Back to Multiple platform build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2026-01-10 11:34 -0500 (Sat, 10 Jan 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-12-22 r89219) -- "Unsuffered Consequences" 4818
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4594
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 253/2332HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2026-01-09 13:40 -0500 (Fri, 09 Jan 2026)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for BufferedMatrix on nebbiolo1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2026-01-09 21:34:25 -0500 (Fri, 09 Jan 2026)
EndedAt: 2026-01-09 21:34:50 -0500 (Fri, 09 Jan 2026)
EllapsedTime: 25.1 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2025-12-22 r89219)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ...* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.23-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.23-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.23-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2025-12-22 r89219) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.250   0.051   0.290 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2025-12-22 r89219) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478851 25.6    1048487   56   639317 34.2
Vcells 885659  6.8    8388608   64  2082734 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Jan  9 21:34:40 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Jan  9 21:34:40 2026"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x616c416562b0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Jan  9 21:34:41 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Jan  9 21:34:41 2026"
> 
> ColMode(tmp2)
<pointer: 0x616c416562b0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]        [,2]       [,3]       [,4]
[1,] 100.0308950 -0.05408932 -1.3723276 -1.7230764
[2,]   0.8311438  1.31601676 -1.0380471 -0.9876873
[3,]   0.5609291 -1.07151988  1.9377963  1.7417219
[4,]   0.2392167  1.00941210 -0.7043365 -0.3339091
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]       [,2]      [,3]      [,4]
[1,] 100.0308950 0.05408932 1.3723276 1.7230764
[2,]   0.8311438 1.31601676 1.0380471 0.9876873
[3,]   0.5609291 1.07151988 1.9377963 1.7417219
[4,]   0.2392167 1.00941210 0.7043365 0.3339091
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0015446 0.2325711 1.1714639 1.3126601
[2,]  0.9116709 1.1471777 1.0188460 0.9938246
[3,]  0.7489520 1.0351424 1.3920475 1.3197431
[4,]  0.4890978 1.0046950 0.8392476 0.5778487
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.04634 27.37980 38.08697 39.84968
[2,]  34.94785 37.78779 36.22651 35.92593
[3,]  33.05045 36.42294 40.85827 39.93915
[4,]  30.13019 36.05636 34.09681 31.11240
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x616c41d5d500>
> exp(tmp5)
<pointer: 0x616c41d5d500>
> log(tmp5,2)
<pointer: 0x616c41d5d500>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 468.4045
> Min(tmp5)
[1] 53.05359
> mean(tmp5)
[1] 71.94281
> Sum(tmp5)
[1] 14388.56
> Var(tmp5)
[1] 853.2786
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 92.94629 69.32577 71.59369 68.82896 68.58917 72.13281 68.59201 71.35732
 [9] 69.30545 66.75666
> rowSums(tmp5)
 [1] 1858.926 1386.515 1431.874 1376.579 1371.783 1442.656 1371.840 1427.146
 [9] 1386.109 1335.133
> rowVars(tmp5)
 [1] 7883.20313   65.02547   78.15079   73.88877   40.65940   68.23719
 [7]   41.50985   38.78709   72.98288   32.92707
> rowSd(tmp5)
 [1] 88.787404  8.063837  8.840294  8.595858  6.376472  8.260581  6.442814
 [8]  6.227928  8.543002  5.738211
> rowMax(tmp5)
 [1] 468.40447  81.07829  85.04114  90.40012  78.52719  84.48440  79.28935
 [8]  83.13525  85.89308  76.38694
> rowMin(tmp5)
 [1] 56.98747 53.46829 53.05359 53.98882 58.43013 57.69550 57.39627 58.71499
 [9] 56.00480 59.42397
> 
> colMeans(tmp5)
 [1] 108.19627  67.39530  70.47855  73.57997  73.13826  71.33504  71.72693
 [8]  65.35756  68.58927  71.18818  70.09910  69.33194  69.63876  69.61595
[15]  69.03345  71.59559  75.49046  62.94229  69.94098  70.18241
> colSums(tmp5)
 [1] 1081.9627  673.9530  704.7855  735.7997  731.3826  713.3504  717.2693
 [8]  653.5756  685.8927  711.8818  700.9910  693.3194  696.3876  696.1595
[15]  690.3345  715.9559  754.9046  629.4229  699.4098  701.8241
> colVars(tmp5)
 [1] 16036.77641    55.10784    76.97757    48.45732    32.39923    45.85094
 [7]    43.98011    69.60976    34.64270    57.72854    68.95590    57.72325
[13]    52.98643    77.53313    64.70723    58.67915    19.08869    81.34628
[19]    74.34744   113.29539
> colSd(tmp5)
 [1] 126.636394   7.423466   8.773687   6.961129   5.692032   6.771332
 [7]   6.631750   8.343247   5.885805   7.597930   8.303969   7.597582
[13]   7.279178   8.805290   8.044081   7.660232   4.369061   9.019217
[19]   8.622496  10.644031
> colMax(tmp5)
 [1] 468.40447  78.65034  85.04114  83.12811  80.41320  82.89349  80.89576
 [8]  83.13525  77.85527  90.40012  80.05344  79.02244  82.90886  81.04115
[15]  80.35109  85.89308  81.07829  82.54819  84.07871  91.57680
> colMin(tmp5)
 [1] 62.34786 56.98747 56.00480 64.75638 61.63905 59.55298 61.12392 53.98882
 [9] 59.42397 64.24794 53.46829 53.05359 59.47762 56.13147 58.66965 60.55965
[17] 66.61795 56.24832 58.27069 59.36215
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 92.94629 69.32577 71.59369 68.82896       NA 72.13281 68.59201 71.35732
 [9] 69.30545 66.75666
> rowSums(tmp5)
 [1] 1858.926 1386.515 1431.874 1376.579       NA 1442.656 1371.840 1427.146
 [9] 1386.109 1335.133
> rowVars(tmp5)
 [1] 7883.20313   65.02547   78.15079   73.88877   37.96196   68.23719
 [7]   41.50985   38.78709   72.98288   32.92707
> rowSd(tmp5)
 [1] 88.787404  8.063837  8.840294  8.595858  6.161327  8.260581  6.442814
