Back to Multiple platform build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-12-30 11:35 -0500 (Tue, 30 Dec 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-12-22 r89219) -- "Unsuffered Consequences" 4807
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4593
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 253/2332HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-12-29 13:40 -0500 (Mon, 29 Dec 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for BufferedMatrix on kjohnson3

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2025-12-29 18:47:30 -0500 (Mon, 29 Dec 2025)
EndedAt: 2025-12-29 18:47:50 -0500 (Mon, 29 Dec 2025)
EllapsedTime: 20.3 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 16.0.0 (clang-1600.0.26.6)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’
* used SDK: ‘MacOSX11.3.1.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’
using SDK: ‘MacOSX11.3.1.sdk’
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch arm64 -std=gnu2x -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.128   0.051   0.184 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 481248 25.8    1058085 56.6         NA   633817 33.9
Vcells 891449  6.9    8388608 64.0     196608  2110969 16.2
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Mon Dec 29 18:47:41 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Mon Dec 29 18:47:41 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600001178000>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Mon Dec 29 18:47:42 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Mon Dec 29 18:47:43 2025"
> 
> ColMode(tmp2)
<pointer: 0x600001178000>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
             [,1]      [,2]       [,3]       [,4]
[1,] 100.49845651 0.7854210 -1.1628746 -0.2269295
[2,]  -0.40575748 0.5419888 -1.5208227  0.2812443
[3,]   2.42801740 0.1004772 -1.9139096  0.5479109
[4,]   0.01036983 1.2435248 -0.9010051 -0.5732703
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
             [,1]      [,2]      [,3]      [,4]
[1,] 100.49845651 0.7854210 1.1628746 0.2269295
[2,]   0.40575748 0.5419888 1.5208227 0.2812443
[3,]   2.42801740 0.1004772 1.9139096 0.5479109
[4,]   0.01036983 1.2435248 0.9010051 0.5732703
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0248918 0.8862398 1.0783666 0.4763712
[2,]  0.6369910 0.7361989 1.2332164 0.5303247
[3,]  1.5582097 0.3169814 1.3834412 0.7402100
[4,]  0.1018324 1.1151344 0.9492129 0.7571462
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.74737 34.64782 36.94654 29.99064
[2,]  31.77567 32.90398 38.85299 30.58449
[3,]  43.01011 28.27029 40.74832 32.95001
[4,]  26.02869 37.39487 35.39313 33.14473
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600001144120>
> exp(tmp5)
<pointer: 0x600001144120>
> log(tmp5,2)
<pointer: 0x600001144120>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 469.8636
> Min(tmp5)
[1] 53.79784
> mean(tmp5)
[1] 72.53787
> Sum(tmp5)
[1] 14507.57
> Var(tmp5)
[1] 879.0613
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 89.13841 71.10557 69.35207 69.44819 69.93329 70.93838 67.59189 71.28919
 [9] 75.69832 70.88340
> rowSums(tmp5)
 [1] 1782.768 1422.111 1387.041 1388.964 1398.666 1418.768 1351.838 1425.784
 [9] 1513.966 1417.668
> rowVars(tmp5)
 [1] 8057.09226   88.76832   96.34159   97.52595  118.48819   50.14877
 [7]   86.03709   63.01425  111.08296   74.91707
> rowSd(tmp5)
 [1] 89.761307  9.421694  9.815375  9.875523 10.885228  7.081580  9.275618
 [8]  7.938152 10.539590  8.655465
> rowMax(tmp5)
 [1] 469.86358  84.13598  89.51992  85.61790  94.05268  82.52910  86.04444
 [8]  89.72946  94.93607  83.84008
> rowMin(tmp5)
 [1] 56.66871 53.79784 55.12129 54.05512 55.12229 57.29188 54.84313 56.47402
 [9] 56.54613 56.94869
> 
> colMeans(tmp5)
 [1] 109.25837  72.38930  75.07383  69.00537  74.11582  69.29497  71.20571
 [8]  69.81246  66.73456  68.91919  70.95881  70.06794  70.76063  69.10951
[15]  73.74045  69.70849  71.25203  71.34064  69.89536  68.11394
> colSums(tmp5)
 [1] 1092.5837  723.8930  750.7383  690.0537  741.1582  692.9497  712.0571
 [8]  698.1246  667.3456  689.1919  709.5881  700.6794  707.6063  691.0951
[15]  737.4045  697.0849  712.5203  713.4064  698.9536  681.1394
> colVars(tmp5)
 [1] 16144.43761   152.33753    55.08993    59.07054    58.13752    58.97652
 [7]    49.97544   106.38197   120.92236   108.59039   105.89295    48.27354
[13]    71.72904   105.25650    55.22026    80.81861   121.98403    98.34325
[19]    94.70470    75.42756
> colSd(tmp5)
 [1] 127.060763  12.342509   7.422259   7.685736   7.624796   7.679617
 [7]   7.069331  10.314164  10.996471  10.420671  10.290430   6.947916
[13]   8.469300  10.259459   7.431034   8.989917  11.044638   9.916817
[19]   9.731634   8.684904
> colMax(tmp5)
 [1] 469.86358  94.93607  84.81229  82.52910  85.61790  86.04444  84.13598
 [8]  82.14045  83.05010  85.88876  86.73186  78.84567  81.00606  94.05268
[15]  85.45512  79.56626  89.36008  86.86321  92.31330  76.99575
> colMin(tmp5)
 [1] 54.17532 56.94869 62.13476 56.54613 64.97225 58.41699 60.17613 56.20967
 [9] 56.45363 55.90773 55.12129 55.12229 56.66781 56.82835 60.85203 53.79784
[17] 56.47402 58.20442 59.10572 54.05512
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 89.13841 71.10557 69.35207 69.44819 69.93329 70.93838 67.59189       NA
 [9] 75.69832 70.88340
> rowSums(tmp5)
 [1] 1782.768 1422.111 1387.041 1388.964 1398.666 1418.768 1351.838       NA
 [9] 1513.966 1417.668
> rowVars(tmp5)
 [1] 8057.09226   88.76832   96.34159   97.52595  118.48819   50.14877
 [7]   86.03709   60.59359  111.08296   74.91707
> rowSd(tmp5)
 [1] 89.761307  9.421694  9.815375  9.875523 10.885228  7.081580  9.275618
 [8]  7.784188 10.539590  8.655465
