Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-10-25 12:03 -0400 (Sat, 25 Oct 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4901
lconwaymacOS 12.7.6 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4691
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4637
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4658
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 257/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.73.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-10-24 13:45 -0400 (Fri, 24 Oct 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 0147962
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.6 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    NA    NA  


CHECK results for BufferedMatrix on nebbiolo2

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.73.0
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings BufferedMatrix_1.73.0.tar.gz
StartedAt: 2025-10-24 21:47:26 -0400 (Fri, 24 Oct 2025)
EndedAt: 2025-10-24 21:47:49 -0400 (Fri, 24 Oct 2025)
EllapsedTime: 23.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings BufferedMatrix_1.73.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 Patched (2025-08-23 r88802)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.73.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.73.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.22-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.22-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.22-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.242   0.045   0.276 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478419 25.6    1047111   56   639600 34.2
Vcells 885237  6.8    8388608   64  2081604 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Oct 24 21:47:40 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Oct 24 21:47:40 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x6033e8845c80>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Oct 24 21:47:41 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Oct 24 21:47:41 2025"
> 
> ColMode(tmp2)
<pointer: 0x6033e8845c80>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]         [,3]       [,4]
[1,] 97.3226965 -1.2522034 -0.008484562 -0.2345833
[2,]  0.3124459 -0.8353118  0.301408033 -0.6591018
[3,] -0.1132476  0.3089535 -1.491361632  0.6990391
[4,]  0.1801039 -0.5129725  1.209803432 -0.2979369
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]        [,3]      [,4]
[1,] 97.3226965 1.2522034 0.008484562 0.2345833
[2,]  0.3124459 0.8353118 0.301408033 0.6591018
[3,]  0.1132476 0.3089535 1.491361632 0.6990391
[4,]  0.1801039 0.5129725 1.209803432 0.2979369
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]       [,3]      [,4]
[1,] 9.8652266 1.1190189 0.09211168 0.4843380
[2,] 0.5589686 0.9139539 0.54900640 0.8118508
[3,] 0.3365228 0.5558359 1.22121318 0.8360856
[4,] 0.4243865 0.7162210 1.09991065 0.5458359
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 220.97496 37.44239 25.92960 30.07796
[2,]  30.90213 34.97485 30.79147 33.77761
[3,]  28.47848 30.86731 38.70349 34.05989
[4,]  29.42397 32.67518 37.20891 30.75630
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x6033eaa1e3b0>
> exp(tmp5)
<pointer: 0x6033eaa1e3b0>
> log(tmp5,2)
<pointer: 0x6033eaa1e3b0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 459.9304
> Min(tmp5)
[1] 52.92969
> mean(tmp5)
[1] 71.51006
> Sum(tmp5)
[1] 14302.01
> Var(tmp5)
[1] 828.7609
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 90.19567 69.98538 68.52035 67.10046 72.86259 69.95125 68.84054 69.06732
 [9] 71.50935 67.06766
> rowSums(tmp5)
 [1] 1803.913 1399.708 1370.407 1342.009 1457.252 1399.025 1376.811 1381.346
 [9] 1430.187 1341.353
> rowVars(tmp5)
 [1] 7645.53091   44.52745   69.16213   80.81771   76.53679   58.68647
 [7]   65.53243   58.21680   82.42274   59.85510
> rowSd(tmp5)
 [1] 87.438727  6.672890  8.316377  8.989867  8.748531  7.660710  8.095210
 [8]  7.629994  9.078697  7.736608
> rowMax(tmp5)
