Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-10-25 12:04 -0400 (Sat, 25 Oct 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4901
lconwaymacOS 12.7.6 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4691
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4637
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4658
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 257/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.73.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-10-24 13:45 -0400 (Fri, 24 Oct 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 0147962
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.6 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    NA    NA  


CHECK results for BufferedMatrix on lconway

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.73.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
StartedAt: 2025-10-24 19:56:57 -0400 (Fri, 24 Oct 2025)
EndedAt: 2025-10-24 19:57:46 -0400 (Fri, 24 Oct 2025)
EllapsedTime: 49.7 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 Patched (2025-09-10 r88807)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.73.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.1.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.73.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.1.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.308   0.140   0.441 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 480848 25.7    1056621 56.5         NA   634460 33.9
Vcells 891079  6.8    8388608 64.0      98304  2108715 16.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Oct 24 19:57:20 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Oct 24 19:57:21 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600003ed01e0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Oct 24 19:57:25 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Oct 24 19:57:26 2025"
> 
> ColMode(tmp2)
<pointer: 0x600003ed01e0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]       [,4]
[1,] 100.4771575 -0.3601024  1.1261738  0.7742589
[2,]   0.6260937  0.3189740 -2.5214030  0.5463373
[3,]  -0.3183180 -0.2756804 -0.8732595  1.5764203
[4,]  -0.9984254  0.1395241  2.6957283 -1.1140057
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]      [,4]
[1,] 100.4771575 0.3601024 1.1261738 0.7742589
[2,]   0.6260937 0.3189740 2.5214030 0.5463373
[3,]   0.3183180 0.2756804 0.8732595 1.5764203
[4,]   0.9984254 0.1395241 2.6957283 1.1140057
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0238295 0.6000854 1.0612134 0.8799198
[2,]  0.7912609 0.5647778 1.5878926 0.7391463
[3,]  0.5641968 0.5250528 0.9344835 1.2555558
[4,]  0.9992124 0.3735293 1.6418673 1.0554647
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.71545 31.36096 36.73831 34.57346
[2,]  33.53870 30.96675 43.40033 32.93780
[3,]  30.96029 30.52621 35.21809 39.13198
[4,]  35.99055 28.87482 44.11440 36.66865
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600003eb4000>
> exp(tmp5)
<pointer: 0x600003eb4000>
> log(tmp5,2)
<pointer: 0x600003eb4000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 469.7971
> Min(tmp5)
[1] 52.83215
> mean(tmp5)
[1] 73.41667
> Sum(tmp5)
[1] 14683.33
> Var(tmp5)
[1] 882.0349
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 90.21025 73.07905 73.07481 71.72197 71.82220 70.08394 71.04884 73.46924
 [9] 68.88119 70.77526
> rowSums(tmp5)
 [1] 1804.205 1461.581 1461.496 1434.439 1436.444 1401.679 1420.977 1469.385
 [9] 1377.624 1415.505
> rowVars(tmp5)
 [1] 8112.39133  115.43235   87.19902  102.92809   71.05470   59.73625
 [7]  109.77306   68.06015   67.87426   94.30192
> rowSd(tmp5)
 [1] 90.068814 10.743945  9.338041 10.145348  8.429395  7.728923 10.477264
 [8]  8.249858  8.238583  9.710917
> rowMax(tmp5)
 [1] 469.79714  92.94359  95.27034  91.81835  88.55001  79.80477  94.75654
 [8]  86.61302  82.75954  89.85093
> rowMin(tmp5)
 [1] 53.96275 55.22278 57.93024 55.06354 57.85016 52.83215 57.25832 56.94879
 [9] 53.60410 58.17610
> 
> colMeans(tmp5)
 [1] 109.71578  66.99441  78.57019  71.05808  69.44482  68.77288  73.97684
 [8]  70.73485  68.88107  70.75719  70.55311  69.11685  75.15578  69.23150
[15]  74.66421  75.64318  67.97135  69.55550  69.09704  78.43889
> colSums(tmp5)
 [1] 1097.1578  669.9441  785.7019  710.5808  694.4482  687.7288  739.7684
 [8]  707.3485  688.8107  707.5719  705.5311  691.1685  751.5578  692.3150
[15]  746.6421  756.4318  679.7135  695.5550  690.9704  784.3889
> colVars(tmp5)
 [1] 16121.64242    25.62848    88.62896    44.23336   109.73392   138.59885
 [7]    34.89523   128.65985    65.78956    80.19850   144.59617    82.23316
[13]    76.23218    56.95686    67.94778   136.89097    99.98424   104.08279
[19]    69.17636    42.58682
> colSd(tmp5)
 [1] 126.971030   5.062457   9.414295   6.650817  10.475396  11.772801
 [7]   5.907219  11.342833   8.111076   8.955361  12.024815   9.068250
[13]   8.731104   7.546977   8.243044  11.700041   9.999212  10.202098
[19]   8.317233   6.525858
> colMax(tmp5)
 [1] 469.79714  74.38823  91.81835  81.44808  94.75654  86.86902  82.92625
 [8]  92.94359  81.54081  77.47253  88.55001  82.71573  91.91284  84.71030
[15]  88.24421  95.27034  84.00101  86.61302  81.22370  88.49008
> colMin(tmp5)
 [1] 56.94879 60.09915 60.76666 60.95914 56.95699 57.25832 61.04967 55.84739
 [9] 58.17610 54.72302 54.37114 53.60410 61.90695 59.42979 62.03502 53.96275
[17] 55.22278 52.83215 56.10302 69.96621
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 90.21025 73.07905       NA 71.72197 71.82220 70.08394 71.04884 73.46924
 [9] 68.88119 70.77526
> rowSums(tmp5)
 [1] 1804.205 1461.581       NA 1434.439 1436.444 1401.679 1420.977 1469.385
 [9] 1377.624 1415.505
> rowVars(tmp5)