> rowMax(tmp5)
 [1] 469.86358  84.13598  89.51992  85.61790  94.05268  82.52910  86.04444
 [8]        NA  94.93607  83.84008
> rowMin(tmp5)
 [1] 56.66871 53.79784 55.12129 54.05512 55.12229 57.29188 54.84313       NA
 [9] 56.54613 56.94869
> 
> colMeans(tmp5)
 [1] 109.25837  72.38930        NA  69.00537  74.11582  69.29497  71.20571
 [8]  69.81246  66.73456  68.91919  70.95881  70.06794  70.76063  69.10951
[15]  73.74045  69.70849  71.25203  71.34064  69.89536  68.11394
> colSums(tmp5)
 [1] 1092.5837  723.8930        NA  690.0537  741.1582  692.9497  712.0571
 [8]  698.1246  667.3456  689.1919  709.5881  700.6794  707.6063  691.0951
[15]  737.4045  697.0849  712.5203  713.4064  698.9536  681.1394
> colVars(tmp5)
 [1] 16144.43761   152.33753          NA    59.07054    58.13752    58.97652
 [7]    49.97544   106.38197   120.92236   108.59039   105.89295    48.27354
[13]    71.72904   105.25650    55.22026    80.81861   121.98403    98.34325
[19]    94.70470    75.42756
> colSd(tmp5)
 [1] 127.060763  12.342509         NA   7.685736   7.624796   7.679617
 [7]   7.069331  10.314164  10.996471  10.420671  10.290430   6.947916
[13]   8.469300  10.259459   7.431034   8.989917  11.044638   9.916817
[19]   9.731634   8.684904
> colMax(tmp5)
 [1] 469.86358  94.93607        NA  82.52910  85.61790  86.04444  84.13598
 [8]  82.14045  83.05010  85.88876  86.73186  78.84567  81.00606  94.05268
[15]  85.45512  79.56626  89.36008  86.86321  92.31330  76.99575
> colMin(tmp5)
 [1] 54.17532 56.94869       NA 56.54613 64.97225 58.41699 60.17613 56.20967
 [9] 56.45363 55.90773 55.12129 55.12229 56.66781 56.82835 60.85203 53.79784
[17] 56.47402 58.20442 59.10572 54.05512
> 
> Max(tmp5,na.rm=TRUE)
[1] 469.8636
> Min(tmp5,na.rm=TRUE)
[1] 53.79784
> mean(tmp5,na.rm=TRUE)
[1] 72.49358
> Sum(tmp5,na.rm=TRUE)
[1] 14426.22
> Var(tmp5,na.rm=TRUE)
[1] 883.1067
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.13841 71.10557 69.35207 69.44819 69.93329 70.93838 67.59189 70.75958
 [9] 75.69832 70.88340
> rowSums(tmp5,na.rm=TRUE)
 [1] 1782.768 1422.111 1387.041 1388.964 1398.666 1418.768 1351.838 1344.432
 [9] 1513.966 1417.668
> rowVars(tmp5,na.rm=TRUE)
 [1] 8057.09226   88.76832   96.34159   97.52595  118.48819   50.14877
 [7]   86.03709   60.59359  111.08296   74.91707
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.761307  9.421694  9.815375  9.875523 10.885228  7.081580  9.275618
 [8]  7.784188 10.539590  8.655465
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.86358  84.13598  89.51992  85.61790  94.05268  82.52910  86.04444
 [8]  89.72946  94.93607  83.84008
> rowMin(tmp5,na.rm=TRUE)
 [1] 56.66871 53.79784 55.12129 54.05512 55.12229 57.29188 54.84313 56.47402
 [9] 56.54613 56.94869
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 109.25837  72.38930  74.37628  69.00537  74.11582  69.29497  71.20571
 [8]  69.81246  66.73456  68.91919  70.95881  70.06794  70.76063  69.10951
[15]  73.74045  69.70849  71.25203  71.34064  69.89536  68.11394
> colSums(tmp5,na.rm=TRUE)
 [1] 1092.5837  723.8930  669.3865  690.0537  741.1582  692.9497  712.0571
 [8]  698.1246  667.3456  689.1919  709.5881  700.6794  707.6063  691.0951
[15]  737.4045  697.0849  712.5203  713.4064  698.9536  681.1394
> colVars(tmp5,na.rm=TRUE)
 [1] 16144.43761   152.33753    56.50210    59.07054    58.13752    58.97652
 [7]    49.97544   106.38197   120.92236   108.59039   105.89295    48.27354
[13]    71.72904   105.25650    55.22026    80.81861   121.98403    98.34325
[19]    94.70470    75.42756
> colSd(tmp5,na.rm=TRUE)
 [1] 127.060763  12.342509   7.516788   7.685736   7.624796   7.679617
 [7]   7.069331  10.314164  10.996471  10.420671  10.290430   6.947916
[13]   8.469300  10.259459   7.431034   8.989917  11.044638   9.916817
[19]   9.731634   8.684904
> colMax(tmp5,na.rm=TRUE)
 [1] 469.86358  94.93607  84.81229  82.52910  85.61790  86.04444  84.13598
 [8]  82.14045  83.05010  85.88876  86.73186  78.84567  81.00606  94.05268
[15]  85.45512  79.56626  89.36008  86.86321  92.31330  76.99575
> colMin(tmp5,na.rm=TRUE)
 [1] 54.17532 56.94869 62.13476 56.54613 64.97225 58.41699 60.17613 56.20967
 [9] 56.45363 55.90773 55.12129 55.12229 56.66781 56.82835 60.85203 53.79784
[17] 56.47402 58.20442 59.10572 54.05512
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.13841 71.10557 69.35207 69.44819 69.93329 70.93838 67.59189      NaN
 [9] 75.69832 70.88340
> rowSums(tmp5,na.rm=TRUE)
 [1] 1782.768 1422.111 1387.041 1388.964 1398.666 1418.768 1351.838    0.000
 [9] 1513.966 1417.668
> rowVars(tmp5,na.rm=TRUE)
 [1] 8057.09226   88.76832   96.34159   97.52595  118.48819   50.14877
 [7]   86.03709         NA  111.08296   74.91707
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.761307  9.421694  9.815375  9.875523 10.885228  7.081580  9.275618
 [8]        NA 10.539590  8.655465
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.86358  84.13598  89.51992  85.61790  94.05268  82.52910  86.04444
 [8]        NA  94.93607  83.84008
> rowMin(tmp5,na.rm=TRUE)
 [1] 56.66871 53.79784 55.12129 54.05512 55.12229 57.29188 54.84313       NA
 [9] 56.54613 56.94869
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.59272  70.46262       NaN  69.25019  75.00937  68.73193  70.97548
 [8]  70.06445  67.80613  69.55439  69.95486  69.88877  70.73689  69.43831
[15]  74.16314  69.13544  72.89403  71.22833  69.36384  67.90506
> colSums(tmp5,na.rm=TRUE)
 [1] 1013.3345  634.1635    0.0000  623.2517  675.0844  618.5873  638.7794
 [8]  630.5800  610.2552  625.9895  629.5937  628.9989  636.6320  624.9448
[15]  667.4683  622.2189  656.0462  641.0550  624.2745  611.1455
> colVars(tmp5,na.rm=TRUE)
 [1] 18037.41628   129.61847          NA    65.78008    56.42229    62.78210
