Back to Multiple platform build/check report for BioC 3.22:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-09-25 12:06 -0400 (Thu, 25 Sep 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4831
lconwaymacOS 12.7.1 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4618
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4562
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4560
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2009/2334HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.19.1  (landing page)
Joshua David Campbell
Snapshot Date: 2025-09-24 13:45 -0400 (Wed, 24 Sep 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 565145a1
git_last_commit_date: 2025-07-01 15:36:15 -0400 (Tue, 01 Jul 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    ERROR  
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    ERROR    OK  
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    ERROR    OK  
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    ERROR  


CHECK results for singleCellTK on lconway

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.19.1
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.19.1.tar.gz
StartedAt: 2025-09-25 00:16:06 -0400 (Thu, 25 Sep 2025)
EndedAt: 2025-09-25 00:32:00 -0400 (Thu, 25 Sep 2025)
EllapsedTime: 954.8 seconds
RetCode: 1
Status:   ERROR  
CheckDir: singleCellTK.Rcheck
Warnings: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.19.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.1 Patched (2025-09-10 r88807)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.19.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 79 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    extdata   1.5Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... ERROR
Running examples in ‘singleCellTK-Ex.R’ failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: plotPathway
> ### Title: Generate violin plots for pathway analysis results
> ### Aliases: plotPathway
> 
> ### ** Examples
> 
> data("scExample", package = "singleCellTK")
> sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
> sce <- scaterlogNormCounts(sce, assayName = "logcounts")
> gs1 <- rownames(sce)[seq(10)]
> gs2 <- rownames(sce)[seq(11,20)]
> gs <- list("geneset1" = gs1, "geneset2" = gs2)
> sce <- importGeneSetsFromList(inSCE = sce, geneSetList = gs,
+                               by = "rownames")
> sce <- runVAM(inSCE = sce, geneSetCollectionName = "GeneSetCollection",
+               useAssay = "logcounts")
Thu Sep 25 00:25:20 2025 ... Running VAM
gene.weights not specified, defaulting all weights to 1
Computing VAM distances for 2 gene sets, 195 cells and 200 genes.
Min set size: 10, median size: 10
> plotPathway(sce, "VAM_GeneSetCollection_CDF", "geneset1")
Error in S7::prop(x, "meta")[[i]] : subscript out of bounds
Calls: plotPathway -> plotSCEViolin -> [[ -> [[.ggplot2::gg
Execution halted
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 51.601  0.548  52.448
plotDoubletFinderResults 44.612  0.264  45.080
importExampleData        15.202  1.878  17.574
plotBatchCorrCompare     15.028  0.148  15.245
plotDecontXResults       10.321  0.086  10.458
plotBcdsResults           9.876  0.209  10.144
plotCxdsResults           8.674  0.081   8.798
plotDEGViolin             8.185  0.122   8.345
detectCellOutlier         6.477  0.141   6.645
plotEmptyDropsResults     6.375  0.037   6.444
plotEmptyDropsScatter     6.322  0.045   6.408
convertSCEToSeurat        5.285  0.278   5.597
plotDEGRegression         5.016  0.063   5.102
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 ERROR
Running the tests in ‘tests/testthat.R’ failed.
Last 13 lines of output:
   3.     ├─plotlist[[1]]
   4.     └─ggplot2 (local) `[[.ggplot2::gg`(plotlist, 1)
  ── Error ('test-pathway.R:39:5'): Testing GSVA ─────────────────────────────────
  <subscriptOutOfBoundsError/error/condition>
  Error in `S7::prop(x, "meta")[[i]]`: subscript out of bounds
  Backtrace:
      ▆
   1. └─singleCellTK::plotPathway(...) at test-pathway.R:39:5
   2.   └─singleCellTK::plotSCEViolin(...)
   3.     ├─plotlist[[1]]
   4.     └─ggplot2 (local) `[[.ggplot2::gg`(plotlist, 1)
  
  [ FAIL 2 | WARN 22 | SKIP 0 | PASS 223 ]
  Error: Test failures
  Execution halted
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 ERRORs, 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.19.1’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.219   0.088   0.295 

singleCellTK.Rcheck/tests/testthat.Rout.fail


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
[1]	train-logloss:0.452540 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.320237 
[3]	train-logloss:0.237326 
[4]	train-logloss:0.182355 
[5]	train-logloss:0.144099 
[6]	train-logloss:0.117553 
[7]	train-logloss:0.098814 
[8]	train-logloss:0.084978 
[9]	train-logloss:0.075063 
[10]	train-logloss:0.067483 
[11]	train-logloss:0.061861 
[12]	train-logloss:0.057362 
[13]	train-logloss:0.053725 
[14]	train-logloss:0.050620 
[15]	train-logloss:0.047937 
[16]	train-logloss:0.045355 
[17]	train-logloss:0.043608 
[18]	train-logloss:0.042678 
[1]	train-logloss:0.452932 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.320861 
[3]	train-logloss:0.238138 
[4]	train-logloss:0.183327 
[5]	train-logloss:0.145234 
[6]	train-logloss:0.118471 
[7]	train-logloss:0.099668 
[8]	train-logloss:0.085972 
[9]	train-logloss:0.076338 
[10]	train-logloss:0.068629 
[11]	train-logloss:0.062967 
[12]	train-logloss:0.057971 
[13]	train-logloss:0.053386 
[14]	train-logloss:0.050623 
[1]	train-logloss:0.453030 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.321019 
[3]	train-logloss:0.238344 
[4]	train-logloss:0.183572 
[5]	train-logloss:0.145515 
[6]	train-logloss:0.118784 
[7]	train-logloss:0.100283 
[8]	train-logloss:0.086178 
[9]	train-logloss:0.076766 
[10]	train-logloss:0.069198 
[11]	train-logloss:0.063614 
[12]	train-logloss:0.059085 
[13]	train-logloss:0.055346 
[14]	train-logloss:0.052474 
[15]	train-logloss:0.049706 
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 2 | WARN 22 | SKIP 0 | PASS 223 ]