 [8]  6.227928  8.543002  5.738211
> rowMax(tmp5)
 [1] 468.40447  81.07829  85.04114  90.40012        NA  84.48440  79.28935
 [8]  83.13525  85.89308  76.38694
> rowMin(tmp5)
 [1] 56.98747 53.46829 53.05359 53.98882       NA 57.69550 57.39627 58.71499
 [9] 56.00480 59.42397
> 
> colMeans(tmp5)
 [1] 108.19627  67.39530  70.47855  73.57997  73.13826  71.33504  71.72693
 [8]  65.35756  68.58927  71.18818  70.09910  69.33194  69.63876  69.61595
[15]        NA  71.59559  75.49046  62.94229  69.94098  70.18241
> colSums(tmp5)
 [1] 1081.9627  673.9530  704.7855  735.7997  731.3826  713.3504  717.2693
 [8]  653.5756  685.8927  711.8818  700.9910  693.3194  696.3876  696.1595
[15]        NA  715.9559  754.9046  629.4229  699.4098  701.8241
> colVars(tmp5)
 [1] 16036.77641    55.10784    76.97757    48.45732    32.39923    45.85094
 [7]    43.98011    69.60976    34.64270    57.72854    68.95590    57.72325
[13]    52.98643    77.53313          NA    58.67915    19.08869    81.34628
[19]    74.34744   113.29539
> colSd(tmp5)
 [1] 126.636394   7.423466   8.773687   6.961129   5.692032   6.771332
 [7]   6.631750   8.343247   5.885805   7.597930   8.303969   7.597582
[13]   7.279178   8.805290         NA   7.660232   4.369061   9.019217
[19]   8.622496  10.644031
> colMax(tmp5)
 [1] 468.40447  78.65034  85.04114  83.12811  80.41320  82.89349  80.89576
 [8]  83.13525  77.85527  90.40012  80.05344  79.02244  82.90886  81.04115
[15]        NA  85.89308  81.07829  82.54819  84.07871  91.57680
> colMin(tmp5)
 [1] 62.34786 56.98747 56.00480 64.75638 61.63905 59.55298 61.12392 53.98882
 [9] 59.42397 64.24794 53.46829 53.05359 59.47762 56.13147       NA 60.55965
[17] 66.61795 56.24832 58.27069 59.36215
> 
> Max(tmp5,na.rm=TRUE)
[1] 468.4045
> Min(tmp5,na.rm=TRUE)
[1] 53.05359
> mean(tmp5,na.rm=TRUE)
[1] 71.9134
> Sum(tmp5,na.rm=TRUE)
[1] 14310.77
> Var(tmp5,na.rm=TRUE)
[1] 857.4142
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.94629 69.32577 71.59369 68.82896 68.10464 72.13281 68.59201 71.35732
 [9] 69.30545 66.75666
> rowSums(tmp5,na.rm=TRUE)
 [1] 1858.926 1386.515 1431.874 1376.579 1293.988 1442.656 1371.840 1427.146
 [9] 1386.109 1335.133
> rowVars(tmp5,na.rm=TRUE)
 [1] 7883.20313   65.02547   78.15079   73.88877   37.96196   68.23719
 [7]   41.50985   38.78709   72.98288   32.92707
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.787404  8.063837  8.840294  8.595858  6.161327  8.260581  6.442814
 [8]  6.227928  8.543002  5.738211
> rowMax(tmp5,na.rm=TRUE)
 [1] 468.40447  81.07829  85.04114  90.40012  78.52719  84.48440  79.28935
 [8]  83.13525  85.89308  76.38694
> rowMin(tmp5,na.rm=TRUE)
 [1] 56.98747 53.46829 53.05359 53.98882 58.43013 57.69550 57.39627 58.71499
 [9] 56.00480 59.42397
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 108.19627  67.39530  70.47855  73.57997  73.13826  71.33504  71.72693
 [8]  65.35756  68.58927  71.18818  70.09910  69.33194  69.63876  69.61595
[15]  68.05991  71.59559  75.49046  62.94229  69.94098  70.18241
> colSums(tmp5,na.rm=TRUE)
 [1] 1081.9627  673.9530  704.7855  735.7997  731.3826  713.3504  717.2693
 [8]  653.5756  685.8927  711.8818  700.9910  693.3194  696.3876  696.1595
[15]  612.5392  715.9559  754.9046  629.4229  699.4098  701.8241
> colVars(tmp5,na.rm=TRUE)
 [1] 16036.77641    55.10784    76.97757    48.45732    32.39923    45.85094
 [7]    43.98011    69.60976    34.64270    57.72854    68.95590    57.72325
[13]    52.98643    77.53313    62.13315    58.67915    19.08869    81.34628
[19]    74.34744   113.29539
> colSd(tmp5,na.rm=TRUE)
 [1] 126.636394   7.423466   8.773687   6.961129   5.692032   6.771332
 [7]   6.631750   8.343247   5.885805   7.597930   8.303969   7.597582
[13]   7.279178   8.805290   7.882458   7.660232   4.369061   9.019217
[19]   8.622496  10.644031
> colMax(tmp5,na.rm=TRUE)
 [1] 468.40447  78.65034  85.04114  83.12811  80.41320  82.89349  80.89576
 [8]  83.13525  77.85527  90.40012  80.05344  79.02244  82.90886  81.04115
[15]  80.35109  85.89308  81.07829  82.54819  84.07871  91.57680
> colMin(tmp5,na.rm=TRUE)
 [1] 62.34786 56.98747 56.00480 64.75638 61.63905 59.55298 61.12392 53.98882
 [9] 59.42397 64.24794 53.46829 53.05359 59.47762 56.13147 58.66965 60.55965
[17] 66.61795 56.24832 58.27069 59.36215
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.94629 69.32577 71.59369 68.82896      NaN 72.13281 68.59201 71.35732
 [9] 69.30545 66.75666
> rowSums(tmp5,na.rm=TRUE)
 [1] 1858.926 1386.515 1431.874 1376.579    0.000 1442.656 1371.840 1427.146
 [9] 1386.109 1335.133
> rowVars(tmp5,na.rm=TRUE)
 [1] 7883.20313   65.02547   78.15079   73.88877         NA   68.23719
 [7]   41.50985   38.78709   72.98288   32.92707
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.787404  8.063837  8.840294  8.595858        NA  8.260581  6.442814
 [8]  6.227928  8.543002  5.738211
> rowMax(tmp5,na.rm=TRUE)
 [1] 468.40447  81.07829  85.04114  90.40012        NA  84.48440  79.28935
 [8]  83.13525  85.89308  76.38694
> rowMin(tmp5,na.rm=TRUE)
 [1] 56.98747 53.46829 53.05359 53.98882       NA 57.69550 57.39627 58.71499
 [9] 56.00480 59.42397
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.29947  68.39143  71.60809  73.03028  72.89968  71.17873  71.76781
 [8]  64.45764  69.29270  71.95931  70.48456  68.82448  70.76777  70.46974
[15]       NaN  71.29463  75.74664  62.66769  70.74393  70.36430
> colSums(tmp5,na.rm=TRUE)
 [1] 1010.6952  615.5229  644.4728  657.2725  656.0971  640.6086  645.9103
 [8]  580.1188  623.6343  647.6338  634.3611  619.4203  636.9100  634.2277
[15]    0.0000  641.6517  681.7197  564.0092  636.6954  633.2787
> colVars(tmp5,na.rm=TRUE)
 [1] 17851.96597    50.83322    72.24644    51.11518    35.80874    51.30745
 [7]    49.45882    69.20009    33.40642    58.25476    75.90381    62.04155