 [7]    55.62609   118.96538   123.11963   117.62509   107.79054    53.94659
[13]    80.68883   117.19732    60.11276    87.22651   106.90018   110.49425
[19]   103.36450    84.36514
> colSd(tmp5,na.rm=TRUE)
 [1] 134.303449  11.385011         NA   8.110492   7.511477   7.923515
 [7]   7.458290  10.907125  11.095929  10.845510  10.382222   7.344834
[13]   8.982696  10.825771   7.753242   9.339514  10.339255  10.511625
[19]  10.166833   9.185050
> colMax(tmp5,na.rm=TRUE)
 [1] 469.86358  94.93607      -Inf  82.52910  85.61790  86.04444  84.13598
 [8]  82.14045  83.05010  85.88876  86.73186  78.84567  81.00606  94.05268
[15]  85.45512  79.56626  89.36008  86.86321  92.31330  76.99575
> colMin(tmp5,na.rm=TRUE)
 [1] 54.17532 56.94869      Inf 56.54613 64.97225 58.41699 60.17613 56.20967
 [9] 56.45363 55.90773 55.12129 55.12229 56.66781 56.82835 60.85203 53.79784
[17] 61.45055 58.20442 59.10572 54.05512
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 117.8679 225.9657 439.4488 243.3181 117.9130 136.3425 255.7937 159.2587
 [9] 145.9358 304.2810
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 117.8679 225.9657 439.4488 243.3181 117.9130 136.3425 255.7937 159.2587
 [9] 145.9358 304.2810
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  2.842171e-14 -2.842171e-14 -2.842171e-14 -5.684342e-14  0.000000e+00
 [6]  2.273737e-13  0.000000e+00 -1.705303e-13  1.705303e-13  7.105427e-14
[11] -1.136868e-13 -8.526513e-14  8.526513e-14  2.842171e-14 -1.136868e-13
[16] -1.421085e-14  1.989520e-13  2.842171e-14  9.947598e-14  8.526513e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
8   14 
7   2 
5   1 
6   5 
6   2 
7   10 
10   14 
7   15 
8   1 
9   13 
1   12 
3   2 
9   7 
10   12 
2   2 
4   3 
4   11 
3   13 
2   7 
10   20 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.749416
> Min(tmp)
[1] -1.815395
> mean(tmp)
[1] 0.03780902
> Sum(tmp)
[1] 3.780902
> Var(tmp)
[1] 0.7542155
> 
> rowMeans(tmp)
[1] 0.03780902
> rowSums(tmp)
[1] 3.780902
> rowVars(tmp)
[1] 0.7542155
> rowSd(tmp)
[1] 0.8684558
> rowMax(tmp)
[1] 2.749416
> rowMin(tmp)
[1] -1.815395
> 
> colMeans(tmp)
  [1] -0.885123222  0.302595427 -0.161916433 -0.658463241 -0.894470073
  [6] -0.268238522  0.446856372  2.749416415  2.215242861  0.330858019
 [11]  0.030199334  1.305016316 -0.151241293 -0.893717860  0.946992797
 [16]  1.951162061 -0.339700713  0.470028404 -0.301260878 -0.672348336
 [21] -1.274329363 -0.559580139  1.114180192  0.651533447  0.252622414
 [26]  0.103778055 -0.831418640  0.349691276  0.833620309  0.422043856
 [31] -0.360912745 -0.059674050 -0.297660236 -1.124914678 -0.855988860
 [36]  1.036687713  0.623520219 -0.638050700 -0.769925269  1.057070753
 [41]  0.627736281  0.143385375  0.413270783  0.038170059 -1.815394695
 [46]  0.403356590  0.082996280  0.610836578  0.254735449 -0.053981373
 [51] -1.646913758  0.297964991  0.320237787 -0.288936454  1.275496508
 [56]  0.376123779 -0.009541414 -1.234058637 -0.322326501  0.836258983
 [61]  0.024587333  0.403351569  0.006626297  0.779787479  0.347627292
 [66] -0.072212424  1.122099238  0.002796461 -1.141322496 -0.406448426
 [71]  0.108693554 -0.134251013  0.368948053  0.287814072  0.051138805
 [76]  1.138491606 -1.737992370  0.987013201  2.630932398  0.226212288
 [81]  0.448691943  0.164984802  0.500883345  0.102165373 -0.441552491
 [86] -1.382709518 -0.345288561 -1.019803277 -0.338524739 -1.066606143
 [91]  0.710166310 -1.584454128 -0.374335526 -1.658267639 -0.005814694
 [96] -0.873512455 -0.073692199  0.453912208 -0.655400833  0.722570052
> colSums(tmp)
  [1] -0.885123222  0.302595427 -0.161916433 -0.658463241 -0.894470073
  [6] -0.268238522  0.446856372  2.749416415  2.215242861  0.330858019
 [11]  0.030199334  1.305016316 -0.151241293 -0.893717860  0.946992797
 [16]  1.951162061 -0.339700713  0.470028404 -0.301260878 -0.672348336
 [21] -1.274329363 -0.559580139  1.114180192  0.651533447  0.252622414
 [26]  0.103778055 -0.831418640  0.349691276  0.833620309  0.422043856
 [31] -0.360912745 -0.059674050 -0.297660236 -1.124914678 -0.855988860
 [36]  1.036687713  0.623520219 -0.638050700 -0.769925269  1.057070753
 [41]  0.627736281  0.143385375  0.413270783  0.038170059 -1.815394695
 [46]  0.403356590  0.082996280  0.610836578  0.254735449 -0.053981373
 [51] -1.646913758  0.297964991  0.320237787 -0.288936454  1.275496508
 [56]  0.376123779 -0.009541414 -1.234058637 -0.322326501  0.836258983
 [61]  0.024587333  0.403351569  0.006626297  0.779787479  0.347627292
 [66] -0.072212424  1.122099238  0.002796461 -1.141322496 -0.406448426
 [71]  0.108693554 -0.134251013  0.368948053  0.287814072  0.051138805
 [76]  1.138491606 -1.737992370  0.987013201  2.630932398  0.226212288
 [81]  0.448691943  0.164984802  0.500883345  0.102165373 -0.441552491
 [86] -1.382709518 -0.345288561 -1.019803277 -0.338524739 -1.066606143
 [91]  0.710166310 -1.584454128 -0.374335526 -1.658267639 -0.005814694
 [96] -0.873512455 -0.073692199  0.453912208 -0.655400833  0.722570052
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.885123222  0.302595427 -0.161916433 -0.658463241 -0.894470073
  [6] -0.268238522  0.446856372  2.749416415  2.215242861  0.330858019
 [11]  0.030199334  1.305016316 -0.151241293 -0.893717860  0.946992797
 [16]  1.951162061 -0.339700713  0.470028404 -0.301260878 -0.672348336
 [21] -1.274329363 -0.559580139  1.114180192  0.651533447  0.252622414
 [26]  0.103778055 -0.831418640  0.349691276  0.833620309  0.422043856
 [31] -0.360912745 -0.059674050 -0.297660236 -1.124914678 -0.855988860
 [36]  1.036687713  0.623520219 -0.638050700 -0.769925269  1.057070753
 [41]  0.627736281  0.143385375  0.413270783  0.038170059 -1.815394695
 [46]  0.403356590  0.082996280  0.610836578  0.254735449 -0.053981373