 [1] 8112.39133  115.43235   87.94330  102.92809   71.05470   59.73625
 [7]  109.77306   68.06015   67.87426   94.30192
> rowSd(tmp5)
 [1] 90.068814 10.743945  9.377809 10.145348  8.429395  7.728923 10.477264
 [8]  8.249858  8.238583  9.710917
> rowMax(tmp5)
 [1] 469.79714  92.94359        NA  91.81835  88.55001  79.80477  94.75654
 [8]  86.61302  82.75954  89.85093
> rowMin(tmp5)
 [1] 53.96275 55.22278       NA 55.06354 57.85016 52.83215 57.25832 56.94879
 [9] 53.60410 58.17610
> 
> colMeans(tmp5)
 [1] 109.71578  66.99441  78.57019        NA  69.44482  68.77288  73.97684
 [8]  70.73485  68.88107  70.75719  70.55311  69.11685  75.15578  69.23150
[15]  74.66421  75.64318  67.97135  69.55550  69.09704  78.43889
> colSums(tmp5)
 [1] 1097.1578  669.9441  785.7019        NA  694.4482  687.7288  739.7684
 [8]  707.3485  688.8107  707.5719  705.5311  691.1685  751.5578  692.3150
[15]  746.6421  756.4318  679.7135  695.5550  690.9704  784.3889
> colVars(tmp5)
 [1] 16121.64242    25.62848    88.62896          NA   109.73392   138.59885
 [7]    34.89523   128.65985    65.78956    80.19850   144.59617    82.23316
[13]    76.23218    56.95686    67.94778   136.89097    99.98424   104.08279
[19]    69.17636    42.58682
> colSd(tmp5)
 [1] 126.971030   5.062457   9.414295         NA  10.475396  11.772801
 [7]   5.907219  11.342833   8.111076   8.955361  12.024815   9.068250
[13]   8.731104   7.546977   8.243044  11.700041   9.999212  10.202098
[19]   8.317233   6.525858
> colMax(tmp5)
 [1] 469.79714  74.38823  91.81835        NA  94.75654  86.86902  82.92625
 [8]  92.94359  81.54081  77.47253  88.55001  82.71573  91.91284  84.71030
[15]  88.24421  95.27034  84.00101  86.61302  81.22370  88.49008
> colMin(tmp5)
 [1] 56.94879 60.09915 60.76666       NA 56.95699 57.25832 61.04967 55.84739
 [9] 58.17610 54.72302 54.37114 53.60410 61.90695 59.42979 62.03502 53.96275
[17] 55.22278 52.83215 56.10302 69.96621
> 
> Max(tmp5,na.rm=TRUE)
[1] 469.7971
> Min(tmp5,na.rm=TRUE)
[1] 52.83215
> mean(tmp5,na.rm=TRUE)
[1] 73.37632
> Sum(tmp5,na.rm=TRUE)
[1] 14601.89
> Var(tmp5,na.rm=TRUE)
[1] 886.1622
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.21025 73.07905 72.63411 71.72197 71.82220 70.08394 71.04884 73.46924
 [9] 68.88119 70.77526
> rowSums(tmp5,na.rm=TRUE)
 [1] 1804.205 1461.581 1380.048 1434.439 1436.444 1401.679 1420.977 1469.385
 [9] 1377.624 1415.505
> rowVars(tmp5,na.rm=TRUE)
 [1] 8112.39133  115.43235   87.94330  102.92809   71.05470   59.73625
 [7]  109.77306   68.06015   67.87426   94.30192
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.068814 10.743945  9.377809 10.145348  8.429395  7.728923 10.477264
 [8]  8.249858  8.238583  9.710917
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.79714  92.94359  95.27034  91.81835  88.55001  79.80477  94.75654
 [8]  86.61302  82.75954  89.85093
> rowMin(tmp5,na.rm=TRUE)
 [1] 53.96275 55.22278 57.93024 55.06354 57.85016 52.83215 57.25832 56.94879
 [9] 53.60410 58.17610
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 109.71578  66.99441  78.57019  69.90364  69.44482  68.77288  73.97684
 [8]  70.73485  68.88107  70.75719  70.55311  69.11685  75.15578  69.23150
[15]  74.66421  75.64318  67.97135  69.55550  69.09704  78.43889
> colSums(tmp5,na.rm=TRUE)
 [1] 1097.1578  669.9441  785.7019  629.1327  694.4482  687.7288  739.7684
 [8]  707.3485  688.8107  707.5719  705.5311  691.1685  751.5578  692.3150
[15]  746.6421  756.4318  679.7135  695.5550  690.9704  784.3889
> colVars(tmp5,na.rm=TRUE)
 [1] 16121.64242    25.62848    88.62896    34.76917   109.73392   138.59885
 [7]    34.89523   128.65985    65.78956    80.19850   144.59617    82.23316
[13]    76.23218    56.95686    67.94778   136.89097    99.98424   104.08279
[19]    69.17636    42.58682
> colSd(tmp5,na.rm=TRUE)
 [1] 126.971030   5.062457   9.414295   5.896539  10.475396  11.772801
 [7]   5.907219  11.342833   8.111076   8.955361  12.024815   9.068250
[13]   8.731104   7.546977   8.243044  11.700041   9.999212  10.202098
[19]   8.317233   6.525858
> colMax(tmp5,na.rm=TRUE)
 [1] 469.79714  74.38823  91.81835  79.06554  94.75654  86.86902  82.92625
 [8]  92.94359  81.54081  77.47253  88.55001  82.71573  91.91284  84.71030
[15]  88.24421  95.27034  84.00101  86.61302  81.22370  88.49008
> colMin(tmp5,na.rm=TRUE)
 [1] 56.94879 60.09915 60.76666 60.95914 56.95699 57.25832 61.04967 55.84739
 [9] 58.17610 54.72302 54.37114 53.60410 61.90695 59.42979 62.03502 53.96275
[17] 55.22278 52.83215 56.10302 69.96621
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.21025 73.07905      NaN 71.72197 71.82220 70.08394 71.04884 73.46924
 [9] 68.88119 70.77526
> rowSums(tmp5,na.rm=TRUE)
 [1] 1804.205 1461.581    0.000 1434.439 1436.444 1401.679 1420.977 1469.385
 [9] 1377.624 1415.505
> rowVars(tmp5,na.rm=TRUE)
 [1] 8112.39133  115.43235         NA  102.92809   71.05470   59.73625
 [7]  109.77306   68.06015   67.87426   94.30192
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.068814 10.743945        NA 10.145348  8.429395  7.728923 10.477264
 [8]  8.249858  8.238583  9.710917
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.79714  92.94359        NA  91.81835  88.55001  79.80477  94.75654
 [8]  86.61302  82.75954  89.85093
> rowMin(tmp5,na.rm=TRUE)
 [1] 53.96275 55.22278       NA 55.06354 57.85016 52.83215 57.25832 56.94879
 [9] 53.60410 58.17610
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 114.74644  67.37864  79.15556       NaN  69.87747  69.97762  73.83390
 [8]  70.29524  68.94021  70.36456  68.67134  68.98506  75.75192  69.39595
[15]  75.16597  73.46239  66.19027  69.53115  69.69717  77.76868
> colSums(tmp5,na.rm=TRUE)
 [1] 1032.7180  606.4078  712.4000    0.0000  628.8972  629.7986  664.5051
