Back to Multiple platform build/check report for BioC 3.22:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-08-19 12:07 -0400 (Tue, 19 Aug 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4818
lconwaymacOS 12.7.1 Montereyx86_644.5.1 (2025-06-13) -- "Great Square Root" 4596
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4538
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4536
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1995/2317HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.19.1  (landing page)
Joshua David Campbell
Snapshot Date: 2025-08-18 13:45 -0400 (Mon, 18 Aug 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 565145a1
git_last_commit_date: 2025-07-01 15:36:15 -0400 (Tue, 01 Jul 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  NO, package depends on 'MAST' which is not available
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  NO, package depends on 'MAST' which is not available
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    OK    OK  NO, package depends on 'MAST' which is not available
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for singleCellTK on taishan

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: singleCellTK
Version: 2.19.1
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings singleCellTK_2.19.1.tar.gz
StartedAt: 2025-08-19 12:25:31 -0000 (Tue, 19 Aug 2025)
EndedAt: 2025-08-19 12:47:59 -0000 (Tue, 19 Aug 2025)
EllapsedTime: 1348.0 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings singleCellTK_2.19.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.0 (2025-04-11)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.19.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 79 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 50.490  0.750  51.329
runSeuratSCTransform     43.353  0.368  43.850
plotDoubletFinderResults 40.684  0.223  41.138
runDoubletFinder         36.316  0.241  36.640
plotScDblFinderResults   33.681  0.515  34.279
runScDblFinder           22.268  0.515  22.671
importExampleData        14.345  1.325  24.420
plotBatchCorrCompare     13.305  0.056  13.727
plotScdsHybridResults    11.186  0.062  10.580
plotBcdsResults           9.519  0.051   8.922
plotDecontXResults        8.748  0.072   8.843
plotCxdsResults           7.567  0.076   7.791
plotUMAP                  7.520  0.102   7.770
runDecontX                7.364  0.028   7.409
runUMAP                   6.625  0.062   6.831
plotDEGViolin             6.041  0.028   6.086
plotTSCANClusterDEG       5.846  0.016   5.880
plotFindMarkerHeatmap     5.735  0.020   5.770
plotEmptyDropsResults     5.676  0.021   5.705
plotEmptyDropsScatter     5.551  0.004   5.564
detectCellOutlier         5.330  0.044   5.387
convertSCEToSeurat        5.287  0.075   5.374
runEmptyDrops             5.249  0.000   5.255
plotDEGRegression         5.080  0.052   5.146
getEnrichRResult          0.384  0.176  10.771
runEnrichR                0.412  0.036 146.498
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.5.0/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.19.1’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.191   0.032   0.208 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
[1]	train-logloss:0.452573 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.320290 
[3]	train-logloss:0.237363 
[4]	train-logloss:0.182378 
[5]	train-logloss:0.144113 
[6]	train-logloss:0.117560 
[7]	train-logloss:0.098812 
[8]	train-logloss:0.084977 
[9]	train-logloss:0.075059 
[10]	train-logloss:0.067480 
[11]	train-logloss:0.061855 
[12]	train-logloss:0.057358 
[13]	train-logloss:0.053969 
[14]	train-logloss:0.050909 
[15]	train-logloss:0.047615 
[16]	train-logloss:0.045564 
[17]	train-logloss:0.043868 
[1]	train-logloss:0.453064 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.321072 
