Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-03-11 11:40 -0400 (Tue, 11 Mar 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4757
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences" 4532
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" 4562
kjohnson3macOS 13.7.1 Venturaarm64R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" 4514
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4424
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1987/2309HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.17.2  (landing page)
Joshua David Campbell
Snapshot Date: 2025-03-10 13:40 -0400 (Mon, 10 Mar 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: b30b317e
git_last_commit_date: 2025-02-20 17:11:54 -0400 (Thu, 20 Feb 2025)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for singleCellTK on nebbiolo1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.17.2
Command: /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings singleCellTK_2.17.2.tar.gz
StartedAt: 2025-03-11 02:15:29 -0400 (Tue, 11 Mar 2025)
EndedAt: 2025-03-11 02:30:11 -0400 (Tue, 11 Mar 2025)
EllapsedTime: 882.0 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings singleCellTK_2.17.2.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck’
* using R Under development (unstable) (2025-02-19 r87757)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.2 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.17.2’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 79 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  5.6Mb
  sub-directories of 1Mb or more:
    shiny   2.3Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotDoubletFinderResults 32.789  0.257  33.126
plotScDblFinderResults   29.383  0.471  29.935
runSeuratSCTransform     29.542  0.180  29.724
runDoubletFinder         29.355  0.103  29.462
runScDblFinder           21.590  0.212  21.807
importExampleData        11.609  0.502  12.563
plotBatchCorrCompare     10.383  0.023  10.592
plotScdsHybridResults     8.938  0.076   8.326
plotBcdsResults           7.330  0.108   6.730
plotDecontXResults        6.829  0.159   6.989
plotEmptyDropsResults     6.510  0.043   6.553
plotCxdsResults           6.480  0.072   6.628
plotEmptyDropsScatter     6.456  0.023   6.479
plotUMAP                  6.311  0.045   6.434
runEmptyDrops             6.257  0.010   6.268
runDecontX                6.054  0.028   6.084
runUMAP                   5.936  0.080   6.095
detectCellOutlier         4.958  0.122   5.080
getEnrichRResult          0.575  0.045   7.835
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.21-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.17.2’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.145   0.036   0.170 

singleCellTK.Rcheck/tests/testthat.Rout


R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 20 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 20 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
260.847   6.937 270.930 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0020.0000.003
SEG0.0000.0020.003
calcEffectSizes0.1750.0160.191
combineSCE0.7450.0040.748
computeZScore0.2270.0040.231
convertSCEToSeurat3.7820.1153.977