 [51] -1.646913758  0.297964991  0.320237787 -0.288936454  1.275496508
 [56]  0.376123779 -0.009541414 -1.234058637 -0.322326501  0.836258983
 [61]  0.024587333  0.403351569  0.006626297  0.779787479  0.347627292
 [66] -0.072212424  1.122099238  0.002796461 -1.141322496 -0.406448426
 [71]  0.108693554 -0.134251013  0.368948053  0.287814072  0.051138805
 [76]  1.138491606 -1.737992370  0.987013201  2.630932398  0.226212288
 [81]  0.448691943  0.164984802  0.500883345  0.102165373 -0.441552491
 [86] -1.382709518 -0.345288561 -1.019803277 -0.338524739 -1.066606143
 [91]  0.710166310 -1.584454128 -0.374335526 -1.658267639 -0.005814694
 [96] -0.873512455 -0.073692199  0.453912208 -0.655400833  0.722570052
> colMin(tmp)
  [1] -0.885123222  0.302595427 -0.161916433 -0.658463241 -0.894470073
  [6] -0.268238522  0.446856372  2.749416415  2.215242861  0.330858019
 [11]  0.030199334  1.305016316 -0.151241293 -0.893717860  0.946992797
 [16]  1.951162061 -0.339700713  0.470028404 -0.301260878 -0.672348336
 [21] -1.274329363 -0.559580139  1.114180192  0.651533447  0.252622414
 [26]  0.103778055 -0.831418640  0.349691276  0.833620309  0.422043856
 [31] -0.360912745 -0.059674050 -0.297660236 -1.124914678 -0.855988860
 [36]  1.036687713  0.623520219 -0.638050700 -0.769925269  1.057070753
 [41]  0.627736281  0.143385375  0.413270783  0.038170059 -1.815394695
 [46]  0.403356590  0.082996280  0.610836578  0.254735449 -0.053981373
 [51] -1.646913758  0.297964991  0.320237787 -0.288936454  1.275496508
 [56]  0.376123779 -0.009541414 -1.234058637 -0.322326501  0.836258983
 [61]  0.024587333  0.403351569  0.006626297  0.779787479  0.347627292
 [66] -0.072212424  1.122099238  0.002796461 -1.141322496 -0.406448426
 [71]  0.108693554 -0.134251013  0.368948053  0.287814072  0.051138805
 [76]  1.138491606 -1.737992370  0.987013201  2.630932398  0.226212288
 [81]  0.448691943  0.164984802  0.500883345  0.102165373 -0.441552491
 [86] -1.382709518 -0.345288561 -1.019803277 -0.338524739 -1.066606143
 [91]  0.710166310 -1.584454128 -0.374335526 -1.658267639 -0.005814694
 [96] -0.873512455 -0.073692199  0.453912208 -0.655400833  0.722570052
> colMedians(tmp)
  [1] -0.885123222  0.302595427 -0.161916433 -0.658463241 -0.894470073
  [6] -0.268238522  0.446856372  2.749416415  2.215242861  0.330858019
 [11]  0.030199334  1.305016316 -0.151241293 -0.893717860  0.946992797
 [16]  1.951162061 -0.339700713  0.470028404 -0.301260878 -0.672348336
 [21] -1.274329363 -0.559580139  1.114180192  0.651533447  0.252622414
 [26]  0.103778055 -0.831418640  0.349691276  0.833620309  0.422043856
 [31] -0.360912745 -0.059674050 -0.297660236 -1.124914678 -0.855988860
 [36]  1.036687713  0.623520219 -0.638050700 -0.769925269  1.057070753
 [41]  0.627736281  0.143385375  0.413270783  0.038170059 -1.815394695
 [46]  0.403356590  0.082996280  0.610836578  0.254735449 -0.053981373
 [51] -1.646913758  0.297964991  0.320237787 -0.288936454  1.275496508
 [56]  0.376123779 -0.009541414 -1.234058637 -0.322326501  0.836258983
 [61]  0.024587333  0.403351569  0.006626297  0.779787479  0.347627292
 [66] -0.072212424  1.122099238  0.002796461 -1.141322496 -0.406448426
 [71]  0.108693554 -0.134251013  0.368948053  0.287814072  0.051138805
 [76]  1.138491606 -1.737992370  0.987013201  2.630932398  0.226212288
 [81]  0.448691943  0.164984802  0.500883345  0.102165373 -0.441552491
 [86] -1.382709518 -0.345288561 -1.019803277 -0.338524739 -1.066606143
 [91]  0.710166310 -1.584454128 -0.374335526 -1.658267639 -0.005814694
 [96] -0.873512455 -0.073692199  0.453912208 -0.655400833  0.722570052
> colRanges(tmp)
           [,1]      [,2]       [,3]       [,4]       [,5]       [,6]      [,7]
[1,] -0.8851232 0.3025954 -0.1619164 -0.6584632 -0.8944701 -0.2682385 0.4468564
[2,] -0.8851232 0.3025954 -0.1619164 -0.6584632 -0.8944701 -0.2682385 0.4468564
         [,8]     [,9]    [,10]      [,11]    [,12]      [,13]      [,14]
[1,] 2.749416 2.215243 0.330858 0.03019933 1.305016 -0.1512413 -0.8937179
[2,] 2.749416 2.215243 0.330858 0.03019933 1.305016 -0.1512413 -0.8937179
         [,15]    [,16]      [,17]     [,18]      [,19]      [,20]     [,21]
[1,] 0.9469928 1.951162 -0.3397007 0.4700284 -0.3012609 -0.6723483 -1.274329
[2,] 0.9469928 1.951162 -0.3397007 0.4700284 -0.3012609 -0.6723483 -1.274329
          [,22]   [,23]     [,24]     [,25]     [,26]      [,27]     [,28]
[1,] -0.5595801 1.11418 0.6515334 0.2526224 0.1037781 -0.8314186 0.3496913
[2,] -0.5595801 1.11418 0.6515334 0.2526224 0.1037781 -0.8314186 0.3496913
         [,29]     [,30]      [,31]       [,32]      [,33]     [,34]      [,35]
[1,] 0.8336203 0.4220439 -0.3609127 -0.05967405 -0.2976602 -1.124915 -0.8559889
[2,] 0.8336203 0.4220439 -0.3609127 -0.05967405 -0.2976602 -1.124915 -0.8559889
        [,36]     [,37]      [,38]      [,39]    [,40]     [,41]     [,42]
[1,] 1.036688 0.6235202 -0.6380507 -0.7699253 1.057071 0.6277363 0.1433854
[2,] 1.036688 0.6235202 -0.6380507 -0.7699253 1.057071 0.6277363 0.1433854
         [,43]      [,44]     [,45]     [,46]      [,47]     [,48]     [,49]
[1,] 0.4132708 0.03817006 -1.815395 0.4033566 0.08299628 0.6108366 0.2547354
[2,] 0.4132708 0.03817006 -1.815395 0.4033566 0.08299628 0.6108366 0.2547354
           [,50]     [,51]    [,52]     [,53]      [,54]    [,55]     [,56]
[1,] -0.05398137 -1.646914 0.297965 0.3202378 -0.2889365 1.275497 0.3761238
[2,] -0.05398137 -1.646914 0.297965 0.3202378 -0.2889365 1.275497 0.3761238
            [,57]     [,58]      [,59]    [,60]      [,61]     [,62]
[1,] -0.009541414 -1.234059 -0.3223265 0.836259 0.02458733 0.4033516
[2,] -0.009541414 -1.234059 -0.3223265 0.836259 0.02458733 0.4033516
           [,63]     [,64]     [,65]       [,66]    [,67]       [,68]     [,69]