[3]	train-logloss:0.238210 
[4]	train-logloss:0.183469 
[5]	train-logloss:0.145239 
[6]	train-logloss:0.118860 
[7]	train-logloss:0.100304 
[8]	train-logloss:0.086606 
[9]	train-logloss:0.076012 
[10]	train-logloss:0.068021 
[11]	train-logloss:0.062325 
[12]	train-logloss:0.057942 
[13]	train-logloss:0.054289 
[14]	train-logloss:0.051302 
[15]	train-logloss:0.048796 
[1]	train-logloss:0.453064 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.321072 
[3]	train-logloss:0.238210 
[4]	train-logloss:0.183469 
[5]	train-logloss:0.145239 
[6]	train-logloss:0.118860 
[7]	train-logloss:0.100304 
[8]	train-logloss:0.086606 
[9]	train-logloss:0.076012 
[10]	train-logloss:0.068021 
[11]	train-logloss:0.062325 
[12]	train-logloss:0.057942 
[13]	train-logloss:0.054289 
[14]	train-logloss:0.051302 
[15]	train-logloss:0.048796 
[16]	train-logloss:0.046452 
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 22 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 22 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
348.742   4.323 373.987 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0000.003
SEG0.0030.0000.002
calcEffectSizes0.2630.0040.268
combineSCE0.9880.0040.994
computeZScore0.2720.0000.272
convertSCEToSeurat5.2870.0755.374
convertSeuratToSCE0.4150.0000.416
dedupRowNames0.0740.0000.074
detectCellOutlier5.3300.0445.387
diffAbundanceFET0.0620.0040.067
discreteColorPalette0.0080.0000.009
distinctColors0.0030.0000.003
downSampleCells0.7170.0280.747
downSampleDepth0.5840.0000.585
expData-ANY-character-method0.1620.0000.162
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.2130.0000.213
expData-set0.2020.0000.202
expData0.1680.0000.169
expDataNames-ANY-method0.1540.0000.154
expDataNames0.1510.0000.151
expDeleteDataTag0.0390.0000.039
expSetDataTag0.0300.0000.031
expTaggedData0.0320.0000.032
exportSCE0.0280.0000.028
exportSCEtoAnnData0.0700.0080.078
exportSCEtoFlatFile0.0720.0040.076
featureIndex0.0470.0000.048
generateSimulatedData0.0630.0000.062
getBiomarker0.0690.0040.073
getDEGTopTable0.9490.0681.020
getDiffAbundanceResults0.0580.0000.058
getEnrichRResult 0.384 0.17610.771
getFindMarkerTopTable2.0920.4592.559
getMSigDBTable0.0040.0000.004
getPathwayResultNames0.0250.0040.029
getSampleSummaryStatsTable0.2630.0040.268
getSoupX000
getTSCANResults1.3920.0751.472
getTopHVG1.0860.0441.133
importAnnData0.0020.0000.002
importBUStools0.2260.0080.237
importCellRanger1.0270.1041.138
importCellRangerV2Sample0.2110.0120.224
importCellRangerV3Sample0.4150.0350.453
importDropEst0.2660.0040.272
importExampleData14.345 1.32524.420
importGeneSetsFromCollection1.0640.0561.123
importGeneSetsFromGMT0.0860.0080.095
importGeneSetsFromList0.2140.0040.219
importGeneSetsFromMSigDB50.490 0.75051.329
importMitoGeneSet0.0780.0000.078
importOptimus0.0020.0000.002
importSEQC0.2320.0040.238
importSTARsolo0.2330.0200.255
iterateSimulations0.2300.0240.255
listSampleSummaryStatsTables0.3360.0160.352
mergeSCEColData0.5480.0320.581
mouseBrainSubsetSCE0.040.000.04
msigdb_table0.0010.0000.002
plotBarcodeRankDropsResults0.7910.0120.805
plotBarcodeRankScatter0.8880.0000.890
plotBatchCorrCompare13.305 0.05613.727
plotBatchVariance0.4460.0000.448
plotBcdsResults9.5190.0518.922
plotBubble0.9820.0080.992
plotClusterAbundance1.1760.0041.183
plotCxdsResults7.5670.0767.791
plotDEGHeatmap3.1050.0213.134
plotDEGRegression5.0800.0525.146
plotDEGViolin6.0410.0286.086
plotDEGVolcano1.2090.0241.236
plotDecontXResults8.7480.0728.843
plotDimRed0.3590.0000.360
plotDoubletFinderResults40.684 0.22341.138
plotEmptyDropsResults5.6760.0215.705
plotEmptyDropsScatter5.5510.0045.564
plotFindMarkerHeatmap5.7350.0205.770
plotMASTThresholdGenes1.8460.0161.867
plotPCA0.5180.0040.522
plotPathway0.7550.0000.759
plotRunPerCellQCResults2.9600.0042.970
plotSCEBarAssayData0.2530.0000.254
plotSCEBarColData0.2000.0000.199