[13]    45.26963    79.02398          NA    64.99503    20.73647    90.66627
[19]    76.38767   127.08511
> colSd(tmp5,na.rm=TRUE)
 [1] 133.611249   7.129742   8.499790   7.149488   5.984041   7.162922
 [7]   7.032697   8.318659   5.779828   7.632481   8.712279   7.876646
[13]   6.728271   8.889543         NA   8.061950   4.553732   9.521884
[19]   8.740004  11.273203
> colMax(tmp5,na.rm=TRUE)
 [1] 468.40447  78.65034  85.04114  83.12811  80.41320  82.89349  80.89576
 [8]  83.13525  77.85527  90.40012  80.05344  79.02244  82.90886  81.04115
[15]      -Inf  85.89308  81.07829  82.54819  84.07871  91.57680
> colMin(tmp5,na.rm=TRUE)
 [1] 62.34786 56.98747 56.00480 64.75638 61.63905 59.55298 61.12392 53.98882
 [9] 59.42397 65.66548 53.46829 53.05359 61.08566 56.13147      Inf 60.55965
[17] 66.61795 56.24832 58.27069 59.36215
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 288.8558 316.5053 317.3772 134.0846 137.1112 238.9029 213.3163 162.6416
 [9] 389.9237 289.3538
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 288.8558 316.5053 317.3772 134.0846 137.1112 238.9029 213.3163 162.6416
 [9] 389.9237 289.3538
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  2.842171e-14  2.273737e-13  0.000000e+00 -1.421085e-14 -5.684342e-14
 [6] -5.684342e-14  0.000000e+00 -4.263256e-14 -8.526513e-14  5.684342e-14
[11]  1.421085e-14  0.000000e+00 -5.684342e-13  2.842171e-14  9.947598e-14
[16] -5.684342e-14  0.000000e+00  1.421085e-13  1.136868e-13 -2.842171e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
6   5 
9   8 
6   18 
4   13 
5   10 
7   20 
8   1 
5   19 
9   20 
9   11 
8   10 
8   3 
7   6 
1   14 
3   14 
5   2 
1   9 
7   4 
6   7 
3   3 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.237839
> Min(tmp)
[1] -2.110015
> mean(tmp)
[1] -0.1140059
> Sum(tmp)
[1] -11.40059
> Var(tmp)
[1] 1.069613
> 
> rowMeans(tmp)
[1] -0.1140059
> rowSums(tmp)
[1] -11.40059
> rowVars(tmp)
[1] 1.069613
> rowSd(tmp)
[1] 1.034221
> rowMax(tmp)
[1] 2.237839
> rowMin(tmp)
[1] -2.110015
> 
> colMeans(tmp)
  [1] -0.156295820 -1.222471022  0.106213249 -1.509283944 -1.602491546
  [6]  0.376948230  0.561085083  0.143772726  0.593606531 -0.458002070
 [11] -1.262832328 -0.132247346 -1.364545066  0.561430181  1.210945177
 [16] -0.268187894  1.513068441 -0.097778396 -0.252304859 -0.911179660
 [21]  0.289750035 -0.089730582 -1.584109369  0.093412783  1.366407551
 [26]  0.542411441 -1.332900863  1.940346036 -1.476119152 -1.762667997
 [31] -1.200330040 -0.527536408 -0.814377189 -0.552715583  1.081485559
 [36] -0.444447695  1.066878375 -1.766752190 -1.504752361  1.378282412
 [41] -0.078203071  0.689843457 -0.168313222 -0.122318998 -0.003275381
 [46] -0.071873132 -0.956772007 -0.152280352 -0.693408905  0.111741610
 [51] -0.850125822 -0.259307464 -0.376448526  1.877422292  0.741670417
 [56]  1.476251236  1.828694353 -1.452784944 -1.229339244  2.066100822
 [61] -0.280131768 -1.283176005 -0.034368737 -1.345051614  0.424477955
 [66]  0.192091758 -0.265493250  0.340873381  0.633665478 -1.563360580
 [71]  0.091136474 -0.243335557 -1.226207760 -0.160029324 -0.028520509
 [76]  0.922025987  0.086931775  1.387562390 -2.067734400 -0.911993892
 [81]  0.399319112  0.871427748  1.156142659  0.330839439 -0.900187890
 [86] -1.657801830  0.457243996  2.237839047 -0.367853198 -2.110014630
 [91]  0.308527139 -0.139507358 -1.821002746  1.300358227  0.101825053
 [96]  1.454598976 -0.585689258 -0.983513187 -0.455868169  1.424111848
> colSums(tmp)
  [1] -0.156295820 -1.222471022  0.106213249 -1.509283944 -1.602491546
  [6]  0.376948230  0.561085083  0.143772726  0.593606531 -0.458002070
 [11] -1.262832328 -0.132247346 -1.364545066  0.561430181  1.210945177
 [16] -0.268187894  1.513068441 -0.097778396 -0.252304859 -0.911179660
 [21]  0.289750035 -0.089730582 -1.584109369  0.093412783  1.366407551
 [26]  0.542411441 -1.332900863  1.940346036 -1.476119152 -1.762667997
 [31] -1.200330040 -0.527536408 -0.814377189 -0.552715583  1.081485559
 [36] -0.444447695  1.066878375 -1.766752190 -1.504752361  1.378282412
 [41] -0.078203071  0.689843457 -0.168313222 -0.122318998 -0.003275381
 [46] -0.071873132 -0.956772007 -0.152280352 -0.693408905  0.111741610
 [51] -0.850125822 -0.259307464 -0.376448526  1.877422292  0.741670417
 [56]  1.476251236  1.828694353 -1.452784944 -1.229339244  2.066100822
 [61] -0.280131768 -1.283176005 -0.034368737 -1.345051614  0.424477955
 [66]  0.192091758 -0.265493250  0.340873381  0.633665478 -1.563360580
 [71]  0.091136474 -0.243335557 -1.226207760 -0.160029324 -0.028520509
 [76]  0.922025987  0.086931775  1.387562390 -2.067734400 -0.911993892
 [81]  0.399319112  0.871427748  1.156142659  0.330839439 -0.900187890
 [86] -1.657801830  0.457243996  2.237839047 -0.367853198 -2.110014630
 [91]  0.308527139 -0.139507358 -1.821002746  1.300358227  0.101825053
 [96]  1.454598976 -0.585689258 -0.983513187 -0.455868169  1.424111848
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.156295820 -1.222471022  0.106213249 -1.509283944 -1.602491546
  [6]  0.376948230  0.561085083  0.143772726  0.593606531 -0.458002070
 [11] -1.262832328 -0.132247346 -1.364545066  0.561430181  1.210945177
 [16] -0.268187894  1.513068441 -0.097778396 -0.252304859 -0.911179660
 [21]  0.289750035 -0.089730582 -1.584109369  0.093412783  1.366407551
 [26]  0.542411441 -1.332900863  1.940346036 -1.476119152 -1.762667997
 [31] -1.200330040 -0.527536408 -0.814377189 -0.552715583  1.081485559
 [36] -0.444447695  1.066878375 -1.766752190 -1.504752361  1.378282412
 [41] -0.078203071  0.689843457 -0.168313222 -0.122318998 -0.003275381
 [46] -0.071873132 -0.956772007 -0.152280352 -0.693408905  0.111741610
 [51] -0.850125822 -0.259307464 -0.376448526  1.877422292  0.741670417
 [56]  1.476251236  1.828694353 -1.452784944 -1.229339244  2.066100822