 [8]  632.6572  620.4619  633.2811  618.0421  620.8655  681.7673  624.5635
[15]  676.4937  661.1615  595.7124  625.7804  627.2745  699.9181
> colVars(tmp5,na.rm=TRUE)
 [1] 17852.13717    27.17113    95.85266          NA   121.34480   139.59551
 [7]    39.02730   142.56828    73.97390    88.48903   122.83405    92.31692
[13]    81.76308    63.77221    73.60887   100.49883    76.79474   117.08647
[19]    73.77164    42.85687
> colSd(tmp5,na.rm=TRUE)
 [1] 133.611890   5.212594   9.790437         NA  11.015662  11.815054
 [7]   6.247184  11.940196   8.600808   9.406861  11.083052   9.608169
[13]   9.042294   7.985751   8.579561  10.024911   8.763261  10.820650
[19]   8.589042   6.546516
> colMax(tmp5,na.rm=TRUE)
 [1] 469.79714  74.38823  91.81835      -Inf  94.75654  86.86902  82.92625
 [8]  92.94359  81.54081  77.47253  88.55001  82.71573  91.91284  84.71030
[15]  88.24421  82.37563  76.94187  86.61302  81.22370  88.49008
> colMin(tmp5,na.rm=TRUE)
 [1] 56.94879 60.09915 60.76666      Inf 56.95699 57.25832 61.04967 55.84739
 [9] 58.17610 54.72302 54.37114 53.60410 61.90695 59.42979 62.03502 53.96275
[17] 55.22278 52.83215 56.10302 69.96621
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 160.6552 371.6528 128.5096 198.3861 194.8558 273.3449 267.3361 203.8472
 [9] 150.3746 161.5213
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 160.6552 371.6528 128.5096 198.3861 194.8558 273.3449 267.3361 203.8472
 [9] 150.3746 161.5213
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  1.989520e-13 -1.421085e-13 -1.421085e-13 -8.526513e-14  0.000000e+00
 [6]  1.705303e-13 -1.705303e-13  1.136868e-13 -8.526513e-14  2.842171e-14
[11] -5.684342e-14 -8.526513e-14 -1.847411e-13  0.000000e+00  1.705303e-13
[16]  1.136868e-13 -2.842171e-13  5.684342e-14 -9.947598e-14  1.136868e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
8   4 
1   18 
9   16 
10   14 
5   2 
4   19 
7   7 
1   15 
5   14 
4   19 
9   7 
6   16 
5   20 
6   5 
8   17 
2   6 
2   8 
10   6 
4   18 
1   16 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.105664
> Min(tmp)
[1] -2.591707
> mean(tmp)
[1] -0.1193682
> Sum(tmp)
[1] -11.93682
> Var(tmp)
[1] 0.8806642
> 
> rowMeans(tmp)
[1] -0.1193682
> rowSums(tmp)
[1] -11.93682
> rowVars(tmp)
[1] 0.8806642
> rowSd(tmp)
[1] 0.9384371
> rowMax(tmp)
[1] 2.105664
> rowMin(tmp)
[1] -2.591707
> 
> colMeans(tmp)
  [1] -0.805416660  0.314322813  2.105664056 -0.259895558 -1.837251281
  [6] -1.105485251 -0.590372133 -0.615779172 -1.581474410  1.121589059
 [11]  0.853911975  0.263855874  0.945684242 -0.636176874 -2.414183010
 [16]  0.267779609  1.007434427  0.081217662 -0.040938965  0.044530904
 [21]  0.348337235  0.083071447 -0.975442967  1.990752251 -1.957068803
 [26] -0.082993538 -1.359960473 -1.755345185  0.057727128  0.114366257
 [31] -0.187241182 -1.388812783 -1.227208600  0.016192925  1.176150062
 [36]  0.468122347 -0.059358426 -1.743793216  0.262635813 -1.073839254
 [41] -1.588208985 -0.789182405 -0.719290777  0.940141890 -0.211253161
 [46] -0.953547686 -0.067411329 -0.251405982 -0.181192703  1.427439363
 [51] -0.136715526 -0.641334604  0.831130367  0.461551965  0.208634499
 [56] -0.288451526 -0.511928707  0.458678095  0.455855933 -0.181802673
 [61] -0.844828181 -0.097168767 -0.303790060 -0.114031777 -0.571053974
 [66]  0.025770336  0.221324900 -1.027041756  2.041718530  1.042677045
 [71] -1.243468663 -0.478898219  0.537926737 -0.339452564  0.368620410
 [76] -0.281394186 -2.591707150 -1.348113276  0.435348062  0.887934229
 [81] -0.598414607  1.114365188 -0.015294565  0.274016514  0.519790398
 [86]  1.665915797  1.319532811  1.118836567 -1.466612371 -0.517646170
 [91] -0.003981158 -0.533724520  0.421331084 -0.120705553  1.150022564
 [96] -0.004525386 -0.104000725  0.493418189 -0.761909967 -0.294615394
> colSums(tmp)
  [1] -0.805416660  0.314322813  2.105664056 -0.259895558 -1.837251281
  [6] -1.105485251 -0.590372133 -0.615779172 -1.581474410  1.121589059
 [11]  0.853911975  0.263855874  0.945684242 -0.636176874 -2.414183010
 [16]  0.267779609  1.007434427  0.081217662 -0.040938965  0.044530904
 [21]  0.348337235  0.083071447 -0.975442967  1.990752251 -1.957068803
 [26] -0.082993538 -1.359960473 -1.755345185  0.057727128  0.114366257
 [31] -0.187241182 -1.388812783 -1.227208600  0.016192925  1.176150062
 [36]  0.468122347 -0.059358426 -1.743793216  0.262635813 -1.073839254
 [41] -1.588208985 -0.789182405 -0.719290777  0.940141890 -0.211253161
 [46] -0.953547686 -0.067411329 -0.251405982 -0.181192703  1.427439363
 [51] -0.136715526 -0.641334604  0.831130367  0.461551965  0.208634499
 [56] -0.288451526 -0.511928707  0.458678095  0.455855933 -0.181802673
 [61] -0.844828181 -0.097168767 -0.303790060 -0.114031777 -0.571053974
 [66]  0.025770336  0.221324900 -1.027041756  2.041718530  1.042677045
 [71] -1.243468663 -0.478898219  0.537926737 -0.339452564  0.368620410
 [76] -0.281394186 -2.591707150 -1.348113276  0.435348062  0.887934229
 [81] -0.598414607  1.114365188 -0.015294565  0.274016514  0.519790398
 [86]  1.665915797  1.319532811  1.118836567 -1.466612371 -0.517646170
 [91] -0.003981158 -0.533724520  0.421331084 -0.120705553  1.150022564
 [96] -0.004525386 -0.104000725  0.493418189 -0.761909967 -0.294615394
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.805416660  0.314322813  2.105664056 -0.259895558 -1.837251281
  [6] -1.105485251 -0.590372133 -0.615779172 -1.581474410  1.121589059
 [11]  0.853911975  0.263855874  0.945684242 -0.636176874 -2.414183010
 [16]  0.267779609  1.007434427  0.081217662 -0.040938965  0.044530904
 [21]  0.348337235  0.083071447 -0.975442967  1.990752251 -1.957068803
 [26] -0.082993538 -1.359960473 -1.755345185  0.057727128  0.114366257