convertSeuratToSCE0.3300.0270.357
dedupRowNames0.0510.0000.051
detectCellOutlier4.9580.1225.080
diffAbundanceFET0.0530.0000.053
discreteColorPalette0.0040.0010.005
distinctColors0.0010.0010.002
downSampleCells0.4600.0570.517
downSampleDepth0.3770.0040.382
expData-ANY-character-method0.1140.0010.115
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1440.0030.147
expData-set0.1370.0090.146
expData0.1150.0070.122
expDataNames-ANY-method0.1030.0130.117
expDataNames0.1120.0010.113
expDeleteDataTag0.0340.0000.033
expSetDataTag0.0240.0000.024
expTaggedData0.0240.0010.025
exportSCE0.0190.0020.022
exportSCEtoAnnData0.0880.0090.097
exportSCEtoFlatFile0.0930.0050.098
featureIndex0.0340.0010.036
generateSimulatedData0.0490.0010.050
getBiomarker0.0530.0020.056
getDEGTopTable0.6470.0390.687
getDiffAbundanceResults0.0450.0020.047
getEnrichRResult0.5750.0457.835
getFindMarkerTopTable1.3980.0491.448
getMSigDBTable0.0020.0020.005
getPathwayResultNames0.0210.0010.023
getSampleSummaryStatsTable0.1800.0020.182
getSoupX000
getTSCANResults0.9950.0191.014
getTopHVG0.8160.0200.836
importAnnData0.0020.0000.002
importBUStools0.1380.0030.142
importCellRanger0.7100.0090.720
importCellRangerV2Sample0.1350.0010.136
importCellRangerV3Sample0.2570.0010.259
importDropEst0.2160.0000.216
importExampleData11.609 0.50212.563
importGeneSetsFromCollection0.6710.0310.702
importGeneSetsFromGMT0.0620.0040.066
importGeneSetsFromList0.1160.0020.118
importGeneSetsFromMSigDB3.5980.1353.733
importMitoGeneSet0.0480.0010.049
importOptimus0.0010.0000.001
importSEQC0.1370.0160.153
importSTARsolo0.1500.0160.167
iterateSimulations0.2210.0030.224
listSampleSummaryStatsTables0.2500.0020.252
mergeSCEColData0.3280.0050.333
mouseBrainSubsetSCE0.0350.0010.036
msigdb_table0.0010.0000.001
plotBarcodeRankDropsResults0.5660.0010.567
plotBarcodeRankScatter0.6430.0000.643
plotBatchCorrCompare10.383 0.02310.592
plotBatchVariance0.3010.0010.302
plotBcdsResults7.3300.1086.730
plotBubble0.7230.0170.741
plotClusterAbundance0.7790.0000.780
plotCxdsResults6.4800.0726.628
plotDEGHeatmap2.1270.0152.143
plotDEGRegression3.1750.0423.211
plotDEGViolin3.9640.0944.052
plotDEGVolcano0.7850.0110.796
plotDecontXResults6.8290.1596.989
plotDimRed0.1840.0020.186
plotDoubletFinderResults32.789 0.25733.126
plotEmptyDropsResults6.5100.0436.553
plotEmptyDropsScatter6.4560.0236.479
plotFindMarkerHeatmap3.6350.0543.694
plotMASTThresholdGenes1.2210.0071.228
plotPCA0.2950.0010.296
plotPathway0.4960.0030.498
plotRunPerCellQCResults1.8920.0041.897
plotSCEBarAssayData0.1780.0020.179
plotSCEBarColData0.1310.0030.135
plotSCEBatchFeatureMean0.2040.0000.205
plotSCEDensity0.1950.0040.200
plotSCEDensityAssayData0.1620.0020.165
plotSCEDensityColData0.2010.0010.202
plotSCEDimReduceColData0.5090.0020.512
plotSCEDimReduceFeatures0.2520.0000.252
plotSCEHeatmap0.4060.0020.408
plotSCEScatter0.2430.0000.243
plotSCEViolin0.2580.0020.259
plotSCEViolinAssayData0.2410.0010.241
plotSCEViolinColData0.2270.0010.229
plotScDblFinderResults29.383 0.47129.935
plotScanpyDotPlot0.0220.0000.022
plotScanpyEmbedding0.0220.0000.021
plotScanpyHVG0.0200.0010.022
plotScanpyHeatmap0.0220.0000.022
plotScanpyMarkerGenes0.0200.0010.022
