Back to Multiple platform build/check report for BioC 3.22:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-09-27 12:05 -0400 (Sat, 27 Sep 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4832
lconwaymacOS 12.7.1 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4620
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4565
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4563
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2009/2334HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.19.2  (landing page)
Joshua David Campbell
Snapshot Date: 2025-09-26 13:45 -0400 (Fri, 26 Sep 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 238aed05
git_last_commit_date: 2025-09-26 08:22:06 -0400 (Fri, 26 Sep 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  NO, package depends on 'MAST' which is not available
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  NO, package depends on 'MAST' which is not available
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    OK    OK  NO, package depends on 'MAST' which is not available
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    ERROR  


CHECK results for singleCellTK on lconway

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.19.2
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.19.2.tar.gz
StartedAt: 2025-09-27 00:16:32 -0400 (Sat, 27 Sep 2025)
EndedAt: 2025-09-27 00:34:52 -0400 (Sat, 27 Sep 2025)
EllapsedTime: 1099.5 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.19.2.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.1 Patched (2025-09-10 r88807)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.19.2’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.5Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 49.500  0.517  50.294
plotDoubletFinderResults 42.705  0.265  43.156
runDoubletFinder         36.969  0.220  37.337
plotScDblFinderResults   32.631  0.899  33.679
runScDblFinder           20.941  0.482  21.524
importExampleData        14.735  1.748  16.957
plotBatchCorrCompare     14.517  0.146  14.724
plotScdsHybridResults    10.970  0.178  11.212
plotDecontXResults       10.039  0.084  10.173
plotBcdsResults           9.370  0.186   9.607
plotCxdsResults           8.483  0.083   8.604
plotUMAP                  7.915  0.087   8.033
plotDEGViolin             7.828  0.112   7.975
runUMAP                   7.748  0.108   7.913
runDecontX                7.702  0.074   7.824
detectCellOutlier         6.418  0.145   6.604
plotEmptyDropsScatter     6.200  0.039   6.274
plotEmptyDropsResults     6.182  0.035   6.251
plotTSCANClusterDEG       5.934  0.086   6.048
runEmptyDrops             5.945  0.030   5.998
plotDEGRegression         5.210  0.062   5.443
convertSCEToSeurat        4.836  0.253   5.116
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.19.2’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.202   0.075   0.274 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
[1]	train-logloss:0.452540 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.320237 
[3]	train-logloss:0.237326 
[4]	train-logloss:0.182355 
[5]	train-logloss:0.144099 
[6]	train-logloss:0.117553 
[7]	train-logloss:0.098814 
[8]	train-logloss:0.084978 
[9]	train-logloss:0.075063 
[10]	train-logloss:0.067483 
[11]	train-logloss:0.061861 
[12]	train-logloss:0.057362 
[13]	train-logloss:0.053725 
[14]	train-logloss:0.050620 
[15]	train-logloss:0.047937 
[16]	train-logloss:0.045355 
[17]	train-logloss:0.043608 
[18]	train-logloss:0.042678 
[1]	train-logloss:0.452932 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.320861 
[3]	train-logloss:0.238138 
[4]	train-logloss:0.183327 
[5]	train-logloss:0.145234 
[6]	train-logloss:0.118471 
[7]	train-logloss:0.099668 