[1,] 0.006626297 0.7797875 0.3476273 -0.07221242 1.122099 0.002796461 -1.141322
[2,] 0.006626297 0.7797875 0.3476273 -0.07221242 1.122099 0.002796461 -1.141322
          [,70]     [,71]     [,72]     [,73]     [,74]     [,75]    [,76]
[1,] -0.4064484 0.1086936 -0.134251 0.3689481 0.2878141 0.0511388 1.138492
[2,] -0.4064484 0.1086936 -0.134251 0.3689481 0.2878141 0.0511388 1.138492
         [,77]     [,78]    [,79]     [,80]     [,81]     [,82]     [,83]
[1,] -1.737992 0.9870132 2.630932 0.2262123 0.4486919 0.1649848 0.5008833
[2,] -1.737992 0.9870132 2.630932 0.2262123 0.4486919 0.1649848 0.5008833
         [,84]      [,85]    [,86]      [,87]     [,88]      [,89]     [,90]
[1,] 0.1021654 -0.4415525 -1.38271 -0.3452886 -1.019803 -0.3385247 -1.066606
[2,] 0.1021654 -0.4415525 -1.38271 -0.3452886 -1.019803 -0.3385247 -1.066606
         [,91]     [,92]      [,93]     [,94]        [,95]      [,96]
[1,] 0.7101663 -1.584454 -0.3743355 -1.658268 -0.005814694 -0.8735125
[2,] 0.7101663 -1.584454 -0.3743355 -1.658268 -0.005814694 -0.8735125
          [,97]     [,98]      [,99]    [,100]
[1,] -0.0736922 0.4539122 -0.6554008 0.7225701
[2,] -0.0736922 0.4539122 -0.6554008 0.7225701
> 
> 
> Max(tmp2)
[1] 2.745657
> Min(tmp2)
[1] -2.498175
> mean(tmp2)
[1] -0.02666744
> Sum(tmp2)
[1] -2.666744
> Var(tmp2)
[1] 1.034328
> 
> rowMeans(tmp2)
  [1] -2.20626107  0.15879002 -0.08599044  0.22909014 -0.45945452 -0.22044978
  [7]  1.17925244 -0.21165675 -0.46585726 -0.23150389 -0.18168064  2.28559375
 [13]  0.04917303 -0.92081510  0.56409610  0.64319899 -0.42353902 -0.94041164
 [19] -1.07377432 -0.06254271  0.75886754  0.47761561  0.74975205  1.81474196
 [25]  0.38198136 -1.18600417 -0.33879788 -1.00171628  1.75913742 -0.20841529
 [31] -2.49817524  0.24714052  2.74565744  0.56890873  0.17987293  0.07480191
 [37]  1.30091446 -0.19601896  1.57692099 -1.44486098 -0.56070033  0.06100056
 [43] -0.79380810  1.37135174 -0.32139800  0.60885252 -0.48960910  0.24966626
 [49] -1.19447854 -0.07343425 -0.38143864  1.28807814  1.59987751  0.83412261
 [55] -0.92760764 -0.69946528 -1.62001078  1.07821632 -0.44003303 -1.86590131
 [61] -0.02541832  0.33398358 -1.27886188  0.26752936 -1.08483272 -0.33363266
 [67]  2.45618168 -0.41315544 -1.12891961  2.16312395  1.17344644 -0.57183598
 [73]  0.80638613 -0.37179974 -0.19947160  2.11407477 -0.84228128 -0.60524053
 [79] -1.56674654  1.10502604 -0.58586928  0.27286257 -1.85857682 -0.19372497
 [85] -0.96670005 -0.76215178 -0.24485216 -0.00220383 -0.14498431 -1.18104202
 [91] -0.22683289  0.44590816  0.17182320  0.56900196 -0.44281547 -0.68394832
 [97] -0.32165348 -0.04358974  0.99494946 -0.57076201
> rowSums(tmp2)
  [1] -2.20626107  0.15879002 -0.08599044  0.22909014 -0.45945452 -0.22044978
  [7]  1.17925244 -0.21165675 -0.46585726 -0.23150389 -0.18168064  2.28559375
 [13]  0.04917303 -0.92081510  0.56409610  0.64319899 -0.42353902 -0.94041164
 [19] -1.07377432 -0.06254271  0.75886754  0.47761561  0.74975205  1.81474196
 [25]  0.38198136 -1.18600417 -0.33879788 -1.00171628  1.75913742 -0.20841529
 [31] -2.49817524  0.24714052  2.74565744  0.56890873  0.17987293  0.07480191
 [37]  1.30091446 -0.19601896  1.57692099 -1.44486098 -0.56070033  0.06100056
 [43] -0.79380810  1.37135174 -0.32139800  0.60885252 -0.48960910  0.24966626
 [49] -1.19447854 -0.07343425 -0.38143864  1.28807814  1.59987751  0.83412261
 [55] -0.92760764 -0.69946528 -1.62001078  1.07821632 -0.44003303 -1.86590131
 [61] -0.02541832  0.33398358 -1.27886188  0.26752936 -1.08483272 -0.33363266
 [67]  2.45618168 -0.41315544 -1.12891961  2.16312395  1.17344644 -0.57183598
 [73]  0.80638613 -0.37179974 -0.19947160  2.11407477 -0.84228128 -0.60524053
 [79] -1.56674654  1.10502604 -0.58586928  0.27286257 -1.85857682 -0.19372497
 [85] -0.96670005 -0.76215178 -0.24485216 -0.00220383 -0.14498431 -1.18104202
 [91] -0.22683289  0.44590816  0.17182320  0.56900196 -0.44281547 -0.68394832
 [97] -0.32165348 -0.04358974  0.99494946 -0.57076201
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -2.20626107  0.15879002 -0.08599044  0.22909014 -0.45945452 -0.22044978
  [7]  1.17925244 -0.21165675 -0.46585726 -0.23150389 -0.18168064  2.28559375
 [13]  0.04917303 -0.92081510  0.56409610  0.64319899 -0.42353902 -0.94041164
 [19] -1.07377432 -0.06254271  0.75886754  0.47761561  0.74975205  1.81474196
 [25]  0.38198136 -1.18600417 -0.33879788 -1.00171628  1.75913742 -0.20841529
 [31] -2.49817524  0.24714052  2.74565744  0.56890873  0.17987293  0.07480191
 [37]  1.30091446 -0.19601896  1.57692099 -1.44486098 -0.56070033  0.06100056
 [43] -0.79380810  1.37135174 -0.32139800  0.60885252 -0.48960910  0.24966626
 [49] -1.19447854 -0.07343425 -0.38143864  1.28807814  1.59987751  0.83412261
 [55] -0.92760764 -0.69946528 -1.62001078  1.07821632 -0.44003303 -1.86590131
 [61] -0.02541832  0.33398358 -1.27886188  0.26752936 -1.08483272 -0.33363266
 [67]  2.45618168 -0.41315544 -1.12891961  2.16312395  1.17344644 -0.57183598
 [73]  0.80638613 -0.37179974 -0.19947160  2.11407477 -0.84228128 -0.60524053
 [79] -1.56674654  1.10502604 -0.58586928  0.27286257 -1.85857682 -0.19372497
 [85] -0.96670005 -0.76215178 -0.24485216 -0.00220383 -0.14498431 -1.18104202
 [91] -0.22683289  0.44590816  0.17182320  0.56900196 -0.44281547 -0.68394832
 [97] -0.32165348 -0.04358974  0.99494946 -0.57076201
> rowMin(tmp2)
  [1] -2.20626107  0.15879002 -0.08599044  0.22909014 -0.45945452 -0.22044978
  [7]  1.17925244 -0.21165675 -0.46585726 -0.23150389 -0.18168064  2.28559375
 [13]  0.04917303 -0.92081510  0.56409610  0.64319899 -0.42353902 -0.94041164
 [19] -1.07377432 -0.06254271  0.75886754  0.47761561  0.74975205  1.81474196
 [25]  0.38198136 -1.18600417 -0.33879788 -1.00171628  1.75913742 -0.20841529
