Back to Build/check report for BioC 3.23:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-11-06 11:32 -0500 (Thu, 06 Nov 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" 4818
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1999/2323HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.21.0  (landing page)
Joshua David Campbell
Snapshot Date: 2025-11-05 13:40 -0500 (Wed, 05 Nov 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 4895b66
git_last_commit_date: 2025-10-29 11:29:49 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published


CHECK results for singleCellTK on nebbiolo1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.21.0
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings singleCellTK_2.21.0.tar.gz
StartedAt: 2025-11-06 03:57:46 -0500 (Thu, 06 Nov 2025)
EndedAt: 2025-11-06 04:14:54 -0500 (Thu, 06 Nov 2025)
EllapsedTime: 1028.1 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings singleCellTK_2.21.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/singleCellTK.Rcheck’
* using R Under development (unstable) (2025-10-20 r88955)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.21.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  5.6Mb
  sub-directories of 1Mb or more:
    shiny   2.3Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 46.494  1.612  48.110
plotDoubletFinderResults 39.520  0.454  39.974
runDoubletFinder         35.685  0.257  35.943
plotScDblFinderResults   30.161  0.746  30.601
runSeuratSCTransform     28.509  1.065  29.578
runScDblFinder           20.603  1.580  21.848
plotBatchCorrCompare     13.360  0.325  13.685
importExampleData        11.384  1.400  13.147
plotScdsHybridResults    11.786  0.101  11.060
plotBcdsResults           8.835  0.157   8.217
plotDecontXResults        8.171  0.204   8.375
runDecontX                7.441  0.110   7.552
plotCxdsResults           7.337  0.182   7.520
plotUMAP                  7.307  0.149   7.459
runUMAP                   7.243  0.181   7.423
plotEmptyDropsResults     6.683  0.058   6.741
plotEmptyDropsScatter     6.567  0.045   6.613
runEmptyDrops             6.249  0.014   6.263
detectCellOutlier         5.483  0.174   5.657
plotDEGViolin             5.254  0.079   5.327
plotTSCANClusterDEG       5.152  0.013   5.165
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.21.0’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.144   0.037   0.167 

singleCellTK.Rcheck/tests/testthat.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
314.647  10.240 328.838 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0020.0000.002
SEG0.0020.0010.003
calcEffectSizes0.1580.0100.168
combineSCE0.7140.0360.751
computeZScore0.2270.0130.240
convertSCEToSeurat4.2300.1304.361
convertSeuratToSCE0.3030.0120.315
dedupRowNames0.0560.0030.059
detectCellOutlier5.4830.1745.657
diffAbundanceFET0.0520.0000.053
discreteColorPalette0.0050.0000.006
distinctColors0.0020.0000.002
downSampleCells0.4840.0480.532
downSampleDepth0.3880.0050.393
expData-ANY-character-method0.1140.0020.116