 [31] -0.187241182 -1.388812783 -1.227208600  0.016192925  1.176150062
 [36]  0.468122347 -0.059358426 -1.743793216  0.262635813 -1.073839254
 [41] -1.588208985 -0.789182405 -0.719290777  0.940141890 -0.211253161
 [46] -0.953547686 -0.067411329 -0.251405982 -0.181192703  1.427439363
 [51] -0.136715526 -0.641334604  0.831130367  0.461551965  0.208634499
 [56] -0.288451526 -0.511928707  0.458678095  0.455855933 -0.181802673
 [61] -0.844828181 -0.097168767 -0.303790060 -0.114031777 -0.571053974
 [66]  0.025770336  0.221324900 -1.027041756  2.041718530  1.042677045
 [71] -1.243468663 -0.478898219  0.537926737 -0.339452564  0.368620410
 [76] -0.281394186 -2.591707150 -1.348113276  0.435348062  0.887934229
 [81] -0.598414607  1.114365188 -0.015294565  0.274016514  0.519790398
 [86]  1.665915797  1.319532811  1.118836567 -1.466612371 -0.517646170
 [91] -0.003981158 -0.533724520  0.421331084 -0.120705553  1.150022564
 [96] -0.004525386 -0.104000725  0.493418189 -0.761909967 -0.294615394
> colMin(tmp)
  [1] -0.805416660  0.314322813  2.105664056 -0.259895558 -1.837251281
  [6] -1.105485251 -0.590372133 -0.615779172 -1.581474410  1.121589059
 [11]  0.853911975  0.263855874  0.945684242 -0.636176874 -2.414183010
 [16]  0.267779609  1.007434427  0.081217662 -0.040938965  0.044530904
 [21]  0.348337235  0.083071447 -0.975442967  1.990752251 -1.957068803
 [26] -0.082993538 -1.359960473 -1.755345185  0.057727128  0.114366257
 [31] -0.187241182 -1.388812783 -1.227208600  0.016192925  1.176150062
 [36]  0.468122347 -0.059358426 -1.743793216  0.262635813 -1.073839254
 [41] -1.588208985 -0.789182405 -0.719290777  0.940141890 -0.211253161
 [46] -0.953547686 -0.067411329 -0.251405982 -0.181192703  1.427439363
 [51] -0.136715526 -0.641334604  0.831130367  0.461551965  0.208634499
 [56] -0.288451526 -0.511928707  0.458678095  0.455855933 -0.181802673
 [61] -0.844828181 -0.097168767 -0.303790060 -0.114031777 -0.571053974
 [66]  0.025770336  0.221324900 -1.027041756  2.041718530  1.042677045
 [71] -1.243468663 -0.478898219  0.537926737 -0.339452564  0.368620410
 [76] -0.281394186 -2.591707150 -1.348113276  0.435348062  0.887934229
 [81] -0.598414607  1.114365188 -0.015294565  0.274016514  0.519790398
 [86]  1.665915797  1.319532811  1.118836567 -1.466612371 -0.517646170
 [91] -0.003981158 -0.533724520  0.421331084 -0.120705553  1.150022564
 [96] -0.004525386 -0.104000725  0.493418189 -0.761909967 -0.294615394
> colMedians(tmp)
  [1] -0.805416660  0.314322813  2.105664056 -0.259895558 -1.837251281
  [6] -1.105485251 -0.590372133 -0.615779172 -1.581474410  1.121589059
 [11]  0.853911975  0.263855874  0.945684242 -0.636176874 -2.414183010
 [16]  0.267779609  1.007434427  0.081217662 -0.040938965  0.044530904
 [21]  0.348337235  0.083071447 -0.975442967  1.990752251 -1.957068803
 [26] -0.082993538 -1.359960473 -1.755345185  0.057727128  0.114366257
 [31] -0.187241182 -1.388812783 -1.227208600  0.016192925  1.176150062
 [36]  0.468122347 -0.059358426 -1.743793216  0.262635813 -1.073839254
 [41] -1.588208985 -0.789182405 -0.719290777  0.940141890 -0.211253161
 [46] -0.953547686 -0.067411329 -0.251405982 -0.181192703  1.427439363
 [51] -0.136715526 -0.641334604  0.831130367  0.461551965  0.208634499
 [56] -0.288451526 -0.511928707  0.458678095  0.455855933 -0.181802673
 [61] -0.844828181 -0.097168767 -0.303790060 -0.114031777 -0.571053974
 [66]  0.025770336  0.221324900 -1.027041756  2.041718530  1.042677045
 [71] -1.243468663 -0.478898219  0.537926737 -0.339452564  0.368620410
 [76] -0.281394186 -2.591707150 -1.348113276  0.435348062  0.887934229
 [81] -0.598414607  1.114365188 -0.015294565  0.274016514  0.519790398
 [86]  1.665915797  1.319532811  1.118836567 -1.466612371 -0.517646170
 [91] -0.003981158 -0.533724520  0.421331084 -0.120705553  1.150022564
 [96] -0.004525386 -0.104000725  0.493418189 -0.761909967 -0.294615394
> colRanges(tmp)
           [,1]      [,2]     [,3]       [,4]      [,5]      [,6]       [,7]
[1,] -0.8054167 0.3143228 2.105664 -0.2598956 -1.837251 -1.105485 -0.5903721
[2,] -0.8054167 0.3143228 2.105664 -0.2598956 -1.837251 -1.105485 -0.5903721
           [,8]      [,9]    [,10]    [,11]     [,12]     [,13]      [,14]
[1,] -0.6157792 -1.581474 1.121589 0.853912 0.2638559 0.9456842 -0.6361769
[2,] -0.6157792 -1.581474 1.121589 0.853912 0.2638559 0.9456842 -0.6361769
         [,15]     [,16]    [,17]      [,18]       [,19]     [,20]     [,21]
[1,] -2.414183 0.2677796 1.007434 0.08121766 -0.04093896 0.0445309 0.3483372
[2,] -2.414183 0.2677796 1.007434 0.08121766 -0.04093896 0.0445309 0.3483372
          [,22]     [,23]    [,24]     [,25]       [,26]    [,27]     [,28]
[1,] 0.08307145 -0.975443 1.990752 -1.957069 -0.08299354 -1.35996 -1.755345
[2,] 0.08307145 -0.975443 1.990752 -1.957069 -0.08299354 -1.35996 -1.755345
          [,29]     [,30]      [,31]     [,32]     [,33]      [,34]   [,35]
[1,] 0.05772713 0.1143663 -0.1872412 -1.388813 -1.227209 0.01619292 1.17615
[2,] 0.05772713 0.1143663 -0.1872412 -1.388813 -1.227209 0.01619292 1.17615
         [,36]       [,37]     [,38]     [,39]     [,40]     [,41]      [,42]
[1,] 0.4681223 -0.05935843 -1.743793 0.2626358 -1.073839 -1.588209 -0.7891824
[2,] 0.4681223 -0.05935843 -1.743793 0.2626358 -1.073839 -1.588209 -0.7891824
          [,43]     [,44]      [,45]      [,46]       [,47]     [,48]
[1,] -0.7192908 0.9401419 -0.2112532 -0.9535477 -0.06741133 -0.251406
[2,] -0.7192908 0.9401419 -0.2112532 -0.9535477 -0.06741133 -0.251406
          [,49]    [,50]      [,51]      [,52]     [,53]    [,54]     [,55]
[1,] -0.1811927 1.427439 -0.1367155 -0.6413346 0.8311304 0.461552 0.2086345
[2,] -0.1811927 1.427439 -0.1367155 -0.6413346 0.8311304 0.461552 0.2086345