 [61] -0.280131768 -1.283176005 -0.034368737 -1.345051614  0.424477955
 [66]  0.192091758 -0.265493250  0.340873381  0.633665478 -1.563360580
 [71]  0.091136474 -0.243335557 -1.226207760 -0.160029324 -0.028520509
 [76]  0.922025987  0.086931775  1.387562390 -2.067734400 -0.911993892
 [81]  0.399319112  0.871427748  1.156142659  0.330839439 -0.900187890
 [86] -1.657801830  0.457243996  2.237839047 -0.367853198 -2.110014630
 [91]  0.308527139 -0.139507358 -1.821002746  1.300358227  0.101825053
 [96]  1.454598976 -0.585689258 -0.983513187 -0.455868169  1.424111848
> colMin(tmp)
  [1] -0.156295820 -1.222471022  0.106213249 -1.509283944 -1.602491546
  [6]  0.376948230  0.561085083  0.143772726  0.593606531 -0.458002070
 [11] -1.262832328 -0.132247346 -1.364545066  0.561430181  1.210945177
 [16] -0.268187894  1.513068441 -0.097778396 -0.252304859 -0.911179660
 [21]  0.289750035 -0.089730582 -1.584109369  0.093412783  1.366407551
 [26]  0.542411441 -1.332900863  1.940346036 -1.476119152 -1.762667997
 [31] -1.200330040 -0.527536408 -0.814377189 -0.552715583  1.081485559
 [36] -0.444447695  1.066878375 -1.766752190 -1.504752361  1.378282412
 [41] -0.078203071  0.689843457 -0.168313222 -0.122318998 -0.003275381
 [46] -0.071873132 -0.956772007 -0.152280352 -0.693408905  0.111741610
 [51] -0.850125822 -0.259307464 -0.376448526  1.877422292  0.741670417
 [56]  1.476251236  1.828694353 -1.452784944 -1.229339244  2.066100822
 [61] -0.280131768 -1.283176005 -0.034368737 -1.345051614  0.424477955
 [66]  0.192091758 -0.265493250  0.340873381  0.633665478 -1.563360580
 [71]  0.091136474 -0.243335557 -1.226207760 -0.160029324 -0.028520509
 [76]  0.922025987  0.086931775  1.387562390 -2.067734400 -0.911993892
 [81]  0.399319112  0.871427748  1.156142659  0.330839439 -0.900187890
 [86] -1.657801830  0.457243996  2.237839047 -0.367853198 -2.110014630
 [91]  0.308527139 -0.139507358 -1.821002746  1.300358227  0.101825053
 [96]  1.454598976 -0.585689258 -0.983513187 -0.455868169  1.424111848
> colMedians(tmp)
  [1] -0.156295820 -1.222471022  0.106213249 -1.509283944 -1.602491546
  [6]  0.376948230  0.561085083  0.143772726  0.593606531 -0.458002070
 [11] -1.262832328 -0.132247346 -1.364545066  0.561430181  1.210945177
 [16] -0.268187894  1.513068441 -0.097778396 -0.252304859 -0.911179660
 [21]  0.289750035 -0.089730582 -1.584109369  0.093412783  1.366407551
 [26]  0.542411441 -1.332900863  1.940346036 -1.476119152 -1.762667997
 [31] -1.200330040 -0.527536408 -0.814377189 -0.552715583  1.081485559
 [36] -0.444447695  1.066878375 -1.766752190 -1.504752361  1.378282412
 [41] -0.078203071  0.689843457 -0.168313222 -0.122318998 -0.003275381
 [46] -0.071873132 -0.956772007 -0.152280352 -0.693408905  0.111741610
 [51] -0.850125822 -0.259307464 -0.376448526  1.877422292  0.741670417
 [56]  1.476251236  1.828694353 -1.452784944 -1.229339244  2.066100822
 [61] -0.280131768 -1.283176005 -0.034368737 -1.345051614  0.424477955
 [66]  0.192091758 -0.265493250  0.340873381  0.633665478 -1.563360580
 [71]  0.091136474 -0.243335557 -1.226207760 -0.160029324 -0.028520509
 [76]  0.922025987  0.086931775  1.387562390 -2.067734400 -0.911993892
 [81]  0.399319112  0.871427748  1.156142659  0.330839439 -0.900187890
 [86] -1.657801830  0.457243996  2.237839047 -0.367853198 -2.110014630
 [91]  0.308527139 -0.139507358 -1.821002746  1.300358227  0.101825053
 [96]  1.454598976 -0.585689258 -0.983513187 -0.455868169  1.424111848
> colRanges(tmp)
           [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
[1,] -0.1562958 -1.222471 0.1062132 -1.509284 -1.602492 0.3769482 0.5610851
[2,] -0.1562958 -1.222471 0.1062132 -1.509284 -1.602492 0.3769482 0.5610851
          [,8]      [,9]      [,10]     [,11]      [,12]     [,13]     [,14]
[1,] 0.1437727 0.5936065 -0.4580021 -1.262832 -0.1322473 -1.364545 0.5614302
[2,] 0.1437727 0.5936065 -0.4580021 -1.262832 -0.1322473 -1.364545 0.5614302
        [,15]      [,16]    [,17]      [,18]      [,19]      [,20]   [,21]
[1,] 1.210945 -0.2681879 1.513068 -0.0977784 -0.2523049 -0.9111797 0.28975
[2,] 1.210945 -0.2681879 1.513068 -0.0977784 -0.2523049 -0.9111797 0.28975
           [,22]     [,23]      [,24]    [,25]     [,26]     [,27]    [,28]
[1,] -0.08973058 -1.584109 0.09341278 1.366408 0.5424114 -1.332901 1.940346
[2,] -0.08973058 -1.584109 0.09341278 1.366408 0.5424114 -1.332901 1.940346
         [,29]     [,30]    [,31]      [,32]      [,33]      [,34]    [,35]
[1,] -1.476119 -1.762668 -1.20033 -0.5275364 -0.8143772 -0.5527156 1.081486
[2,] -1.476119 -1.762668 -1.20033 -0.5275364 -0.8143772 -0.5527156 1.081486
          [,36]    [,37]     [,38]     [,39]    [,40]       [,41]     [,42]
[1,] -0.4444477 1.066878 -1.766752 -1.504752 1.378282 -0.07820307 0.6898435
[2,] -0.4444477 1.066878 -1.766752 -1.504752 1.378282 -0.07820307 0.6898435
          [,43]     [,44]        [,45]       [,46]     [,47]      [,48]
[1,] -0.1683132 -0.122319 -0.003275381 -0.07187313 -0.956772 -0.1522804
[2,] -0.1683132 -0.122319 -0.003275381 -0.07187313 -0.956772 -0.1522804
          [,49]     [,50]      [,51]      [,52]      [,53]    [,54]     [,55]
[1,] -0.6934089 0.1117416 -0.8501258 -0.2593075 -0.3764485 1.877422 0.7416704
[2,] -0.6934089 0.1117416 -0.8501258 -0.2593075 -0.3764485 1.877422 0.7416704
        [,56]    [,57]     [,58]     [,59]    [,60]      [,61]     [,62]
[1,] 1.476251 1.828694 -1.452785 -1.229339 2.066101 -0.2801318 -1.283176
[2,] 1.476251 1.828694 -1.452785 -1.229339 2.066101 -0.2801318 -1.283176
           [,63]     [,64]    [,65]     [,66]      [,67]     [,68]     [,69]
[1,] -0.03436874 -1.345052 0.424478 0.1920918 -0.2654933 0.3408734 0.6336655
[2,] -0.03436874 -1.345052 0.424478 0.1920918 -0.2654933 0.3408734 0.6336655
         [,70]      [,71]      [,72]     [,73]      [,74]       [,75]    [,76]