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1560.0000.157
expData-set0.1400.0030.143
expData0.1210.0010.122
expDataNames-ANY-method0.1190.0010.121
expDataNames0.1270.0010.127
expDeleteDataTag0.0330.0000.034
expSetDataTag0.0240.0000.023
expTaggedData0.0240.0010.024
exportSCE0.0200.0010.021
exportSCEtoAnnData0.0900.0080.097
exportSCEtoFlatFile0.0920.0050.098
featureIndex0.0360.0130.048
generateSimulatedData0.0490.0050.054
getBiomarker0.0580.0030.061
getDEGTopTable0.6670.1050.773
getDiffAbundanceResults0.0470.0010.047
getEnrichRResult0.5420.0292.855
getFindMarkerTopTable1.4640.0821.547
getMSigDBTable0.0040.0000.004
getPathwayResultNames0.0210.0010.022
getSampleSummaryStatsTable0.1780.0130.190
getSoupX000
getTSCANResults1.0240.1021.126
getTopHVG0.7670.0280.795
importAnnData0.0010.0000.001
importBUStools0.1760.0020.179
importCellRanger0.6690.0200.690
importCellRangerV2Sample0.1500.0050.155
importCellRangerV3Sample0.3620.0120.376
importDropEst0.1890.0060.196
importExampleData11.384 1.40013.147
importGeneSetsFromCollection0.6510.0360.687
importGeneSetsFromGMT0.0600.0010.060
importGeneSetsFromList0.1170.0010.118
importGeneSetsFromMSigDB46.494 1.61248.110
importMitoGeneSet0.0510.0040.056
importOptimus0.0020.0000.001
importSEQC0.1460.0100.157
importSTARsolo0.1420.0230.165
iterateSimulations0.1760.0240.201
listSampleSummaryStatsTables0.2390.0330.272
mergeSCEColData0.3760.0350.410
mouseBrainSubsetSCE0.0350.0010.036
msigdb_table0.0000.0010.002
plotBarcodeRankDropsResults0.8570.0070.863
plotBarcodeRankScatter0.8070.0000.807
plotBatchCorrCompare13.360 0.32513.685
plotBatchVariance0.4680.0070.474
plotBcdsResults8.8350.1578.217
plotBubble0.7440.0160.760
plotClusterAbundance1.3000.0311.331
plotCxdsResults7.3370.1827.520
plotDEGHeatmap2.0340.0622.096
plotDEGRegression4.4490.0094.453
plotDEGViolin5.2540.0795.327
plotDEGVolcano0.9200.0140.934
plotDecontXResults8.1710.2048.375
plotDimRed0.2750.0020.277
plotDoubletFinderResults39.520 0.45439.974
plotEmptyDropsResults6.6830.0586.741
plotEmptyDropsScatter6.5670.0456.613
plotFindMarkerHeatmap3.7750.0643.840
plotMASTThresholdGenes1.2280.0101.237
plotPCA0.3480.0030.352
plotPathway0.6700.0040.675
plotRunPerCellQCResults2.8880.0072.896
plotSCEBarAssayData0.2660.0000.265
plotSCEBarColData0.2540.0020.256
plotSCEBatchFeatureMean0.3630.0010.364
plotSCEDensity0.2910.0010.292
plotSCEDensityAssayData0.2610.0020.263
plotSCEDensityColData0.3280.0010.329
plotSCEDimReduceColData0.7200.0040.725
plotSCEDimReduceFeatures0.4050.0010.406
plotSCEHeatmap0.4040.0060.411
plotSCEScatter0.3520.0020.354
plotSCEViolin0.3540.0030.358
plotSCEViolinAssayData0.4150.0010.415
plotSCEViolinColData0.3470.0010.348
plotScDblFinderResults30.161 0.74630.601
plotScanpyDotPlot0.0220.0000.022
plotScanpyEmbedding0.0200.0010.022
plotScanpyHVG0.0200.0020.022
plotScanpyHeatmap0.0210.0000.021
plotScanpyMarkerGenes0.0210.0000.022
plotScanpyMarkerGenesDotPlot0.0210.0010.023
plotScanpyMarkerGenesHeatmap0.0230.0000.022
plotScanpyMarkerGenesMatrixPlot0.0200.0020.022
plotScanpyMarkerGenesViolin0.0190.0030.021
plotScanpyMatrixPlot0.0210.0000.021