plotScanpyMarkerGenesDotPlot0.0210.0010.022
plotScanpyMarkerGenesHeatmap0.0210.0010.022
plotScanpyMarkerGenesMatrixPlot0.0210.0010.021
plotScanpyMarkerGenesViolin0.0220.0000.022
plotScanpyMatrixPlot0.0200.0010.022
plotScanpyPCA0.0210.0010.022
plotScanpyPCAGeneRanking0.0220.0010.022
plotScanpyPCAVariance0.0220.0000.021
plotScanpyViolin0.0220.0000.022
plotScdsHybridResults8.9380.0768.326
plotScrubletResults0.0220.0000.022
plotSeuratElbow0.0200.0010.022
plotSeuratHVG0.0220.0000.022
plotSeuratJackStraw0.0210.0010.021
plotSeuratReduction0.0220.0000.022
plotSoupXResults0.0010.0000.000
plotTSCANClusterDEG3.5050.0833.588
plotTSCANClusterPseudo1.0810.0201.100
plotTSCANDimReduceFeatures1.1190.0271.146
plotTSCANPseudotimeGenes1.2880.0251.313
plotTSCANPseudotimeHeatmap1.2120.0041.218
plotTSCANResults1.0510.0091.060
plotTSNE0.2800.0010.282
plotTopHVG0.4960.0030.498
plotUMAP6.3110.0456.434
readSingleCellMatrix0.0050.0000.005
reportCellQC0.0760.0010.077
reportDropletQC0.0220.0000.022
reportQCTool0.0750.0030.077
retrieveSCEIndex0.0270.0020.029
runBBKNN0.0000.0000.001
runBarcodeRankDrops0.2170.0030.220
runBcds1.9520.0441.197
runCellQC0.0740.0020.076
runClusterSummaryMetrics0.3470.0020.349
runComBatSeq0.4130.0070.420
runCxds0.3010.0020.302
runCxdsBcdsHybrid2.0260.0771.283
runDEAnalysis0.4110.0060.418
runDecontX6.0540.0286.084
runDimReduce0.2620.0010.263
runDoubletFinder29.355 0.10329.462
runDropletQC0.0220.0000.022
runEmptyDrops6.2570.0106.268
runEnrichR0.4950.0173.047
runFastMNN1.6510.0281.679
runFeatureSelection0.2060.0010.207
runFindMarker1.2790.0231.304
runGSVA0.7190.0160.736
runHarmony0.0340.0010.035
runKMeans0.1660.0010.167
runLimmaBC0.0710.0010.072
runMNNCorrect0.3720.0010.373
runModelGeneVar0.2910.0040.296
runNormalization2.1650.0542.219
runPerCellQC0.3060.0010.308
runSCANORAMA0.0000.0000.001
runSCMerge0.0040.0000.004
runScDblFinder21.590 0.21221.807
runScanpyFindClusters0.0210.0010.022
runScanpyFindHVG0.0210.0000.021
runScanpyFindMarkers0.0190.0020.021
runScanpyNormalizeData0.0880.0040.091
runScanpyPCA0.0210.0010.022
runScanpyScaleData0.0220.0000.022
runScanpyTSNE0.0210.0000.021
runScanpyUMAP0.0210.0000.021
runScranSNN0.2600.0060.266
runScrublet0.0210.0010.022
runSeuratFindClusters0.0190.0020.022
runSeuratFindHVG0.4250.0030.431
runSeuratHeatmap0.0220.0000.022
runSeuratICA0.0220.0000.022
runSeuratJackStraw0.0220.0000.022
runSeuratNormalizeData0.0200.0020.023
runSeuratPCA0.0210.0010.021
runSeuratSCTransform29.542 0.18029.724
runSeuratScaleData0.0210.0010.021
runSeuratUMAP0.0200.0010.022
runSingleR0.0320.0010.034
runSoupX0.0000.0000.001
runTSCAN0.6080.0070.615
runTSCANClusterDEAnalysis0.6810.0040.686
runTSCANDEG0.6710.0030.674
runTSNE0.7020.0020.704
runUMAP5.9360.0806.095
runVAM0.2620.0030.264
runZINBWaVE0.0040.0010.004
sampleSummaryStats0.1450.0010.145
scaterCPM0.1310.0000.131
scaterPCA0.4270.0030.429
scaterlogNormCounts0.2190.0060.225
sce0.0190.0020.022
sctkListGeneSetCollections0.0730.0010.074
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.0800.0010.080
setSCTKDisplayRow0.2910.0030.294
singleCellTK000
subDiffEx0.3090.0130.322
subsetSCECols0.0770.0030.080
subsetSCERows0.2140.0070.221
summarizeSCE0.0670.0010.068
trimCounts0.2850.0150.300