494222 -0.0669704277 sample131 0.0431023608 0.0174064802 sample132 -0.0637041522 0.0029374683 sample133 -0.0289493756 -0.0390818742 sample134 0.0446201214 0.0456334345 sample135 0.0712337024 0.0521634917 sample136 0.0596272238 0.0197299357 sample137 0.0793152658 -0.0380628322 sample138 -0.0973547024 -0.0454218120 sample139 0.0539903973 -0.1534327453 sample140 0.0850828068 0.0955814543 sample141 -0.0192682811 -0.0554450104 sample142 -0.0672262725 -0.0461320902 sample143 -0.0303729562 -0.0519260166 sample144 -0.0089364150 0.0145814950 sample145 -0.0638772834 0.0122258274 sample146 0.0585858100 0.0063083409 sample147 0.0894133914 -0.1124615718 sample148 -0.0216368718 -0.0615967211 sample149 -0.0515417588 -0.0839903279 sample150 0.0568281840 -0.0124469063 sample151 -0.0789531747 -0.0261831092 sample152 -0.0330752166 0.1306443680 sample153 -0.1751935478 0.1497731967 sample154 0.0421426128 -0.0037010114 sample155 0.0680178117 0.0095711234 sample156 0.0388912074 0.1057562997 sample157 0.0314769085 0.0561367393 sample158 0.0329620824 0.0353947324 sample159 -0.0398417604 -0.1007373811 sample160 0.0424937952 0.0108496113 sample161 -0.0888370237 -0.0679700050 sample162 -0.0027478983 0.1237843689 sample163 -0.0126108961 0.0725434119 sample164 -0.0566779654 -0.0458324131 sample165 -0.0315336039 -0.0236362300 sample166 -0.0612059507 -0.0425233077 sample167 0.0142729816 0.0179308252 sample168 -0.0169504451 -0.0769617933 sample169 0.0675079854 0.0131505258 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 -0.001232964 -1.635717e-01 sample2 -0.072434996 -6.021303e-03 sample3 -0.018846046 -1.080036e-01 sample4 0.039014528 3.113886e-04 sample5 0.177481167 -2.996384e-02 sample6 -0.045144429 -3.455860e-02 sample7 -0.022646634 -7.020128e-03 sample8 -0.103368007 -9.856839e-03 sample9 0.135001158 8.979101e-02 sample10 0.125988735 -5.097854e-02 sample11 0.097978823 7.086537e-02 sample12 -0.086301900 -8.620318e-02 sample13 -0.138140106 1.828007e-01 sample14 -0.061507379 -2.642804e-02 sample15 0.038159894 -3.101661e-02 sample16 -0.004877653 1.271814e-03 sample17 -0.078848078 -1.547557e-02 sample18 -0.088418861 -3.795487e-02 sample19 0.070304440 -1.084004e-01 sample20 -0.002558568 7.975878e-02 sample21 0.094160194 -4.126745e-02 sample22 -0.055027349 -7.806739e-02 sample23 0.067949530 -4.102007e-02 sample24 -0.131096256 1.649308e-01 sample25 0.011358527 -4.426864e-02 sample26 -0.140294579 2.016538e-02 sample27 0.026156095 1.588503e-03 sample28 -0.072419862 5.850589e-02 sample29 -0.033005872 2.060871e-03 sample30 -0.022875250 -2.015427e-02 sample31 -0.063506776 -6.670336e-02 sample32 0.068509975 -4.955271e-02 sample33 -0.077776513 -1.272078e-01 sample34 0.015784252 -3.024314e-02 sample35 -0.052963291 1.500972e-01 sample36 0.007090051 2.025308e-01 sample37 -0.044242085 1.802089e-01 sample38 -0.078151142 -3.676417e-02 sample39 0.012033195 -3.388843e-02 sample40 -0.047329231 1.471562e-01 sample41 0.022818925 -2.673551e-02 sample42 -0.024536020 -7.960867e-02 sample43 0.103636291 -8.229575e-02 sample44 -0.101222871 7.049442e-02 sample45 0.001373228 -2.450917e-02 sample46 -0.055851015 2.947418e-03 sample47 -0.038048123 4.554175e-02 sample48 0.078434201 4.888978e-02 sample49 -0.060516380 -1.162360e-02 sample50 0.053007901 -2.737927e-02 sample51 0.151464666 5.678344e-02 sample52 0.186093523 1.246717e-01 sample53 -0.006417688 -2.700996e-02 sample54 0.069703841 -2.308389e-02 sample55 0.163357701 1.366444e-02 sample56 0.101148518 4.682204e-02 sample57 0.173037426 1.609603e-01 sample58 -0.007138465 -1.666955e-02 sample59 -0.003046171 3.005289e-02 sample60 0.021583494 2.665878e-01 sample61 0.151058365 1.002385e-01 sample62 -0.092553394 -4.845839e-02 sample63 -0.059631162 -4.137026e-02 sample64 -0.044922572 -2.600596e-03 sample65 0.093938382 -4.406909e-02 sample66 0.106340087 -5.709995e-02 sample67 -0.020159036 2.361728e-01 sample68 0.003720302 2.418395e-02 sample69 -0.064516114 -1.155622e-01 sample70 -0.101344003 -1.351789e-01 sample71 -0.001646805 -2.976840e-02 sample72 0.032889303 -2.835854e-02 sample73 0.027508015 -5.148184e-02 sample74 0.134171983 -7.895279e-02 sample75 0.095157564 -3.943181e-02 sample76 -0.086472208 3.034992e-02 sample77 -0.103574961 -2.545354e-02 sample78 -0.157564399 4.939588e-02 sample79 0.018913680 4.874679e-02 sample80 0.138414053 4.269175e-05 sample81 -0.011884652 -6.357931e-02 sample82 -0.167530819 3.533911e-02 sample83 -0.006567335 -7.812606e-02 sample84 0.148689160 -3.109056e-02 sample85 -0.053272452 7.417887e-02 sample86 -0.113847735 -1.913576e-05 sample87 0.043286390 6.080474e-02 sample88 0.043345035 1.402490e-01 sample89 0.033120593 -1.395401e-02 sample90 -0.060741278 -8.610414e-02 sample91 -0.056627315 1.303748e-01 sample92 -0.035958283 1.061604e-01 sample93 -0.043364632 -4.443634e-02 sample94 -0.047729125 -1.059574e-01 sample95 -0.024959587 -3.980525e-02 sample96 0.003521901 -9.293928e-02 sample97 -0.006604862 -1.527231e-01 sample98 0.002036684 -5.579549e-02 sample99 -0.088661584 -3.728232e-02 sample100 -0.109125909 -3.560421e-02 sample101 -0.073972671 -4.317996e-02 sample102 0.057446121 -2.783920e-02 sample103 0.014273088 9.705588e-03 sample104 0.071039509 4.068351e-02 sample105 0.098083138 -3.452953e-02 sample106 -0.025425924 3.628982e-02 sample107 -0.016065331 -9.173395e-02 sample108 -0.020098762 -2.379693e-02 sample109 -0.038978083 1.692356e-02 sample110 -0.032630483 2.988108e-02 sample111 0.067693746 -6.038213e-02 sample112 0.016788350 5.336940e-03 sample113 0.096921709 -2.757606e-02 sample114 -0.002639842 -9.209155e-02 sample115 -0.030804744 1.603819e-02 sample116 -0.124030739 1.273000e-01 sample117 0.033472890 5.392709e-02 sample118 -0.103715302 6.252430e-02 sample119 -0.106417717 1.196203e-01 sample120 -0.077135501 -1.004933e-01 sample121 -0.012935061 3.181974e-02 sample122 0.084749247 -5.568330e-02 sample123 -0.004133680 7.693191e-03 sample124 -0.058345789 -8.396393e-02 sample125 0.063484469 -5.232540e-02 sample126 -0.066258081 -1.091732e-01 sample127 -0.086502458 -1.094176e-01 