[1,] -1.563361 0.09113647 -0.2433356 -1.226208 -0.1600293 -0.02852051 0.922026
[2,] -1.563361 0.09113647 -0.2433356 -1.226208 -0.1600293 -0.02852051 0.922026
          [,77]    [,78]     [,79]      [,80]     [,81]     [,82]    [,83]
[1,] 0.08693177 1.387562 -2.067734 -0.9119939 0.3993191 0.8714277 1.156143
[2,] 0.08693177 1.387562 -2.067734 -0.9119939 0.3993191 0.8714277 1.156143
         [,84]      [,85]     [,86]    [,87]    [,88]      [,89]     [,90]
[1,] 0.3308394 -0.9001879 -1.657802 0.457244 2.237839 -0.3678532 -2.110015
[2,] 0.3308394 -0.9001879 -1.657802 0.457244 2.237839 -0.3678532 -2.110015
         [,91]      [,92]     [,93]    [,94]     [,95]    [,96]      [,97]
[1,] 0.3085271 -0.1395074 -1.821003 1.300358 0.1018251 1.454599 -0.5856893
[2,] 0.3085271 -0.1395074 -1.821003 1.300358 0.1018251 1.454599 -0.5856893
          [,98]      [,99]   [,100]
[1,] -0.9835132 -0.4558682 1.424112
[2,] -0.9835132 -0.4558682 1.424112
> 
> 
> Max(tmp2)
[1] 2.938672
> Min(tmp2)
[1] -3.177791
> mean(tmp2)
[1] -0.01441998
> Sum(tmp2)
[1] -1.441998
> Var(tmp2)
[1] 1.115145
> 
> rowMeans(tmp2)
  [1]  0.693329151  1.106545615 -0.766386639 -0.016747597 -0.730163426
  [6] -1.090746762 -0.678809687  0.456116825  1.094889330 -0.392523313
 [11]  0.052560009  0.454429136  2.510899123  0.443104260  1.345432318
 [16] -0.411475932 -0.887405673  0.237437767 -0.158698656  1.326404672
 [21] -0.216554460 -0.304815284 -1.235742527 -1.951986792  2.084849147
 [26] -0.796399984  2.938671909  0.002437489  1.580282728 -0.606722930
 [31]  0.703241554 -1.047395748 -0.468057874 -0.047602157  0.169221078
 [36] -1.058701820  1.277353637  0.516309043 -0.701670849  0.062329020
 [41]  0.052301320 -0.150693015  0.576878234  1.130841950  1.285891556
 [46] -1.697169890  0.051613797 -1.158240398  0.601688769 -0.411184642
 [51] -0.686515413 -0.224468401 -0.689692897 -1.066576937  1.483539966
 [56] -1.196891644 -0.421162972 -0.044535337 -1.007540283  0.179708793
 [61]  1.654646290  0.608635074 -0.970206734 -0.423455211  1.172188756
 [66] -1.015486392 -0.134650817 -0.815491992  0.799213735  0.404279323
 [71]  0.965793321 -1.031996485 -0.176404312 -2.098416419 -1.558916780
 [76]  0.305776078 -1.227041926  1.353758742 -0.209961446  0.581699508
 [81] -0.174438174 -0.127886432  0.661073532 -0.357923820  0.792324024
 [86] -0.734850950 -1.522776340 -0.203963277 -0.309740157  2.407552537
 [91]  1.496373645 -0.124553006 -0.088517424 -3.177791098 -0.176355983
 [96] -0.903553379  1.888012712 -0.320772434 -1.539218834  0.796016265
> rowSums(tmp2)
  [1]  0.693329151  1.106545615 -0.766386639 -0.016747597 -0.730163426
  [6] -1.090746762 -0.678809687  0.456116825  1.094889330 -0.392523313
 [11]  0.052560009  0.454429136  2.510899123  0.443104260  1.345432318
 [16] -0.411475932 -0.887405673  0.237437767 -0.158698656  1.326404672
 [21] -0.216554460 -0.304815284 -1.235742527 -1.951986792  2.084849147
 [26] -0.796399984  2.938671909  0.002437489  1.580282728 -0.606722930
 [31]  0.703241554 -1.047395748 -0.468057874 -0.047602157  0.169221078
 [36] -1.058701820  1.277353637  0.516309043 -0.701670849  0.062329020
 [41]  0.052301320 -0.150693015  0.576878234  1.130841950  1.285891556
 [46] -1.697169890  0.051613797 -1.158240398  0.601688769 -0.411184642
 [51] -0.686515413 -0.224468401 -0.689692897 -1.066576937  1.483539966
 [56] -1.196891644 -0.421162972 -0.044535337 -1.007540283  0.179708793
 [61]  1.654646290  0.608635074 -0.970206734 -0.423455211  1.172188756
 [66] -1.015486392 -0.134650817 -0.815491992  0.799213735  0.404279323
 [71]  0.965793321 -1.031996485 -0.176404312 -2.098416419 -1.558916780
 [76]  0.305776078 -1.227041926  1.353758742 -0.209961446  0.581699508
 [81] -0.174438174 -0.127886432  0.661073532 -0.357923820  0.792324024
 [86] -0.734850950 -1.522776340 -0.203963277 -0.309740157  2.407552537
 [91]  1.496373645 -0.124553006 -0.088517424 -3.177791098 -0.176355983
 [96] -0.903553379  1.888012712 -0.320772434 -1.539218834  0.796016265
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.693329151  1.106545615 -0.766386639 -0.016747597 -0.730163426
  [6] -1.090746762 -0.678809687  0.456116825  1.094889330 -0.392523313
 [11]  0.052560009  0.454429136  2.510899123  0.443104260  1.345432318
 [16] -0.411475932 -0.887405673  0.237437767 -0.158698656  1.326404672
 [21] -0.216554460 -0.304815284 -1.235742527 -1.951986792  2.084849147
 [26] -0.796399984  2.938671909  0.002437489  1.580282728 -0.606722930
 [31]  0.703241554 -1.047395748 -0.468057874 -0.047602157  0.169221078
 [36] -1.058701820  1.277353637  0.516309043 -0.701670849  0.062329020
 [41]  0.052301320 -0.150693015  0.576878234  1.130841950  1.285891556
 [46] -1.697169890  0.051613797 -1.158240398  0.601688769 -0.411184642
 [51] -0.686515413 -0.224468401 -0.689692897 -1.066576937  1.483539966
 [56] -1.196891644 -0.421162972 -0.044535337 -1.007540283  0.179708793
 [61]  1.654646290  0.608635074 -0.970206734 -0.423455211  1.172188756
 [66] -1.015486392 -0.134650817 -0.815491992  0.799213735  0.404279323
 [71]  0.965793321 -1.031996485 -0.176404312 -2.098416419 -1.558916780
 [76]  0.305776078 -1.227041926  1.353758742 -0.209961446  0.581699508
 [81] -0.174438174 -0.127886432  0.661073532 -0.357923820  0.792324024
 [86] -0.734850950 -1.522776340 -0.203963277 -0.309740157  2.407552537
 [91]  1.496373645 -0.124553006 -0.088517424 -3.177791098 -0.176355983
 [96] -0.903553379  1.888012712 -0.320772434 -1.539218834  0.796016265
> rowMin(tmp2)
  [1]  0.693329151  1.106545615 -0.766386639 -0.016747597 -0.730163426
  [6] -1.090746762 -0.678809687  0.456116825  1.094889330 -0.392523313
 [11]  0.052560009  0.454429136  2.510899123  0.443104260  1.345432318
 [16] -0.411475932 -0.887405673  0.237437767 -0.158698656  1.326404672
 [21] -0.216554460 -0.304815284 -1.235742527 -1.951986792  2.084849147