 [31] -2.49817524  0.24714052  2.74565744  0.56890873  0.17987293  0.07480191
 [37]  1.30091446 -0.19601896  1.57692099 -1.44486098 -0.56070033  0.06100056
 [43] -0.79380810  1.37135174 -0.32139800  0.60885252 -0.48960910  0.24966626
 [49] -1.19447854 -0.07343425 -0.38143864  1.28807814  1.59987751  0.83412261
 [55] -0.92760764 -0.69946528 -1.62001078  1.07821632 -0.44003303 -1.86590131
 [61] -0.02541832  0.33398358 -1.27886188  0.26752936 -1.08483272 -0.33363266
 [67]  2.45618168 -0.41315544 -1.12891961  2.16312395  1.17344644 -0.57183598
 [73]  0.80638613 -0.37179974 -0.19947160  2.11407477 -0.84228128 -0.60524053
 [79] -1.56674654  1.10502604 -0.58586928  0.27286257 -1.85857682 -0.19372497
 [85] -0.96670005 -0.76215178 -0.24485216 -0.00220383 -0.14498431 -1.18104202
 [91] -0.22683289  0.44590816  0.17182320  0.56900196 -0.44281547 -0.68394832
 [97] -0.32165348 -0.04358974  0.99494946 -0.57076201
> 
> colMeans(tmp2)
[1] -0.02666744
> colSums(tmp2)
[1] -2.666744
> colVars(tmp2)
[1] 1.034328
> colSd(tmp2)
[1] 1.017019
> colMax(tmp2)
[1] 2.745657
> colMin(tmp2)
[1] -2.498175
> colMedians(tmp2)
[1] -0.194872
> colRanges(tmp2)
          [,1]
[1,] -2.498175
[2,]  2.745657
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -5.1895110 -0.7870333  2.8304307  2.0584938  1.9504296  4.6406503
 [7] -7.6137789  0.8225803 -1.9842362  2.8117517
> colApply(tmp,quantile)[,1]
              [,1]
[1,] -3.417058e+00
[2,] -8.635039e-01
[3,] -8.880386e-05
[4,]  1.927767e-01
[5,]  4.035942e-01
> 
> rowApply(tmp,sum)
 [1]  1.9046355  0.7325072 -1.1770814  3.1392082  0.5250745 -6.0104056
 [7] -1.0058758 -0.4232290  3.0863972 -1.2314537
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    5    5    1    1    6    2    7    7    5     4
 [2,]    1    7    5    9    3    8    2    8    8     8
 [3,]   10    2    2    3    9    4    8    9    3    10
 [4,]    6    9    4    2    5    9    6    4    9     6
 [5,]    9    6   10    8   10    3   10    1    2     9
 [6,]    7    8    7   10    4    7    5    2   10     7
 [7,]    3    3    3    4    2    1    3    3    1     2
 [8,]    2   10    9    5    1    5    4   10    6     1
 [9,]    8    1    6    7    7    6    1    6    7     5
[10,]    4    4    8    6    8   10    9    5    4     3
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.0945712  0.4690714  3.7956224 -2.0253797 -5.8076815  0.9785789
 [7] -0.3401269 -0.7102155  3.3818928  0.7428554 -2.3214506  3.9589863
[13]  1.2069828  0.9319021  3.0013592  1.5971148 -2.7228794  0.3712382
[19] -2.5236138 -3.5712923
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -0.70580429
[2,] -0.15293422
[3,] -0.06352587
[4,]  0.40679328
[5,]  1.61004224
> 
> rowApply(tmp,sum)
[1]  1.843300  1.545188  6.440576 -5.653827 -2.667701
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    9    7   18    8   17
[2,]   18    5   10    6   12
[3,]   19   14   11    9   20
[4,]    3   11    4   11   15
[5,]    4    2    3    1    6
> 
> 
> as.matrix(tmp)
            [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
[1,] -0.06352587  1.2832719  1.7811374 -1.4108560 -1.3321116  0.2079580
[2,] -0.15293422 -0.4456597  0.3442094  0.1139002 -0.8880710 -0.6880536
[3,]  1.61004224  0.3517814  0.3523104 -0.6759891 -0.6968962  0.7644217
[4,] -0.70580429 -0.8446825 -0.5274471 -0.3722324 -2.6722717 -0.4415223
[5,]  0.40679328  0.1243604  1.8454123  0.3197977 -0.2183309  1.1357752
           [,7]       [,8]       [,9]      [,10]      [,11]       [,12]
[1,]  0.8808452 -1.4247207 -0.0580352 -0.6021035  0.6010109 0.828479413
[2,] -0.1449310  0.1713570  0.7372774  1.1812311  0.7421763 0.950169295
[3,]  0.1202168 -0.3013165  1.9978214  0.9387395 -2.1733563 1.909797854
[4,] -1.3962106  0.9477003  0.8586895 -1.0906153  0.5170567 0.267471045
[5,]  0.1999527 -0.1032357 -0.1538603  0.3156035 -2.0083382 0.003068708
           [,13]      [,14]      [,15]      [,16]       [,17]       [,18]
[1,]  0.26696209  1.0749644  2.6445399 -0.5161386 -0.10637320 -0.33203961
[2,] -0.03231994  2.0504024 -0.3972001  0.7481232 -2.19916264  0.17448336
[3,]  0.96396139  0.5427494  0.3456930  1.2264800 -1.23413824  0.70691236
[4,]  0.97802355 -0.9117549  1.7272635 -0.2411127 -0.02867557  0.02425536
[5,] -0.96964430 -1.8244592 -1.3189369  0.3797628  0.84547027 -0.20237325
           [,19]      [,20]
[1,] -0.05518414 -1.8247810
[2,]  0.10147204 -0.8212819
[3,] -0.55267202  0.2440173
[4,] -0.70735988 -1.0345974
[5,] -1.30986985 -0.1346493
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  649  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  562  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1      col2      col3       col4      col5       col6      col7
row1 -1.126982 0.6006359 0.5596809 -0.2113849 0.4296802 -0.7024754 0.5115826
          col8      col9      col10     col11     col12     col13     col14
row1 -2.288279 0.4855802 0.05752105 0.7269807 -3.304932 0.1819499 -1.145202
          col15      col16    col17      col18    col19    col20
row1 0.04024752 -0.4702211 -1.46195 -0.5377699 1.564364 1.355959
> tmp[,"col10"]
           col10
row1  0.05752105
row2 -1.25774304
row3 -0.10754882
row4  0.30339173
row5  0.76444635
> tmp[c("row1","row5"),]
           col1      col2       col3       col4       col5       col6      col7
row1 -1.1269824 0.6006359  0.5596809 -0.2113849  0.4296802 -0.7024754 0.5115826
row5  0.1110482 0.5580998 -1.1771966  0.8300956 -0.3620047 -1.2577258 0.4059044
           col8       col9      col10      col11       col12     col13
row1 -2.2882794  0.4855802 0.05752105  0.7269807 -3.30493212 0.1819499
row5 -0.6162847 -0.7155146 0.76444635 -1.0909971 -0.03126409 0.5994568
          col14       col15      col16      col17      col18    col19