          [,56]      [,57]     [,58]     [,59]      [,60]      [,61]
[1,] -0.2884515 -0.5119287 0.4586781 0.4558559 -0.1818027 -0.8448282
[2,] -0.2884515 -0.5119287 0.4586781 0.4558559 -0.1818027 -0.8448282
           [,62]      [,63]      [,64]     [,65]      [,66]     [,67]     [,68]
[1,] -0.09716877 -0.3037901 -0.1140318 -0.571054 0.02577034 0.2213249 -1.027042
[2,] -0.09716877 -0.3037901 -0.1140318 -0.571054 0.02577034 0.2213249 -1.027042
        [,69]    [,70]     [,71]      [,72]     [,73]      [,74]     [,75]
[1,] 2.041719 1.042677 -1.243469 -0.4788982 0.5379267 -0.3394526 0.3686204
[2,] 2.041719 1.042677 -1.243469 -0.4788982 0.5379267 -0.3394526 0.3686204
          [,76]     [,77]     [,78]     [,79]     [,80]      [,81]    [,82]
[1,] -0.2813942 -2.591707 -1.348113 0.4353481 0.8879342 -0.5984146 1.114365
[2,] -0.2813942 -2.591707 -1.348113 0.4353481 0.8879342 -0.5984146 1.114365
           [,83]     [,84]     [,85]    [,86]    [,87]    [,88]     [,89]
[1,] -0.01529456 0.2740165 0.5197904 1.665916 1.319533 1.118837 -1.466612
[2,] -0.01529456 0.2740165 0.5197904 1.665916 1.319533 1.118837 -1.466612
          [,90]        [,91]      [,92]     [,93]      [,94]    [,95]
[1,] -0.5176462 -0.003981158 -0.5337245 0.4213311 -0.1207056 1.150023
[2,] -0.5176462 -0.003981158 -0.5337245 0.4213311 -0.1207056 1.150023
            [,96]      [,97]     [,98]    [,99]     [,100]
[1,] -0.004525386 -0.1040007 0.4934182 -0.76191 -0.2946154
[2,] -0.004525386 -0.1040007 0.4934182 -0.76191 -0.2946154
> 
> 
> Max(tmp2)
[1] 2.212244
> Min(tmp2)
[1] -3.038882
> mean(tmp2)
[1] -0.2085053
> Sum(tmp2)
[1] -20.85053
> Var(tmp2)
[1] 0.8473854
> 
> rowMeans(tmp2)
  [1]  0.28680339 -0.82786101 -0.89754979  0.17328133 -0.32111122  0.42000067
  [7]  0.84428591 -0.18819856 -0.74023151  0.09925316  1.66834461 -0.29929245
 [13] -0.39385789 -0.49397996 -1.63738230  1.86688440 -0.62448268  0.54977976
 [19]  0.15171137 -0.11540237 -0.71563451  0.48395067  0.34302044  0.52006197
 [25]  0.17576029  2.21224414  0.87775374 -0.97212989 -0.80884852 -0.25401866
 [31] -1.03273946 -3.03888218  0.11272740 -0.12941049  0.35468694 -0.16366188
 [37]  0.11733438 -0.78574112 -0.13554859 -0.53763195  1.31252948 -0.11470684
 [43] -0.92138100  0.27916241  0.02855494  0.94589902 -0.93059226  0.40943146
 [49] -0.85082330 -0.14037613  0.32441067 -1.58187600 -0.13603507  0.35451514
 [55] -0.88740834 -0.22755997 -1.00629094 -0.06255121  0.01446449 -0.56479371
 [61]  0.28927734 -0.57475975 -1.69777487 -0.32307260  1.24043965 -0.72793553
 [67]  0.68743487  0.43853667 -1.04975556 -0.30456838 -0.35406858 -1.57276704
 [73]  0.21152466  0.84388967 -0.32430198 -0.26478038  1.59645199 -0.35530100
 [79] -1.92604822  0.81827591 -1.50155834  1.00453471  1.07186540 -0.38036403
 [85]  1.71456167 -0.12957885 -0.12478343 -2.13304040 -0.56029186 -1.60294295
 [91] -0.43930064 -1.35086032 -1.52555439 -0.16494425 -1.22216710  0.70989882
 [97] -0.65202740  0.47733719 -1.71239151 -1.36848170
> rowSums(tmp2)
  [1]  0.28680339 -0.82786101 -0.89754979  0.17328133 -0.32111122  0.42000067
  [7]  0.84428591 -0.18819856 -0.74023151  0.09925316  1.66834461 -0.29929245
 [13] -0.39385789 -0.49397996 -1.63738230  1.86688440 -0.62448268  0.54977976
 [19]  0.15171137 -0.11540237 -0.71563451  0.48395067  0.34302044  0.52006197
 [25]  0.17576029  2.21224414  0.87775374 -0.97212989 -0.80884852 -0.25401866
 [31] -1.03273946 -3.03888218  0.11272740 -0.12941049  0.35468694 -0.16366188
 [37]  0.11733438 -0.78574112 -0.13554859 -0.53763195  1.31252948 -0.11470684
 [43] -0.92138100  0.27916241  0.02855494  0.94589902 -0.93059226  0.40943146
 [49] -0.85082330 -0.14037613  0.32441067 -1.58187600 -0.13603507  0.35451514
 [55] -0.88740834 -0.22755997 -1.00629094 -0.06255121  0.01446449 -0.56479371
 [61]  0.28927734 -0.57475975 -1.69777487 -0.32307260  1.24043965 -0.72793553
 [67]  0.68743487  0.43853667 -1.04975556 -0.30456838 -0.35406858 -1.57276704
 [73]  0.21152466  0.84388967 -0.32430198 -0.26478038  1.59645199 -0.35530100
 [79] -1.92604822  0.81827591 -1.50155834  1.00453471  1.07186540 -0.38036403
 [85]  1.71456167 -0.12957885 -0.12478343 -2.13304040 -0.56029186 -1.60294295
 [91] -0.43930064 -1.35086032 -1.52555439 -0.16494425 -1.22216710  0.70989882
 [97] -0.65202740  0.47733719 -1.71239151 -1.36848170
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.28680339 -0.82786101 -0.89754979  0.17328133 -0.32111122  0.42000067
  [7]  0.84428591 -0.18819856 -0.74023151  0.09925316  1.66834461 -0.29929245
 [13] -0.39385789 -0.49397996 -1.63738230  1.86688440 -0.62448268  0.54977976
 [19]  0.15171137 -0.11540237 -0.71563451  0.48395067  0.34302044  0.52006197
 [25]  0.17576029  2.21224414  0.87775374 -0.97212989 -0.80884852 -0.25401866
 [31] -1.03273946 -3.03888218  0.11272740 -0.12941049  0.35468694 -0.16366188
 [37]  0.11733438 -0.78574112 -0.13554859 -0.53763195  1.31252948 -0.11470684
 [43] -0.92138100  0.27916241  0.02855494  0.94589902 -0.93059226  0.40943146
 [49] -0.85082330 -0.14037613  0.32441067 -1.58187600 -0.13603507  0.35451514
 [55] -0.88740834 -0.22755997 -1.00629094 -0.06255121  0.01446449 -0.56479371
 [61]  0.28927734 -0.57475975 -1.69777487 -0.32307260  1.24043965 -0.72793553
 [67]  0.68743487  0.43853667 -1.04975556 -0.30456838 -0.35406858 -1.57276704
 [73]  0.21152466  0.84388967 -0.32430198 -0.26478038  1.59645199 -0.35530100
 [79] -1.92604822  0.81827591 -1.50155834  1.00453471  1.07186540 -0.38036403
 [85]  1.71456167 -0.12957885 -0.12478343 -2.13304040 -0.56029186 -1.60294295
 [91] -0.43930064 -1.35086032 -1.52555439 -0.16494425 -1.22216710  0.70989882
 [97] -0.65202740  0.47733719 -1.71239151 -1.36848170
> rowMin(tmp2)
  [1]  0.28680339 -0.82786101 -0.89754979  0.17328133 -0.32111122  0.42000067