[8]	train-logloss:0.085972 
[9]	train-logloss:0.076338 
[10]	train-logloss:0.068629 
[11]	train-logloss:0.062967 
[12]	train-logloss:0.057971 
[13]	train-logloss:0.053386 
[14]	train-logloss:0.050623 
[1]	train-logloss:0.453030 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.321019 
[3]	train-logloss:0.238344 
[4]	train-logloss:0.183572 
[5]	train-logloss:0.145515 
[6]	train-logloss:0.118784 
[7]	train-logloss:0.100283 
[8]	train-logloss:0.086178 
[9]	train-logloss:0.076766 
[10]	train-logloss:0.069198 
[11]	train-logloss:0.063614 
[12]	train-logloss:0.059085 
[13]	train-logloss:0.055346 
[14]	train-logloss:0.052474 
[15]	train-logloss:0.049706 
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 22 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 22 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
331.857   8.115 347.314 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0030.006
SEG0.0030.0020.004
calcEffectSizes0.2420.0130.256
combineSCE0.8970.0210.924
computeZScore0.2300.0070.239
convertSCEToSeurat4.8360.2535.116
convertSeuratToSCE0.4160.0100.429
dedupRowNames0.0670.0030.071
detectCellOutlier6.4180.1456.604
diffAbundanceFET0.0640.0030.068
discreteColorPalette0.0060.0000.007
distinctColors0.0020.0000.002
downSampleCells0.5930.0680.666
downSampleDepth0.4960.0390.541
expData-ANY-character-method0.1590.0090.169
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.2030.0080.213
expData-set0.1980.0080.208
expData0.1670.0080.176
expDataNames-ANY-method0.1500.0090.162
expDataNames0.1470.0160.165
expDeleteDataTag0.0390.0050.044
expSetDataTag0.0300.0040.033
expTaggedData0.0320.0030.035
exportSCE0.0290.0050.035
exportSCEtoAnnData0.0710.0040.075
exportSCEtoFlatFile0.0670.0040.072
featureIndex0.0440.0070.051
generateSimulatedData0.0620.0080.071
getBiomarker0.0710.0090.081
getDEGTopTable0.7490.0600.815
getDiffAbundanceResults0.0600.0040.064
getEnrichRResult0.3380.0442.798
getFindMarkerTopTable1.7080.0641.780
getMSigDBTable0.0040.0030.007
getPathwayResultNames0.0260.0050.030
getSampleSummaryStatsTable0.2300.0060.236
getSoupX0.0000.0000.001
getTSCANResults1.1660.0551.224
getTopHVG0.9940.0201.021
importAnnData0.0020.0000.002
importBUStools0.1570.0050.162
importCellRanger0.8140.0370.861
importCellRangerV2Sample0.1590.0040.164
importCellRangerV3Sample0.3320.0170.354
importDropEst0.2360.0070.245
importExampleData14.735 1.74816.957
importGeneSetsFromCollection2.0400.1592.217
importGeneSetsFromGMT0.0750.0070.083
importGeneSetsFromList0.1590.0060.167
importGeneSetsFromMSigDB49.500 0.51750.294
importMitoGeneSet0.0540.0070.061
importOptimus0.0010.0010.002
importSEQC0.1710.0090.181
importSTARsolo0.1800.0090.190
iterateSimulations0.2090.0160.226
listSampleSummaryStatsTables0.3350.0160.351
mergeSCEColData0.4090.0210.435
mouseBrainSubsetSCE0.0430.0040.048
msigdb_table0.0010.0020.003
plotBarcodeRankDropsResults1.0310.0431.081
plotBarcodeRankScatter0.9900.0221.025
plotBatchCorrCompare14.517 0.14614.724
plotBatchVariance0.5200.0090.533
plotBcdsResults9.3700.1869.607
plotBubble0.8770.0130.895
plotClusterAbundance1.5640.0151.585
plotCxdsResults8.4830.0838.604
plotDEGHeatmap2.4720.0292.512
plotDEGRegression5.2100.0625.443
plotDEGViolin7.8280.1127.975
plotDEGVolcano1.0640.0151.085
plotDecontXResults10.039 0.08410.173
plotDimRed0.3880.0050.396
plotDoubletFinderResults42.705 0.26543.156
plotEmptyDropsResults6.1820.0356.251
plotEmptyDropsScatter6.2000.0396.274
plotFindMarkerHeatmap4.6230.0404.694
plotMASTThresholdGenes1.5460.0351.590
plotPCA0.4270.0100.438
plotPathway0.7560.0130.774
plotRunPerCellQCResults3.6790.0303.729
plotSCEBarAssayData0.4050.0080.415
plotSCEBarColData0.2860.0080.296
plotSCEBatchFeatureMean0.4630.0040.470
plotSCEDensity0.3960.0070.406
plotSCEDensityAssayData0.3890.0070.399