row1 -1.1452022  0.04024752 -0.4702211 -1.4619504 -0.5377699 1.564364
row5 -0.6672171 -2.06619592  0.4441177  0.6377588  0.6913374 0.132963
          col20
row1  1.3559585
row5 -0.6030828
> tmp[,c("col6","col20")]
           col6      col20
row1 -0.7024754  1.3559585
row2 -1.2241123 -0.9280482
row3 -0.1007140 -0.3387089
row4  1.0229511  1.4026901
row5 -1.2577258 -0.6030828
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -0.7024754  1.3559585
row5 -1.2577258 -0.6030828
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5   col6     col7  col8
row1 51.33733 49.64208 50.76591 51.31344 49.22952 104.52 49.06768 50.26
         col9    col10   col11    col12    col13    col14    col15    col16
row1 50.63425 49.60059 51.4712 51.27078 51.36123 50.33282 49.79032 50.64989
        col17    col18    col19    col20
row1 49.31368 51.22049 51.10153 104.8941
> tmp[,"col10"]
        col10
row1 49.60059
row2 29.53625
row3 30.43869
row4 29.84704
row5 52.12067
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.33733 49.64208 50.76591 51.31344 49.22952 104.5200 49.06768 50.26000
row5 50.57829 50.03044 49.12872 51.21798 51.98798 105.8088 50.27935 48.52723
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.63425 49.60059 51.47120 51.27078 51.36123 50.33282 49.79032 50.64989
row5 51.90637 52.12067 50.29062 51.45927 50.51237 49.12467 49.49706 49.68224
        col17    col18    col19    col20
row1 49.31368 51.22049 51.10153 104.8941
row5 50.56275 49.04197 49.74498 105.3025
> tmp[,c("col6","col20")]
          col6     col20
row1 104.52004 104.89406
row2  74.73724  76.90600
row3  74.10685  73.17981
row4  76.48307  74.28619
row5 105.80883 105.30249
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.5200 104.8941
row5 105.8088 105.3025
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.5200 104.8941
row5 105.8088 105.3025
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -0.2797885
[2,] -0.9069179
[3,]  1.6997573
[4,] -0.7140567
[5,]  0.5636582
> tmp[,c("col17","col7")]
           col17       col7
[1,]  2.02950144 -0.8863411
[2,]  1.04938742  1.1559894
[3,]  1.17110222 -1.4848850
[4,] -1.29952598 -0.6624406
[5,]  0.07492207  0.8888205
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,]  0.5453720  1.0067538
[2,] -0.7072520  1.2221011
[3,]  1.0604810 -0.3331476
[4,] -0.2418686 -1.4296535
[5,]  2.3388801  1.1254329
> subBufferedMatrix(tmp,1,c("col6"))[,1]
         col1
[1,] 0.545372
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,]  0.545372
[2,] -0.707252
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]      [,2]      [,3]       [,4]       [,5]       [,6]      [,7]
row3  0.4280791 -0.778859 0.2933141  1.2030424  0.1431602 -0.1697001 0.7236817
row1 -0.9676813 -2.152385 1.5345809 -0.8097688 -0.2802883 -0.3105839 0.1617754
           [,8]       [,9]      [,10]      [,11]      [,12]     [,13]
row3  0.1239835 -0.5951757 0.26373214  1.2530746 -0.9942727 0.7502039
row1 -1.0637647 -0.6630581 0.04970537 -0.1670219  1.3021722 1.2394522
          [,14]      [,15]     [,16]      [,17]     [,18]      [,19]      [,20]
row3 -0.5008265  0.1766440 0.5890524 -0.5311742 0.2171551  1.2996794  1.1618285
row1  0.2076965 -0.1553568 0.5115614  0.6366106 0.7167455 -0.4937651 -0.0169638
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]       [,2]      [,3]     [,4]     [,5]      [,6]      [,7]
row2 -2.612569 -0.6107427 0.2780437 1.002028 -2.73301 0.8079338 -2.221802
           [,8]      [,9]     [,10]
row2 -0.2994633 -1.127283 -1.315556
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]      [,2]      [,3]     [,4]        [,5]      [,6]       [,7]
row5 0.5236666 0.7656807 -1.620331 1.033679 -0.07678478 0.9042178 -0.1604893
           [,8]      [,9]    [,10]    [,11]     [,12]     [,13]     [,14]
row5 -0.9086448 -2.457457 1.770371 0.887796 -1.083327 -1.044864 0.9240346
          [,15]      [,16]      [,17]      [,18]     [,19]     [,20]
row5 -0.1772203 -0.9097424 -0.9243491 -0.3180624 0.6815511 0.3229866
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600001178360>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd3136f54e" 
 [2] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd33f22d481"
 [3] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd37ad8189" 
 [4] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd310134d4f"
 [5] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd3633885c7"
 [6] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd313d6feb5"
 [7] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd37ec2740" 
 [8] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd32104ded0"
 [9] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd346c03a9f"
[10] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd37648c102"
[11] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd32277a6f9"
[12] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd35d73371c"
[13] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd337273f32"
[14] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd371a607e7"
[15] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM1bd34b5108fb"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x6000011485a0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x6000011485a0>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x6000011485a0>
> rowMedians(tmp)
  [1] -0.1422230778  0.3414551622  0.2026800591  0.1896713261  0.3388905434
  [6] -0.1984751347  0.4401516024 -0.0754233861  0.1776328326 -0.1259240987
 [11]  0.2507581281  0.0566978941  0.0900241293  0.1240916241  0.2777942467
 [16]  0.4886698229 -0.2468660257  0.7419480489 -0.1414999099 -0.1283427929
 [21] -0.0821288941  0.1829316204  0.0487726167  0.1238727057  0.3334732844