  [7]  0.84428591 -0.18819856 -0.74023151  0.09925316  1.66834461 -0.29929245
 [13] -0.39385789 -0.49397996 -1.63738230  1.86688440 -0.62448268  0.54977976
 [19]  0.15171137 -0.11540237 -0.71563451  0.48395067  0.34302044  0.52006197
 [25]  0.17576029  2.21224414  0.87775374 -0.97212989 -0.80884852 -0.25401866
 [31] -1.03273946 -3.03888218  0.11272740 -0.12941049  0.35468694 -0.16366188
 [37]  0.11733438 -0.78574112 -0.13554859 -0.53763195  1.31252948 -0.11470684
 [43] -0.92138100  0.27916241  0.02855494  0.94589902 -0.93059226  0.40943146
 [49] -0.85082330 -0.14037613  0.32441067 -1.58187600 -0.13603507  0.35451514
 [55] -0.88740834 -0.22755997 -1.00629094 -0.06255121  0.01446449 -0.56479371
 [61]  0.28927734 -0.57475975 -1.69777487 -0.32307260  1.24043965 -0.72793553
 [67]  0.68743487  0.43853667 -1.04975556 -0.30456838 -0.35406858 -1.57276704
 [73]  0.21152466  0.84388967 -0.32430198 -0.26478038  1.59645199 -0.35530100
 [79] -1.92604822  0.81827591 -1.50155834  1.00453471  1.07186540 -0.38036403
 [85]  1.71456167 -0.12957885 -0.12478343 -2.13304040 -0.56029186 -1.60294295
 [91] -0.43930064 -1.35086032 -1.52555439 -0.16494425 -1.22216710  0.70989882
 [97] -0.65202740  0.47733719 -1.71239151 -1.36848170
> 
> colMeans(tmp2)
[1] -0.2085053
> colSums(tmp2)
[1] -20.85053
> colVars(tmp2)
[1] 0.8473854
> colSd(tmp2)
[1] 0.9205354
> colMax(tmp2)
[1] 2.212244
> colMin(tmp2)
[1] -3.038882
> colMedians(tmp2)
[1] -0.1765714
> colRanges(tmp2)
          [,1]
[1,] -3.038882
[2,]  2.212244
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.7194114 -5.1979748 -5.9220190  0.3772284 -3.0559710  1.8529162
 [7]  0.1411246  5.3849506 -7.4983163  2.4095236
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.1346139
[2,] -0.5481555
[3,] -0.0463338
[4,]  0.3883519
[5,]  1.0615490
> 
> rowApply(tmp,sum)
 [1] -1.7445207 -5.4592131 -0.1655705  0.2571726 -1.9765520 -2.6319220
 [7]  3.5107473 -5.8856828  2.3075163 -0.4399243
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    9    4    3    3    6    3    3    9    4    10
 [2,]    2    3    5    5    1    2    8    4    9     4
 [3,]    6    8    2    7    4    9    1    1    1     2
 [4,]    8    1   10    9    5    4    6    3   10     3
 [5,]    1    2    9    2   10   10    9    2    2     7
 [6,]    7    5    1   10    9    6    4    7    6     8
 [7,]    5   10    6    4    3    7    5    5    5     9
 [8,]   10    7    7    8    7    5    7   10    7     6
 [9,]    4    6    4    1    2    8    2    8    3     1
[10,]    3    9    8    6    8    1   10    6    8     5
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -2.86891309  1.10528720 -1.77938328 -0.04372203  0.89269122  2.82429071
 [7]  2.73978106  2.94514421  3.49713505 -3.07649254  2.45067759  0.20807433
[13]  4.57148037 -0.23676800 -3.47105508 -0.85197961  2.34903849 -0.53427034
[19]  2.89870659  2.33403261
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.4592733
[2,] -1.0937482
[3,] -0.6119271
[4,] -0.3446364
[5,]  0.6406720
> 
> rowApply(tmp,sum)
[1]  6.037210  8.327465  1.692184 -2.055642  1.952539
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    3    8   14    6
[2,]    5    7   19   16    7
[3,]    2   14    6    4   15
[4,]   13    6   11    9   10
[5,]   14    1   20    6   17
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]        [,4]       [,5]       [,6]
[1,] -1.4592733 -0.3495581 -1.4022543  0.64673075  0.6786897  2.0938356
[2,] -1.0937482 -0.6131037  1.1213102 -0.68247315 -1.6109826  0.6842922
[3,] -0.6119271  1.5227404 -0.7372518  0.02075592  1.7211244 -0.1911256
[4,]  0.6406720  0.8635946 -1.5018690  0.04438202 -0.7704799  0.9629368
[5,] -0.3446364 -0.3183859  0.7406817 -0.07311757  0.8743397 -0.7256483
           [,7]        [,8]       [,9]       [,10]      [,11]       [,12]
[1,]  0.1793070 0.309225041  1.1371791  1.19048568 -0.1649198  0.05660173
[2,]  2.5541490 1.631526960  0.7705872 -1.09038851  1.4981376  0.63264916
[3,]  1.0151824 0.795146320 -0.7845075 -1.20924008 -1.0162152  1.32972871
[4,] -0.5252781 0.204776269  1.6237201 -1.88732873  1.2050332 -1.82597634
[5,] -0.4835792 0.004469624  0.7501562 -0.08002091  0.9286418  0.01507106
           [,13]       [,14]      [,15]       [,16]       [,17]      [,18]
[1,]  1.87486458 -0.64516661  0.4021387 -0.01448796  0.82344884 -0.4133882
[2,]  1.50094227  0.86328499 -1.1743598 -1.03947720  1.36904481  1.6228828
[3,]  1.09001285  0.04839121 -1.0883863 -0.88364667 -0.08285937 -0.6777118
[4,]  0.16202198 -1.75507873 -0.7287155  0.69492438  0.97634322  0.3935307
[5,] -0.05636131  1.25180113 -0.8817323  0.39070783 -0.73693900 -1.4595838
          [,19]      [,20]
[1,]  0.9372454  0.1565057
[2,]  0.3902797  0.9929112
[3,]  1.3071369  0.1248367
[4,]  0.5039362 -1.3367872
[5,] -0.2398916  2.3965662
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1    col2       col3      col4      col5      col6      col7
row1 -0.6033628 -2.0964 -0.3327835 -2.753713 -1.615168 -1.248889 0.3944755
          col8       col9   col10      col11      col12     col13      col14
row1 -1.047287 -0.4049697 1.21423 -0.0400328 -0.7434319 0.5601546 -0.4576627
          col15     col16    col17     col18      col19     col20
row1 -0.3555779 0.8827968 1.883197 0.2848212 -0.1708639 -1.384409
> tmp[,"col10"]
          col10
row1  1.2142302
row2  0.5300948
row3 -0.7385643
row4  0.6562901
row5  0.8405820
> tmp[c("row1","row5"),]
           col1       col2       col3      col4       col5       col6      col7
row1 -0.6033628 -2.0964001 -0.3327835 -2.753713 -1.6151679 -1.2488891 0.3944755
row5  0.1747880 -0.7488888  2.1594851 -1.459485  0.5613954  0.6962786 0.8004379
          col8       col9    col10      col11      col12     col13      col14