plotSCEDensityColData0.3330.0080.342
plotSCEDimReduceColData0.9410.0160.961
plotSCEDimReduceFeatures0.4460.0080.456
plotSCEHeatmap0.5230.0080.532
plotSCEScatter0.4750.0100.487
plotSCEViolin0.4280.0090.440
plotSCEViolinAssayData0.4460.0080.455
plotSCEViolinColData0.5990.0120.615
plotScDblFinderResults32.631 0.89933.679
plotScanpyDotPlot0.0270.0040.030
plotScanpyEmbedding0.0320.0040.036
plotScanpyHVG0.0330.0030.036
plotScanpyHeatmap0.0300.0040.034
plotScanpyMarkerGenes0.0300.0030.034
plotScanpyMarkerGenesDotPlot0.0270.0030.030
plotScanpyMarkerGenesHeatmap0.0330.0030.037
plotScanpyMarkerGenesMatrixPlot0.0310.0040.035
plotScanpyMarkerGenesViolin0.0280.0030.030
plotScanpyMatrixPlot0.0290.0060.038
plotScanpyPCA0.0270.0030.031
plotScanpyPCAGeneRanking0.0290.0050.035
plotScanpyPCAVariance0.0290.0050.034
plotScanpyViolin0.0310.0050.036
plotScdsHybridResults10.970 0.17811.212
plotScrubletResults0.0290.0030.031
plotSeuratElbow0.0280.0030.032
plotSeuratHVG0.0300.0040.034
plotSeuratJackStraw0.0250.0040.029
plotSeuratReduction0.0280.0030.031
plotSoupXResults000
plotTSCANClusterDEG5.9340.0866.048
plotTSCANClusterPseudo1.7280.0351.776
plotTSCANDimReduceFeatures1.7310.0291.770
plotTSCANPseudotimeGenes2.0460.0312.092
plotTSCANPseudotimeHeatmap1.6230.0301.662
plotTSCANResults1.5610.0291.600
plotTSNE0.4770.0090.489
plotTopHVG0.7290.0180.753
plotUMAP7.9150.0878.033
readSingleCellMatrix0.0050.0000.005
reportCellQC0.1000.0070.108
reportDropletQC0.0290.0050.035
reportQCTool0.0960.0080.106
retrieveSCEIndex0.0350.0040.039
runBBKNN000
runBarcodeRankDrops0.2650.0090.276
runBcds1.6810.0521.742
runCellQC0.0960.0060.102
runClusterSummaryMetrics0.4210.0100.433
runComBatSeq0.4720.0190.493
runCxds0.3540.0100.366
runCxdsBcdsHybrid1.7880.0871.887
runDEAnalysis0.5460.0750.626
runDecontX7.7020.0747.824
runDimReduce0.3620.0080.370
runDoubletFinder36.969 0.22037.337
runDropletQC0.0250.0040.030
runEmptyDrops5.9450.0305.998
runEnrichR0.2950.0343.029
runFastMNN1.8940.0531.955
runFeatureSelection0.2110.0060.217
runFindMarker1.5570.0411.601
runGSVA0.8450.0490.898
runHarmony0.0500.0020.053
runKMeans0.2160.0110.229
runLimmaBC0.1820.0160.203
runMNNCorrect0.4620.0060.470
runModelGeneVar0.3400.0070.349
runNormalization2.6480.0632.723
runPerCellQC0.4060.0120.419
runSCANORAMA0.0000.0010.001
runSCMerge0.0040.0020.006
runScDblFinder20.941 0.48221.524
runScanpyFindClusters0.0270.0080.035
runScanpyFindHVG0.0310.0040.036
runScanpyFindMarkers0.0270.0050.033
runScanpyNormalizeData0.1150.0060.121
runScanpyPCA0.0280.0020.030
runScanpyScaleData0.0250.0040.028
runScanpyTSNE0.0270.0050.032
runScanpyUMAP0.0240.0030.027
runScranSNN0.3360.0120.349
runScrublet0.0220.0050.028
runSeuratFindClusters0.0270.0040.031
runSeuratFindHVG0.5150.0110.526
runSeuratHeatmap0.0280.0050.033
runSeuratICA0.0230.0040.027
runSeuratJackStraw0.0270.0040.030
runSeuratNormalizeData0.0280.0050.033
runSeuratPCA0.0270.0040.030
runSeuratSCTransform4.1750.0744.286
runSeuratScaleData0.0270.0040.031
runSeuratUMAP0.0230.0050.028
runSingleR0.0440.0020.047
runSoupX000
runTSCAN0.6990.0200.722
runTSCANClusterDEAnalysis0.8480.0200.872
runTSCANDEG0.9370.0300.972
runTSNE0.7090.0190.733
runUMAP7.7480.1087.913
runVAM0.3330.0080.343
runZINBWaVE0.0040.0010.005
sampleSummaryStats0.1880.0100.199
scaterCPM0.1260.0060.133
scaterPCA0.5110.0110.527
scaterlogNormCounts0.2320.0070.240
sce0.0260.0040.030
sctkListGeneSetCollections0.0810.0040.087
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv0.0000.0000.001
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.0990.0050.105
setSCTKDisplayRow0.4860.0150.504
singleCellTK000
subDiffEx0.3690.0300.401
subsetSCECols0.0980.0090.109
subsetSCERows0.3140.0280.343
summarizeSCE0.0820.0070.091
trimCounts0.1920.0120.205