══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-pathway.R:29:5'): Testing VAM ──────────────────────────────────
<subscriptOutOfBoundsError/error/condition>
Error in `S7::prop(x, "meta")[[i]]`: subscript out of bounds
Backtrace:
    ▆
 1. └─singleCellTK::plotPathway(...) at test-pathway.R:29:5
 2.   └─singleCellTK::plotSCEViolin(...)
 3.     ├─plotlist[[1]]
 4.     └─ggplot2 (local) `[[.ggplot2::gg`(plotlist, 1)
── Error ('test-pathway.R:39:5'): Testing GSVA ─────────────────────────────────
<subscriptOutOfBoundsError/error/condition>
Error in `S7::prop(x, "meta")[[i]]`: subscript out of bounds
Backtrace:
    ▆
 1. └─singleCellTK::plotPathway(...) at test-pathway.R:39:5
 2.   └─singleCellTK::plotSCEViolin(...)
 3.     ├─plotlist[[1]]
 4.     └─ggplot2 (local) `[[.ggplot2::gg`(plotlist, 1)

[ FAIL 2 | WARN 22 | SKIP 0 | PASS 223 ]
Error: Test failures
Execution halted

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0020.0030.006
SEG0.0030.0020.005
calcEffectSizes0.2210.0130.235
combineSCE0.8950.0200.918
computeZScore0.2450.0090.257
convertSCEToSeurat5.2850.2785.597
convertSeuratToSCE0.4260.0110.444
dedupRowNames0.0710.0050.076
detectCellOutlier6.4770.1416.645
diffAbundanceFET0.0650.0040.070
discreteColorPalette0.0070.0000.008
distinctColors0.0030.0000.003
downSampleCells0.5920.0680.666
downSampleDepth0.4640.0350.505
expData-ANY-character-method0.1630.0080.172
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.2220.0070.230
expData-set0.2010.0090.213
expData0.1630.0080.171
expDataNames-ANY-method0.1700.0120.185
expDataNames0.1600.0190.180
expDeleteDataTag0.0450.0030.048
expSetDataTag0.0340.0030.037
expTaggedData0.0340.0040.038
exportSCE0.0280.0060.034
exportSCEtoAnnData0.0810.0030.086
exportSCEtoFlatFile0.0800.0030.084
featureIndex0.0420.0050.047
generateSimulatedData0.0600.0050.067
getBiomarker0.0730.0070.082
getDEGTopTable0.8130.0630.882
getDiffAbundanceResults0.0560.0030.059
getEnrichRResult0.3310.0443.246
getFindMarkerTopTable1.7230.0711.804
getMSigDBTable0.0040.0030.007
getPathwayResultNames0.0290.0060.034
getSampleSummaryStatsTable0.1890.0040.194
getSoupX000
getTSCANResults1.2460.0561.311
getTopHVG1.0770.0241.109
importAnnData0.0020.0010.003
importBUStools0.1760.0060.184
importCellRanger0.8380.0380.887
importCellRangerV2Sample0.1720.0030.175
importCellRangerV3Sample0.3140.0160.334
importDropEst0.2590.0060.268
importExampleData15.202 1.87817.574
importGeneSetsFromCollection2.0310.1532.194
importGeneSetsFromGMT0.0750.0060.081
importGeneSetsFromList0.1570.0060.164
importGeneSetsFromMSigDB51.601 0.54852.448
importMitoGeneSet0.0660.0070.073
importOptimus0.0010.0000.002
importSEQC0.1630.0080.174
importSTARsolo0.1810.0110.195
iterateSimulations0.2140.0140.233
listSampleSummaryStatsTables0.3700.0160.388
mergeSCEColData0.3890.0210.416
mouseBrainSubsetSCE0.0400.0040.044
msigdb_table0.0010.0020.003
plotBarcodeRankDropsResults1.0270.0391.071
plotBarcodeRankScatter0.9900.0131.007
plotBatchCorrCompare15.028 0.14815.245
plotBatchVariance0.5040.0070.513
plotBcdsResults 9.876 0.20910.144
plotBubble0.8980.0150.919
plotClusterAbundance1.7630.0151.787
plotCxdsResults8.6740.0818.798
plotDEGHeatmap2.5620.0352.611
plotDEGRegression5.0160.0635.102
plotDEGViolin8.1850.1228.345
plotDEGVolcano1.0490.0161.068
plotDecontXResults10.321 0.08610.458
plotDimRed0.4000.0070.410
plotDoubletFinderResults44.612 0.26445.080
plotEmptyDropsResults6.3750.0376.444
plotEmptyDropsScatter6.3220.0456.408
plotFindMarkerHeatmap4.4890.0334.545
plotMASTThresholdGenes1.6230.0381.673
plotPCA0.4750.0120.492