plotScanpyPCA0.0210.0000.021
plotScanpyPCAGeneRanking0.0220.0000.021
plotScanpyPCAVariance0.0210.0000.021
plotScanpyViolin0.0210.0010.022
plotScdsHybridResults11.786 0.10111.060
plotScrubletResults0.0220.0000.023
plotSeuratElbow0.0200.0020.022
plotSeuratHVG0.0210.0010.022
plotSeuratJackStraw0.0240.0000.024
plotSeuratReduction0.0230.0000.023
plotSoupXResults0.0010.0000.000
plotTSCANClusterDEG5.1520.0135.165
plotTSCANClusterPseudo1.3850.0071.392
plotTSCANDimReduceFeatures1.4110.0051.416
plotTSCANPseudotimeGenes1.6720.0091.680
plotTSCANPseudotimeHeatmap1.3030.0061.309
plotTSCANResults1.2280.0031.230
plotTSNE0.3620.0050.368
plotTopHVG0.6250.0020.626
plotUMAP7.3070.1497.459
readSingleCellMatrix0.0050.0000.005
reportCellQC0.0720.0040.076
reportDropletQC0.0220.0000.022
reportQCTool0.0740.0020.077
retrieveSCEIndex0.0280.0000.028
runBBKNN000
runBarcodeRankDrops0.2180.0020.219
runBcds1.9350.0191.158
runCellQC0.0780.0010.079
runClusterSummaryMetrics0.3520.0030.355
runComBatSeq0.4150.0030.419
runCxds0.3040.0000.305
runCxdsBcdsHybrid2.0500.0761.280
runDEAnalysis0.4230.0080.431
runDecontX7.4410.1107.552
runDimReduce0.2670.0010.268
runDoubletFinder35.685 0.25735.943
runDropletQC0.0220.0010.023
runEmptyDrops6.2490.0146.263
runEnrichR0.4240.0632.639
runFastMNN1.7570.1481.905
runFeatureSelection0.2180.0190.237
runFindMarker1.4680.1051.573
runGSVA0.7090.0840.793
runHarmony0.0400.0030.043
runKMeans0.2520.0690.321
runLimmaBC0.0830.0020.085
runMNNCorrect0.4100.0620.471
runModelGeneVar0.2960.0350.331
runNormalization2.6760.6363.311
runPerCellQC0.3250.0030.329
runSCANORAMA0.0000.0000.001
runSCMerge0.0040.0000.004
runScDblFinder20.603 1.58021.848
runScanpyFindClusters0.0200.0020.023
runScanpyFindHVG0.0210.0010.022
runScanpyFindMarkers0.0200.0010.022
runScanpyNormalizeData0.0910.0040.095
runScanpyPCA0.0220.0000.022
runScanpyScaleData0.0200.0020.021
runScanpyTSNE0.0220.0000.022
runScanpyUMAP0.0210.0010.022
runScranSNN0.2780.0010.278
runScrublet0.0230.0000.022
runSeuratFindClusters0.0230.0000.023
runSeuratFindHVG0.4320.0060.437
runSeuratHeatmap0.0220.0000.021
runSeuratICA0.0210.0000.021
runSeuratJackStraw0.0200.0010.021
runSeuratNormalizeData0.0210.0000.022
runSeuratPCA0.0190.0020.022
runSeuratSCTransform28.509 1.06529.578
runSeuratScaleData0.0200.0020.023
runSeuratUMAP0.0210.0010.022
runSingleR0.0360.0020.039
runSoupX0.0000.0000.001
runTSCAN0.6350.0220.658
runTSCANClusterDEAnalysis0.7190.0290.748
runTSCANDEG0.7150.0480.763
runTSNE0.7090.0260.735
runUMAP7.2430.1817.423
runVAM0.2780.0020.280
runZINBWaVE0.0030.0010.004
sampleSummaryStats0.1490.0140.163
scaterCPM0.1350.0020.137
scaterPCA0.4160.0050.420
scaterlogNormCounts0.2320.0050.237
sce0.0180.0030.022
sctkListGeneSetCollections0.0760.0020.078
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv0.0010.0000.000
selectSCTKConda000
selectSCTKVirtualEnvironment0.0000.0000.001
setRowNames0.0810.0000.082
setSCTKDisplayRow0.4130.0030.416
singleCellTK000
subDiffEx0.3000.0110.310
subsetSCECols0.0820.0010.083
subsetSCERows0.2560.0110.268
summarizeSCE0.0650.0010.066
trimCounts0.1940.0090.203