row1 -1.047287 -0.4049697 1.214230 -0.0400328 -0.7434319 0.5601546 -0.4576627
row5 -1.432687 -0.4588446 0.840582  1.8507607 -0.8212046 1.1179615  0.4743365
          col15     col16      col17      col18      col19      col20
row1 -0.3555779 0.8827968  1.8831969  0.2848212 -0.1708639 -1.3844090
row5  0.2199879 1.0685942 -0.9077861 -1.5092056 -0.8610032 -0.1559741
> tmp[,c("col6","col20")]
           col6      col20
row1 -1.2488891 -1.3844090
row2 -0.8842303 -1.7664872
row3 -1.5415444  1.5600336
row4 -1.7944386  0.4945409
row5  0.6962786 -0.1559741
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -1.2488891 -1.3844090
row5  0.6962786 -0.1559741
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.93172 49.31237 50.14372 50.16999 48.09705 105.5202 49.44956 49.83765
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.40841 50.43921 48.90903 49.89494 50.54196 50.67841 49.04865 49.91108
        col17    col18    col19    col20
row1 49.78675 49.48189 49.73965 105.9213
> tmp[,"col10"]
        col10
row1 50.43921
row2 30.37824
row3 33.43155
row4 30.03725
row5 50.70689
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.93172 49.31237 50.14372 50.16999 48.09705 105.5202 49.44956 49.83765
row5 50.66257 50.16491 51.64945 49.43076 51.57474 106.6109 51.29834 49.96217
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.40841 50.43921 48.90903 49.89494 50.54196 50.67841 49.04865 49.91108
row5 51.69739 50.70689 49.91937 48.74546 50.41792 51.26160 50.11305 49.62801
        col17    col18    col19    col20
row1 49.78675 49.48189 49.73965 105.9213
row5 50.48394 48.21363 50.24891 105.4989
> tmp[,c("col6","col20")]
          col6     col20
row1 105.52018 105.92127
row2  74.57113  75.48858
row3  74.49140  74.88287
row4  75.62500  75.76892
row5 106.61086 105.49887
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.5202 105.9213
row5 106.6109 105.4989
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.5202 105.9213
row5 106.6109 105.4989
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  1.4731728
[2,]  1.3229725
[3,] -0.7373254
[4,]  2.7928588
[5,] -1.0125190
> tmp[,c("col17","col7")]
           col17        col7
[1,] -0.01077565  0.69551115
[2,]  0.13118798 -0.65232561
[3,] -0.45761417  1.91216779
[4,] -1.17639997  0.06522558
[5,] -1.52285123  1.53594914
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
              col6       col20
[1,]  1.8144690238 -0.08629219
[2,]  0.2342626524  0.70017265
[3,]  0.3051894736 -1.56511295
[4,]  0.0005997384 -1.12118682
[5,] -0.0059640018 -0.22970000
> subBufferedMatrix(tmp,1,c("col6"))[,1]
         col1
[1,] 1.814469
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] 1.8144690
[2,] 0.2342627
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]        [,3]       [,4]     [,5]       [,6]
row3 -0.5426587 -0.1757126 -0.08823151 -0.9973085 1.100119 -0.4206578
row1  0.3116364  0.6604620 -1.06198814 -2.0444870 1.488599 -0.9546495
            [,7]       [,8]      [,9]     [,10]      [,11]      [,12]
row3 -0.85634979  0.5996040  1.006626  1.469782  0.6052268  0.2104598
row1  0.02851601 -0.4035385 -1.512503 -1.696056 -0.1895686 -2.3666888
          [,13]      [,14]      [,15]     [,16]       [,17]      [,18]
row3 -1.8827336 -0.5164105 -0.3017866 2.1879505  0.05521587 -0.2634649
row1 -0.7294558  0.5649714 -0.5299284 0.1365756 -1.28459219 -1.7061495
         [,19]     [,20]
row3  1.117329  1.033147
row1 -0.397969 -1.061478
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]     [,2]      [,3]      [,4]      [,5]       [,6]      [,7]
row2 0.4388298 1.704978 0.4104436 -1.017799 -0.153658 -0.7685997 -1.816368
          [,8]      [,9]     [,10]
row2 0.7610947 0.1929528 -1.014114
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]       [,2]      [,3]     [,4]      [,5]     [,6]        [,7]
row5 0.1890154 -0.7927646 0.6709654 1.078044 0.7020978 1.179204 -0.03330474
           [,8]     [,9]     [,10]      [,11]       [,12]      [,13]    [,14]
row5 0.03420509 0.795486 -1.590455 -0.2798791 -0.06206764 -0.8118904 -2.41034
         [,15]     [,16]      [,17]     [,18]   [,19]     [,20]
row5 -0.479139 0.8208554 -0.4461979 -1.476461 1.58292 0.4122646
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600003ee0120>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f146cfd3b"
 [2] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f7f6536f6"
 [3] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f4dfb91d1"
 [4] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f3f225856"
 [5] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f67d5967b"
 [6] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f778a9a7e"
 [7] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f2ca50382"
 [8] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f58962b4" 
 [9] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f7eaf1a42"
[10] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f19e52408"
[11] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f12a09680"
[12] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f6cf8b70d"
[13] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f3cb9ee5f"
[14] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f52d0be1e"
[15] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM1629f671ce0c" 
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x600003e6c000>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x600003e6c000>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x600003e6c000>
> rowMedians(tmp)
  [1] -0.395047134  0.231785848  0.235964389 -0.245512821  0.074864585
  [6]  0.102091476  0.174224452  0.303488749 -0.201227701 -0.184102000
 [11] -0.305237541  0.144328257 -0.027314556  0.556051847 -0.453370809