 [26] -0.796399984  2.938671909  0.002437489  1.580282728 -0.606722930
 [31]  0.703241554 -1.047395748 -0.468057874 -0.047602157  0.169221078
 [36] -1.058701820  1.277353637  0.516309043 -0.701670849  0.062329020
 [41]  0.052301320 -0.150693015  0.576878234  1.130841950  1.285891556
 [46] -1.697169890  0.051613797 -1.158240398  0.601688769 -0.411184642
 [51] -0.686515413 -0.224468401 -0.689692897 -1.066576937  1.483539966
 [56] -1.196891644 -0.421162972 -0.044535337 -1.007540283  0.179708793
 [61]  1.654646290  0.608635074 -0.970206734 -0.423455211  1.172188756
 [66] -1.015486392 -0.134650817 -0.815491992  0.799213735  0.404279323
 [71]  0.965793321 -1.031996485 -0.176404312 -2.098416419 -1.558916780
 [76]  0.305776078 -1.227041926  1.353758742 -0.209961446  0.581699508
 [81] -0.174438174 -0.127886432  0.661073532 -0.357923820  0.792324024
 [86] -0.734850950 -1.522776340 -0.203963277 -0.309740157  2.407552537
 [91]  1.496373645 -0.124553006 -0.088517424 -3.177791098 -0.176355983
 [96] -0.903553379  1.888012712 -0.320772434 -1.539218834  0.796016265
> 
> colMeans(tmp2)
[1] -0.01441998
> colSums(tmp2)
[1] -1.441998
> colVars(tmp2)
[1] 1.115145
> colSd(tmp2)
[1] 1.056004
> colMax(tmp2)
[1] 2.938672
> colMin(tmp2)
[1] -3.177791
> colMedians(tmp2)
[1] -0.1426719
> colRanges(tmp2)
          [,1]
[1,] -3.177791
[2,]  2.938672
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.41087989 -0.10499286  3.17970235  0.06893822 -3.58287845  0.92511598
 [7] -5.93434100  2.85754665 -1.42971060  0.90671372
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.05342517
[2,] -0.75422592
[3,] -0.09914851
[4,]  0.44955513
[5,]  1.59799264
> 
> rowApply(tmp,sum)
 [1] -3.4751620  0.6713826  3.9466834  2.3496206 -2.0482234 -0.4676294
 [7] -1.1637672  0.2858091  1.9372727 -5.5607723
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    3    5   10    7    7    3    8    3    8     6
 [2,]    1    7    9    4    9    2    2    7    4     9
 [3,]   10    6    6    3    3    9    9    9    6     5
 [4,]    2    2    5    9    6   10   10    6    7     8
 [5,]    8    4    1    2    1    1    3    2    3    10
 [6,]    7    9    2    5   10    4    7    4    5     1
 [7,]    4    8    4    6    2    6    6    1    1     2
 [8,]    9    3    8    8    5    7    1   10    9     3
 [9,]    5   10    3   10    4    5    4    5    2     4
[10,]    6    1    7    1    8    8    5    8   10     7
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  4.74107751 -1.10275765 -0.07586569  5.05139526 -2.06975323  4.99352691
 [7]  6.05791879  1.33400285 -0.07318042 -3.90391977 -0.10725897  0.60981745
[13]  0.30818651 -2.04142127  0.61518407  1.94823103 -0.93285278  0.36106385
[19] -0.70590030 -2.51273586
> colApply(tmp,quantile)[,1]
          [,1]
[1,] 0.4982618
[2,] 0.4986779
[3,] 0.9684679
[4,] 1.2904741
[5,] 1.4851958
> 
> rowApply(tmp,sum)
[1]  4.5316433 -0.8672885  5.8793872 -1.6568722  4.6078885
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   15   16   19   13   19
[2,]   14   13   15    6    1
[3,]    8   14   12    4   10
[4,]   16   19   16   15   13
[5,]    6    3    7    3   16
> 
> 
> as.matrix(tmp)
          [,1]        [,2]        [,3]      [,4]       [,5]       [,6]
[1,] 0.9684679  0.82289495  0.10280954 1.0057937 -0.3691155  2.0500580
[2,] 0.4986779 -0.07026741 -0.03842973 1.6170170 -0.7953311 -0.7759433
[3,] 1.4851958  0.82433372  0.30614883 1.0572903 -0.3406112  1.3153111
[4,] 0.4982618 -0.55991741 -0.61312427 0.5589411 -1.5283843  1.3662054
[5,] 1.2904741 -2.11980151  0.16672993 0.8123532  0.9636888  1.0378956
          [,7]       [,8]        [,9]       [,10]       [,11]      [,12]
[1,] 1.4726551  1.0203997 -1.13212640 -0.75937979  0.73172468 -0.8909236
[2,] 1.6560785  1.2448360  0.71618969 -0.27750858 -0.66527553 -0.2697910
[3,] 0.3588759 -0.8548661  0.78751681 -0.01352622  0.18706865  2.7346280
[4,] 1.2460683  0.5192759 -0.39949798 -1.99258896 -0.39176283 -0.1540640
[5,] 1.3242410 -0.5956426 -0.04526254 -0.86091622  0.03098605 -0.8100319
           [,13]       [,14]      [,15]      [,16]      [,17]       [,18]
[1,]  0.36533094  0.67430406  1.3575415 -0.2841330 -1.9470715  0.42397558
[2,] -0.27342687 -0.37832086 -0.5430992 -0.9797408  0.1918827 -0.32681421
[3,]  0.07077843 -0.83709087 -0.7169649  1.2336354 -0.3632649 -0.62391196
[4,]  0.07150360 -1.56802128 -0.4238205  0.9042100  0.6636156 -0.06851335
[5,]  0.07400040  0.06770768  0.9415271  1.0742594  0.5219853  0.95632779
          [,19]      [,20]
[1,]  0.1047101 -1.1862726
[2,] -0.3362400 -1.0617818
[3,] -0.5944478 -0.1367117
[4,] -0.5752406  0.7899815
[5,]  0.6953180 -0.9179511
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  654  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  565  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1       col2       col3     col4       col5      col6       col7
row1 0.3404563 -0.9990189 -0.6370212 0.935319 -0.5223434 0.3843614 -0.2492988
           col8      col9     col10     col11    col12      col13     col14
row1 -0.1699539 -1.146111 0.7092111 0.1473276 1.212746 -0.4165229 0.5642276
         col15     col16     col17     col18        col19      col20
row1 0.8074427 0.7283312 0.2054032 0.7223134 0.0002508678 -0.7932566
> tmp[,"col10"]
          col10
row1  0.7092111
row2  0.9432137
row3  1.7467535
row4  0.4212524
row5 -0.3999698
> tmp[c("row1","row5"),]
           col1       col2       col3     col4       col5      col6       col7
row1  0.3404563 -0.9990189 -0.6370212 0.935319 -0.5223434 0.3843614 -0.2492988
row5 -0.1695310  0.4246596 -1.1563294 1.136204 -1.5393218 0.7722404  2.7170801
           col8       col9      col10      col11      col12      col13
row1 -0.1699539 -1.1461106  0.7092111  0.1473276  1.2127457 -0.4165229