plotSCEBatchFeatureMean0.4070.0120.420
plotSCEDensity0.2960.0040.301
plotSCEDensityAssayData0.2240.0000.225
plotSCEDensityColData0.2960.0000.297
plotSCEDimReduceColData0.7250.0120.740
plotSCEDimReduceFeatures0.3800.0000.381
plotSCEHeatmap0.7050.0120.726
plotSCEScatter0.3440.0000.349
plotSCEViolin0.3530.0000.358
plotSCEViolinAssayData0.3760.0000.379
plotSCEViolinColData0.3530.0040.359
plotScDblFinderResults33.681 0.51534.279
plotScanpyDotPlot0.0270.0000.026
plotScanpyEmbedding0.0270.0000.027
plotScanpyHVG0.0280.0000.028
plotScanpyHeatmap0.0280.0000.028
plotScanpyMarkerGenes0.0280.0000.028
plotScanpyMarkerGenesDotPlot0.0230.0040.027
plotScanpyMarkerGenesHeatmap0.0280.0000.027
plotScanpyMarkerGenesMatrixPlot0.0280.0000.028
plotScanpyMarkerGenesViolin0.0270.0000.028
plotScanpyMatrixPlot0.0270.0000.027
plotScanpyPCA0.0280.0000.028
plotScanpyPCAGeneRanking0.0270.0000.027
plotScanpyPCAVariance0.0280.0000.028
plotScanpyViolin0.0260.0000.027
plotScdsHybridResults11.186 0.06210.580
plotScrubletResults0.0240.0000.025
plotSeuratElbow0.0240.0000.024
plotSeuratHVG0.0210.0040.025
plotSeuratJackStraw0.0210.0040.025
plotSeuratReduction0.0270.0000.027
plotSoupXResults000
plotTSCANClusterDEG5.8460.0165.880
plotTSCANClusterPseudo1.9070.0201.932
plotTSCANDimReduceFeatures1.9910.0162.012
plotTSCANPseudotimeGenes2.2460.0162.269
plotTSCANPseudotimeHeatmap2.0730.0042.083
plotTSCANResults1.8020.0041.814
plotTSNE0.4830.0080.493
plotTopHVG0.8140.0000.816
plotUMAP7.5200.1027.770
readSingleCellMatrix0.0070.0000.007
reportCellQC0.1090.0000.110
reportDropletQC0.0240.0000.025
reportQCTool0.1060.0000.106
retrieveSCEIndex0.0320.0000.033
runBBKNN0.0010.0000.000
runBarcodeRankDrops0.2830.0000.284
runBcds2.4010.0161.634
runCellQC0.1060.0000.106
runClusterSummaryMetrics0.5350.0000.536
runComBatSeq0.6840.0040.690
runCxds0.4260.0120.439
runCxdsBcdsHybrid2.5010.0561.763
runDEAnalysis0.4910.0000.493
runDecontX7.3640.0287.409
runDimReduce0.3760.0040.381
runDoubletFinder36.316 0.24136.640
runDropletQC0.0210.0040.024
runEmptyDrops5.2490.0005.255
runEnrichR 0.412 0.036146.498
runFastMNN2.6760.7123.400
runFeatureSelection0.3070.0200.327
runFindMarker2.1130.3862.506
runGSVA1.1140.1991.316
runHarmony0.0520.0080.061
runKMeans0.2520.0000.253
runLimmaBC0.1060.0110.118
runMNNCorrect0.5610.0320.595
runModelGeneVar0.4240.0120.437
runNormalization2.6780.2352.920
runPerCellQC0.4540.0080.462
runSCANORAMA000
runSCMerge0.0050.0000.005
runScDblFinder22.268 0.51522.671
runScanpyFindClusters0.0290.0000.029
runScanpyFindHVG0.0290.0000.028
runScanpyFindMarkers0.0280.0000.029
runScanpyNormalizeData0.1440.0000.144
runScanpyPCA0.0250.0040.029
runScanpyScaleData0.0310.0000.031
runScanpyTSNE0.0310.0000.032
runScanpyUMAP0.0320.0000.031
runScranSNN0.3970.0000.399
runScrublet0.0270.0000.027
runSeuratFindClusters0.0270.0000.027
runSeuratFindHVG0.6230.0040.629
runSeuratHeatmap0.0280.0000.028
runSeuratICA0.0280.0000.029
runSeuratJackStraw0.0270.0000.027
runSeuratNormalizeData0.0270.0000.027
runSeuratPCA0.0280.0000.028
runSeuratSCTransform43.353 0.36843.850
runSeuratScaleData0.0240.0000.024
runSeuratUMAP0.0230.0000.024
runSingleR0.0470.0040.051
runSoupX000
runTSCAN0.9180.0040.924
runTSCANClusterDEAnalysis1.0020.0041.009
runTSCANDEG1.0590.0041.065
runTSNE0.9900.0040.995
runUMAP6.6250.0626.831
runVAM0.4040.0000.405
runZINBWaVE0.0040.0000.005
sampleSummaryStats0.2120.0000.213
scaterCPM0.1300.0030.133
scaterPCA0.6310.0080.641
scaterlogNormCounts0.2730.0080.282
sce0.0250.0000.025
sctkListGeneSetCollections0.1070.0000.107
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda0.0010.0000.000
selectSCTKVirtualEnvironment000
setRowNames0.1150.0030.118
setSCTKDisplayRow0.4150.0000.417
singleCellTK000
subDiffEx0.4210.0000.423
subsetSCECols0.1070.0000.107
subsetSCERows0.3790.0000.380
summarizeSCE0.080.000.08
trimCounts0.1990.0000.200