 [16] -0.352299356  0.093777106  0.251693911  0.148935795 -0.194352516
 [21] -0.091912295 -0.732546671  0.070384375 -0.351871103 -0.525341897
 [26] -0.216092541  0.461904748 -0.297288131  0.202613137 -0.557127430
 [31] -0.101167896 -0.182118628  0.282066560 -0.300164627  0.157318103
 [36] -0.106162056  0.131949572  0.211091112 -0.007414671  0.545836239
 [41]  0.041293495 -0.249439679  0.036758720  0.299568326  0.371474807
 [46]  0.298725278  0.554185406  0.988308928 -0.212180972 -0.218917304
 [51] -0.039003696 -0.279225413 -0.345129375 -0.086540433 -0.328140051
 [56]  0.240812718 -0.110571581 -0.042359039  0.333744466  0.101509188
 [61]  0.292271846  0.723427706  0.324410890 -0.201017933  0.500548368
 [66] -0.313839228  0.534723540 -0.153510841 -0.116688533  0.292783809
 [71]  0.079893931 -0.030211714 -0.434240671  0.260528682 -0.104003429
 [76] -0.016496669 -0.618091514  0.026778190 -0.419948666  0.252316384
 [81]  0.159179051  0.208887261  0.325173184 -0.282022299  0.445771760
 [86]  0.224618307  0.139915811  0.437112292 -0.723531718  0.499905093
 [91]  0.171646413 -0.464427600 -0.705744508  0.714284326 -0.047671843
 [96] -0.204182256  0.110318486  0.511927452 -0.407803587  0.232055550
[101]  0.519171010  0.302207787 -0.395554944  0.382618106 -0.028546388
[106] -0.020302946 -0.247552201 -0.128192220  0.321657249 -0.055613288
[111]  0.176593384  0.450000284 -0.190534544 -0.014032870  0.338929880
[116] -0.453717506  0.422192027  0.178047303  0.262156249 -0.143716237
[121]  0.445294196 -0.157416028 -0.190115172  0.103763633  0.315975457
[126] -0.352412345  0.257424428 -0.167845663 -0.279956402 -0.005114030
[131] -0.013432341 -0.225296861  0.267828801 -0.041370857  0.214017088
[136] -0.242701703 -0.157097151  0.358235088  0.423980073  0.679583973
[141] -0.002321631 -0.273447183 -0.373020301  0.213980216  0.226640340
[146]  0.026736524 -0.487964748 -0.103599916 -0.247276913 -0.258084201
[151]  0.320859324 -0.365677580  0.181733779 -0.104900513  0.107802949
[156]  0.127729041  0.487641644  0.182668472  0.367094914 -0.079510177
[161]  0.075869947 -0.125053084  0.262429477  0.379926931 -0.014599349
[166]  0.283728940 -0.423441037  0.366378905  0.151542065 -0.596745697
[171] -0.563028306  0.014339050 -0.313577089  0.147797905 -0.599117914
[176]  0.238416515  0.268175031  0.085803926  0.430529948 -0.500441669
[181]  0.097293754  0.399722096  0.610979198 -0.327543215 -0.566966640
[186] -0.231778236 -0.231360313 -0.170934855 -0.155845666 -0.317096682
[191]  0.272826002 -0.006749385  0.188365657  0.018890694  0.013508931
[196]  0.063828946 -0.573649063 -0.481112275  0.186414367 -0.136010201
[201]  0.643044170 -0.175987904  0.073012566  0.006426115  0.063734939
[206]  0.635577949  0.296796807 -0.336673702  0.200344468 -0.008656412
[211]  0.441223520 -0.297862297  0.158206876 -0.108386711  0.031168736
[216] -0.476369084  0.104451804  0.245144665  0.415284715 -0.710366304
[221]  0.190931475  0.227368361 -0.183614734  0.387182218  0.224167204
[226]  0.054748988 -0.248701095 -0.296848098  0.346114107  0.244745691
> 
> proc.time()
   user  system elapsed 
  2.571  14.592  17.612 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001180000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001180000>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001180000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600001180000>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x6000011a8120>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000011a8120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x6000011a8120>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000011a8120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000011a8120>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000011a82a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000011a82a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000011a82a0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000011a82a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000011a82a0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x6000011a82a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000011a82a0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x6000011a82a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000011a82a0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000011a8480>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x6000011a8480>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000011a8480>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000011a8480>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile167e035ab22a6" "BufferedMatrixFile167e0687adeb" 
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile167e035ab22a6" "BufferedMatrixFile167e0687adeb" 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000011a8720>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000011a8720>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6000011a8720>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6000011a8720>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x6000011a8720>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x6000011a8720>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000011a8900>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000011a8900>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000011a8900>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x6000011a8900>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000011d00c0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000011d00c0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.315   0.136   0.444 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.317   0.086   0.394 

Example timings