row5 -0.1427567  0.9964073 -0.3999698 -1.5490008 -0.2343068  1.0023189
         col14      col15     col16     col17     col18         col19
row1 0.5642276  0.8074427 0.7283312 0.2054032 0.7223134  0.0002508678
row5 0.7832711 -2.2996089 0.3401666 0.5574751 1.4429680 -0.2073190614
          col20
row1 -0.7932566
row5  0.7378897
> tmp[,c("col6","col20")]
           col6      col20
row1  0.3843614 -0.7932566
row2  0.6126318 -0.5129985
row3 -0.9201672 -0.6571800
row4 -1.9849063  1.8847166
row5  0.7722404  0.7378897
> tmp[c("row1","row5"),c("col6","col20")]
          col6      col20
row1 0.3843614 -0.7932566
row5 0.7722404  0.7378897
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.29182 50.30632 49.92936 49.59682 50.25364 107.5602 49.36757 50.90797
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.79212 49.00815 48.60386 50.96113 48.29091 50.38443 51.61947 51.07662
        col17    col18    col19    col20
row1 48.70006 49.05736 49.93073 105.7351
> tmp[,"col10"]
        col10
row1 49.00815
row2 30.91065
row3 29.84823
row4 30.55242
row5 48.50948
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.29182 50.30632 49.92936 49.59682 50.25364 107.5602 49.36757 50.90797
row5 51.03412 50.84931 49.66382 48.48488 49.16332 104.6958 49.59409 48.90474
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.79212 49.00815 48.60386 50.96113 48.29091 50.38443 51.61947 51.07662
row5 50.96038 48.50948 49.31329 50.33280 49.90817 49.75015 50.51264 51.02954
        col17    col18    col19    col20
row1 48.70006 49.05736 49.93073 105.7351
row5 49.91235 48.74389 48.69353 105.4630
> tmp[,c("col6","col20")]
          col6     col20
row1 107.56015 105.73513
row2  75.98291  74.50538
row3  75.74361  75.51407
row4  75.54013  74.36004
row5 104.69582 105.46298
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 107.5602 105.7351
row5 104.6958 105.4630
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 107.5602 105.7351
row5 104.6958 105.4630
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,]  0.60819305
[2,]  0.06657412
[3,] -0.41512293
[4,]  0.77318073
[5,]  1.06200405
> tmp[,c("col17","col7")]
          col17       col7
[1,] -1.1049293 -0.2053616
[2,] -1.3107308 -0.3159438
[3,] -0.1254434 -0.4281556
[4,] -0.4426047 -1.7684836
[5,]  1.5125462 -0.2305305
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,]  0.7026080 -0.8590763
[2,]  0.9769658  0.6160088
[3,] -1.1307180  1.0095823
[4,]  0.8036703  0.9448959
[5,]  0.5161042  0.3703760
> subBufferedMatrix(tmp,1,c("col6"))[,1]
         col1
[1,] 0.702608
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] 0.7026080
[2,] 0.9769658
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]      [,2]      [,3]       [,4]       [,5]      [,6]       [,7]
row3  0.9540821 0.4255545 -0.114662 -0.5886563 -0.6848272  1.076590 -1.2640164
row1 -1.5248625 0.6427439  1.369500  0.5667409  1.5190039 -1.963001  0.6906052
          [,8]       [,9]     [,10]     [,11]     [,12]     [,13]      [,14]
row3  3.282684 -0.8198493 -1.069650 1.4818890 -1.366843 -1.364060 -0.2373888
row1 -0.314186 -0.6231011 -0.066395 0.2051435 -1.440902  1.626167 -0.1964286
          [,15]    [,16]      [,17]      [,18]     [,19]       [,20]
row3 -1.0361752 1.153774 -0.4764518  0.6482887 -1.684173 -1.15673351
row1  0.6236141 0.762096  0.1559146 -0.1337196 -1.811978 -0.09373994
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]       [,2]      [,3]       [,4]      [,5]       [,6]       [,7]
row2 -1.362935 -0.0560168 0.7227781 0.04103587 -1.172146 0.02118693 -0.5255237
          [,8]      [,9]    [,10]
row2 0.4626051 0.4484412 1.482956
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
         [,1]      [,2]      [,3]      [,4]        [,5]      [,6]      [,7]
row5 1.832993 -1.309107 0.7038545 0.1316893 -0.05487978 0.3466308 -1.827507
          [,8]       [,9]     [,10]     [,11]     [,12]     [,13]     [,14]
row5 0.0953261 -0.9451605 -2.268937 0.6541517 -1.947347 -1.246831 -0.720012
        [,15]      [,16]     [,17]      [,18]     [,19]      [,20]
row5 1.978056 -0.7772426 0.3372187 -0.7079263 0.1800159 -0.1342162
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x616c42d99c30>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM299998b2cc06d" 
 [2] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM299998530d14f5"
 [3] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2999987a0abafe"
 [4] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM299998739c290" 
 [5] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM29999845de4802"
 [6] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2999984b85f6ee"
 [7] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM29999845070575"
 [8] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2999986b24cfea"
 [9] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM299998727c776d"
[10] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM29999850a37289"
[11] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2999983e8856a6"
[12] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2999983a638ffb"
[13] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM299998624ed2a4"
[14] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2999982cab8aba"
[15] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM29999829277fa5"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x616c40ec65f0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x616c40ec65f0>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x616c40ec65f0>
> rowMedians(tmp)
  [1] -0.014800691  0.305051715 -0.312999431  0.097478288 -0.515652424
  [6] -0.116222429  0.232135216  0.013227196  0.501289298 -0.143716598
 [11] -0.473107168 -0.669508696  0.187637003  0.546480522  0.449276969
 [16]  0.099996994 -0.146702576  0.427587913 -0.048483505  0.058198371