sample128 -0.062781723 -1.470969e-02 sample129 -0.033627646 -4.007856e-02 sample130 -0.029351773 -8.046116e-02 sample131 -0.046919768 -2.209742e-03 sample132 -0.024174049 -1.248599e-01 sample133 0.090730315 1.466701e-02 sample134 -0.035084210 7.539662e-02 sample135 0.000133342 9.185395e-03 sample136 -0.033587608 -9.860271e-02 sample137 -0.064014893 -7.554467e-02 sample138 0.006096476 -1.742763e-02 sample139 -0.059208448 5.614969e-02 sample140 0.042798587 -1.099547e-02 sample141 0.061879654 -9.301039e-02 sample142 0.089855452 3.573415e-02 sample143 0.081738908 8.880525e-02 sample144 0.078775478 -3.821391e-02 sample145 0.108582164 1.569476e-01 sample146 -0.058955806 -4.373356e-02 sample147 -0.049533045 7.277223e-03 sample148 0.116159290 9.079065e-03 sample149 -0.012157974 7.788376e-02 sample150 -0.031451251 3.520212e-02 sample151 0.057538214 -1.945353e-02 sample152 -0.049454224 7.025538e-02 sample153 -0.094133257 2.153296e-01 sample154 -0.033593213 2.078731e-02 sample155 0.069045766 -2.780407e-02 sample156 0.103990161 -6.292522e-02 sample157 -0.040864572 8.065512e-03 sample158 0.101810529 7.816895e-03 sample159 -0.028173047 -1.207209e-02 sample160 0.164305308 2.978117e-03 sample161 0.037432910 8.524610e-02 sample162 -0.080453512 8.349750e-02 sample163 -0.074322775 -1.406230e-02 sample164 0.120880605 -2.139461e-02 sample165 0.160811588 2.025193e-02 sample166 -0.042594452 -2.660718e-02 sample167 -0.022684949 -4.464281e-02 sample168 -0.018073548 -7.466420e-04 sample169 0.019077903 2.645403e-02 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Combined plot for loadings from common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ## Plot scores and loadings togheter: Common components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Common components O2PLS > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Distintive components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > > proc.time() user system elapsed 13.027 0.191 14.895
STATegRa.Rcheck/STATegRa-Ex.timings
name | user | system | elapsed | |
STATegRaUsersGuide | 0.001 | 0.000 | 0.001 | |
STATegRa_data | 0.191 | 0.008 | 0.201 | |
STATegRa_data_TCGA_BRCA | 0.002 | 0.000 | 0.002 | |
bioDist | 0.642 | 0.008 | 0.721 | |
bioDistFeature | 0.551 | 0.028 | 0.603 | |
bioDistFeaturePlot | 0.436 | 0.036 | 0.474 | |
bioDistW | 0.437 | 0.004 | 0.442 | |
bioDistWPlot | 0.457 | 0.008 | 0.650 | |
bioMap | 0.003 | 0.000 | 0.004 | |
combiningMappings | 0.013 | 0.000 | 0.014 | |
createOmicsExpressionSet | 0.132 | 0.000 | 0.133 | |
getInitialData | 0.961 | 0.019 | 1.353 | |
getLoadings | 1.066 | 0.008 | 1.087 | |
getMethodInfo | 0.995 | 0.004 | 1.092 | |
getPreprocessing | 1.237 | 0.092 | 1.720 | |
getScores | 1.015 | 0.004 | 1.321 | |
getVAF | 1.135 | 0.000 | 1.378 | |
holistOmics | 0.002 | 0.000 | 0.002 | |
modelSelection | 1.448 | 0.258 | 2.350 | |
omicsCompAnalysis | 3.017 | 0.055 | 4.141 | |
omicsNPC | 0.002 | 0.000 | 0.002 | |
plotRes | 4.048 | 0.016 | 4.704 | |
plotVAF | 3.536 | 0.012 | 4.190 | |