 [26]  0.1937156684 -0.5330671331  0.4024847605 -0.1075918121  0.3496731159
 [31] -0.1145093635 -0.2689629228 -0.6030793576 -0.0393522352 -0.3785719450
 [36]  0.5376709123  0.1331209489 -0.0628020275 -0.0179001001 -0.0341177961
 [41] -0.3717860684 -0.0025104571 -0.1440977230  0.1816223381 -0.4746078399
 [46]  0.1243323951 -0.2828349744 -0.4896975101  0.1442851567 -0.4074093256
 [51]  0.1151481231 -0.0565239885  0.1537166593  0.0985601270  0.7582291999
 [56] -0.1540940249  0.2746550696 -0.0245859430  0.4035380284 -0.1460437511
 [61] -0.1136490023 -0.0460296171 -0.6000653585 -0.0645953185  0.0629793874
 [66]  0.2220511478 -0.0437118885  0.3097406031  0.0174408726 -0.0731831492
 [71] -0.3733629012  0.0048380705 -0.2372279844 -0.0145462733 -0.1700537604
 [76]  0.0299685723 -0.6399672290 -0.1301149074 -0.1681513218 -0.2195182150
 [81] -0.6896261184  0.5264685679 -0.0007657821 -0.0042808668  0.1694612292
 [86]  0.2141060425  0.2071811437  0.2144266394  0.2045653434 -0.2132956397
 [91] -0.0772199450  0.3686100888 -0.3406566110  0.4972117847  0.0868794693
 [96]  0.0309134518  0.0657269391 -0.0648556961 -0.1135946865  0.2421991433
[101] -0.2333287620 -0.2133121979  0.6789518513  0.3774258151  0.5003834442
[106] -0.2190437234  0.0801596389  0.5675131894 -0.7359961021  0.1283628526
[111] -0.3755754190  0.2560091264 -0.0229028099  0.1873626823  0.0965131995
[116]  0.1919598195 -0.0633818272 -0.0084013756 -0.0725849930 -0.0534788360
[121] -0.3189992385 -0.3818469780  0.2540374570  0.2722574190 -0.2297532869
[126] -0.0745721050  0.4163706355  0.2044225225 -0.0620973375  0.3125978217
[131]  0.2915799365  0.6867576098  0.4518031864  0.2837310573 -0.4435176636
[136] -0.0778564303 -0.2615541957  0.1130654236 -0.4170491575  0.0310881266
[141] -0.0396276366  0.0324292456  0.1172714527 -0.0030463533 -0.2821804567
[146] -0.3160908609  0.5184998821  0.0627814930  0.0646239343  0.2644053634
[151]  0.3094014337  0.2853218493 -0.2018470479  0.1898992055 -0.1385401077
[156] -0.0321052842  0.1356481615  0.1540469720 -0.1492702447 -0.3377632627
[161] -0.1208956938 -0.1112070119 -0.3775087850  0.3386231556 -0.1017676583
[166] -0.2180203348 -0.1664158214 -0.2842192368 -0.1927872556 -0.0490264718
[171] -0.6193163431  0.0513354686  0.0960750951 -0.8774753191 -0.0669780641
[176]  0.2286697721  0.2733122597 -0.2672946852  0.0891252206 -0.0241880959
[181] -0.0875289468 -0.1813441462  0.2210831051 -0.3491155156 -0.5453371575
[186] -0.4239724863 -0.0632423835  0.0901559550 -0.1542539928 -0.1402547879
[191] -0.1890153060 -0.4698315855  0.0824996390 -0.3096114197 -0.2915529288
[196]  0.4757035631 -0.0619182229 -0.1270096448 -0.3146894396 -0.1262271754
[201] -0.1434115231 -0.0454406003 -0.0657031620 -0.5754707743  0.2832906414
[206] -0.1114737640 -0.1725050459  0.3941031707  0.0246100451 -0.1821371417
[211]  0.3728282146 -0.1407982534 -0.0734631938 -0.0350919872 -0.1573650246
[216] -0.0193173002  0.0068208480  0.5269057184 -0.0797373738  0.0332757327
[221] -0.1636400820  0.2138174935 -0.3625094923 -0.8752586899  0.1091084384
[226] -0.1283965212 -0.4783859464  0.3834387347 -0.0622501383 -0.3088546331
> 
> proc.time()
   user  system elapsed 
  0.713   3.757   5.022 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x60000205c0c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x60000205c0c0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x60000205c0c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x60000205c0c0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600002054000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002054000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600002054000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002054000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002054000>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002054180>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002054180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002054180>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600002054180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002054180>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600002054180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002054180>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600002054180>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002054180>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002054360>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600002054360>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002054360>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002054360>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile227e114ba259" "BufferedMatrixFile227e7c8f89ed"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile227e114ba259" "BufferedMatrixFile227e7c8f89ed"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002054600>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002054600>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600002054600>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600002054600>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600002054600>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600002054600>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000020547e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000020547e0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000020547e0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x6000020547e0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000020549c0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000020549c0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.129   0.055   0.180 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.136   0.037   0.163 

Example timings