 [21] -0.183428487 -0.126900054 -0.165659799 -0.201229765  0.338443536
 [26] -0.125990198 -0.156269074  0.145607293 -0.247521879  0.356434591
 [31]  0.197400887 -0.431681302 -0.547677069 -0.080000879 -0.609442061
 [36] -0.391501652  0.131328532 -0.224580958 -0.040105439  0.002625793
 [41] -0.029048449  0.054496343 -0.805023467 -0.067559213 -0.019878385
 [46] -0.459362314 -0.022009078  0.341147929 -0.131864064 -0.566357691
 [51] -0.176333477  0.503900967 -0.646003588  0.029882260  0.022094259
 [56]  0.683545920  0.120129593  0.284014268  0.045241185 -0.076401746
 [61] -0.453554237  0.089559830  0.049578069 -0.553258398 -0.029782514
 [66]  0.324175575  0.077837016  0.208083851  0.524692414  0.052825466
 [71]  0.258561917 -0.667373698 -0.538379144 -0.156873714  0.050472455
 [76]  0.145576236  0.393900775 -0.095294411  0.125071374  0.085206278
 [81] -0.060606936 -0.060053472  0.094919595 -0.349230271  0.131729205
 [86]  0.063730521  0.019415535 -0.168560597  0.554925209 -0.503244801
 [91]  0.021301613 -0.259387456 -0.421281243 -0.020471963  0.151683950
 [96]  0.529072158 -0.041172993  0.148659297  0.383572984 -0.323528527
[101]  0.155153073  0.380489653 -0.548667891  0.944126994 -0.090287337
[106] -0.124484064  0.615935168 -0.058881063 -0.414108952  0.082931286
[111] -0.508731393 -0.007822315 -0.011662882  0.232463062  0.117977013
[116] -0.383113349 -0.176453900  0.170541792 -0.002615440 -0.510462540
[121]  0.024454590  0.317079609 -0.096557779 -0.344566966 -0.022207742
[126]  0.302945649  0.444820024  0.192465410 -0.150364326 -0.417153953
[131]  0.023721829 -0.138987650 -0.020081596 -0.673801000 -0.189886650
[136] -0.461650503 -0.380464770 -0.387759204 -0.049080284 -0.935340469
[141] -0.166782667  0.349847182 -0.315744199  0.429903774 -0.191010276
[146]  0.340111013  0.237112042  0.289802820 -0.163309403  0.049828156
[151] -0.146848455 -0.565260394  0.037320229 -0.704889949  0.077268897
[156] -0.449770552  0.263862413  0.081677950  0.351273870  0.266010454
[161] -0.553614562  0.092515687 -0.649366781  0.396502268  0.114783540
[166]  0.072307937  0.172711197 -0.344780077  0.049317014 -0.530040198
[171] -0.293591458 -0.524773285 -0.076745420 -0.178919059 -0.035009686
[176]  0.182041010  0.539918353  0.190584827  0.068551940  0.204204787
[181] -0.253332275  0.134610658 -0.177821645 -0.060810979 -0.284211933
[186]  0.040658099 -0.420973804 -0.181256941 -0.306757538  0.614687628
[191]  0.130644908  0.107357936 -0.425563498  0.140505123 -0.410697605
[196]  0.105243262  0.033510705  0.315117885  0.468036651 -0.034025962
[201] -0.092175143  0.152792420  0.314167426 -0.272194122 -0.167232109
[206] -0.400110282 -0.531985558 -0.172222997 -0.075529123  0.094690653
[211]  0.348250605  0.377432726  0.532148492 -0.557831164  0.542826760
[216] -0.310849760  0.073903048 -0.094743508  0.255477451  0.288012634
[221] -0.185746791  0.296121432  0.255293882 -0.195179141 -0.377739731
[226]  0.107247338 -0.232857868  0.090736276 -0.219515055 -0.333412537
> 
> proc.time()
   user  system elapsed 
  1.390   1.443   2.819 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2025-12-22 r89219) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6036eb3d45f0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6036eb3d45f0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6036eb3d45f0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x6036eb3d45f0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x6036ebc522b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6036ebc522b0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x6036ebc522b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6036ebc522b0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6036ebc522b0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6036eb335a20>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6036eb335a20>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6036eb335a20>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6036eb335a20>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6036eb335a20>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x6036eb335a20>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6036eb335a20>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x6036eb335a20>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6036eb335a20>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6036ebb12e00>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x6036ebb12e00>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6036ebb12e00>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6036ebb12e00>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile299ad05ced2d71" "BufferedMatrixFile299ad07f76ec07"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile299ad05ced2d71" "BufferedMatrixFile299ad07f76ec07"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6036eba1a4c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6036eba1a4c0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6036eba1a4c0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6036eba1a4c0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x6036eba1a4c0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x6036eba1a4c0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6036ebdc37e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6036ebdc37e0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6036ebdc37e0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x6036ebdc37e0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6036ece9c520>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6036ece9c520>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.263   0.059   0.309 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2025-12-22 r89219) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.244   0.045   0.278 

Example timings