 [1] 459.93043  80.61839  81.65031  83.81807  91.11204  82.13206  83.78753
 [8]  83.43061  88.85150  81.32122
> rowMin(tmp5)
 [1] 53.96907 58.72281 56.30862 52.92969 54.74521 55.76210 56.52808 56.65009
 [9] 56.53197 56.79893
> 
> colMeans(tmp5)
 [1] 104.90647  69.38825  69.03601  65.64088  72.32517  71.53853  70.04817
 [8]  68.63319  69.32140  69.77151  70.85183  72.22950  70.35583  70.41424
[15]  68.55714  72.60489  71.05913  67.93686  68.22500  67.35716
> colSums(tmp5)
 [1] 1049.0647  693.8825  690.3601  656.4088  723.2517  715.3853  700.4817
 [8]  686.3319  693.2140  697.7151  708.5183  722.2950  703.5583  704.1424
[15]  685.5714  726.0489  710.5913  679.3686  682.2500  673.5716
> colVars(tmp5)
 [1] 15623.12412    56.41420   100.57824    36.86421   116.34585    63.98702
 [7]   104.91131    99.30407    78.16260    63.04460    43.38235    29.80254
[13]    40.90645    97.54444    49.94138    49.36093   109.90228    31.31574
[19]    94.93412    64.22795
> colSd(tmp5)
 [1] 124.992496   7.510938  10.028870   6.071590  10.786373   7.999189
 [7]  10.242622   9.965143   8.840961   7.940063   6.586528   5.459170
[13]   6.395815   9.876459   7.066921   7.025733  10.483429   5.596047
[19]   9.743414   8.014234
> colMax(tmp5)
 [1] 459.93043  80.23701  81.74862  73.98012  91.11204  81.32122  88.85150
 [8]  82.43348  81.49175  80.62767  79.34927  77.79945  81.65031  84.83492
[15]  77.90939  83.43061  83.81807  77.28952  81.41339  79.84199
> colMin(tmp5)
 [1] 56.65009 57.76091 53.96907 55.76210 58.24858 60.24329 54.74521 52.92969
 [9] 56.30862 58.44844 61.19863 60.80231 62.77465 57.96206 57.01338 59.59229
[17] 56.53197 59.37218 53.01538 53.76403
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 90.19567 69.98538 68.52035 67.10046 72.86259 69.95125 68.84054       NA
 [9] 71.50935 67.06766
> rowSums(tmp5)
 [1] 1803.913 1399.708 1370.407 1342.009 1457.252 1399.025 1376.811       NA
 [9] 1430.187 1341.353
> rowVars(tmp5)
 [1] 7645.53091   44.52745   69.16213   80.81771   76.53679   58.68647
 [7]   65.53243   56.80423   82.42274   59.85510
> rowSd(tmp5)
 [1] 87.438727  6.672890  8.316377  8.989867  8.748531  7.660710  8.095210
 [8]  7.536858  9.078697  7.736608
> rowMax(tmp5)
 [1] 459.93043  80.61839  81.65031  83.81807  91.11204  82.13206  83.78753
 [8]        NA  88.85150  81.32122
> rowMin(tmp5)
 [1] 53.96907 58.72281 56.30862 52.92969 54.74521 55.76210 56.52808       NA
 [9] 56.53197 56.79893
> 
> colMeans(tmp5)
 [1] 104.90647  69.38825  69.03601  65.64088  72.32517  71.53853  70.04817
 [8]  68.63319  69.32140        NA  70.85183  72.22950  70.35583  70.41424
[15]  68.55714  72.60489  71.05913  67.93686  68.22500  67.35716
> colSums(tmp5)
 [1] 1049.0647  693.8825  690.3601  656.4088  723.2517  715.3853  700.4817
 [8]  686.3319  693.2140        NA  708.5183  722.2950  703.5583  704.1424
[15]  685.5714  726.0489  710.5913  679.3686  682.2500  673.5716
> colVars(tmp5)
 [1] 15623.12412    56.41420   100.57824    36.86421   116.34585    63.98702
 [7]   104.91131    99.30407    78.16260          NA    43.38235    29.80254
[13]    40.90645    97.54444    49.94138    49.36093   109.90228    31.31574
[19]    94.93412    64.22795
> colSd(tmp5)
 [1] 124.992496   7.510938  10.028870   6.071590  10.786373   7.999189
 [7]  10.242622   9.965143   8.840961         NA   6.586528   5.459170
[13]   6.395815   9.876459   7.066921   7.025733  10.483429   5.596047
[19]   9.743414   8.014234
> colMax(tmp5)
 [1] 459.93043  80.23701  81.74862  73.98012  91.11204  81.32122  88.85150
 [8]  82.43348  81.49175        NA  79.34927  77.79945  81.65031  84.83492
[15]  77.90939  83.43061  83.81807  77.28952  81.41339  79.84199
> colMin(tmp5)
 [1] 56.65009 57.76091 53.96907 55.76210 58.24858 60.24329 54.74521 52.92969
 [9] 56.30862       NA 61.19863 60.80231 62.77465 57.96206 57.01338 59.59229
[17] 56.53197 59.37218 53.01538 53.76403
> 
> Max(tmp5,na.rm=TRUE)
[1] 459.9304
> Min(tmp5,na.rm=TRUE)
[1] 52.92969
> mean(tmp5,na.rm=TRUE)
[1] 71.56713
> Sum(tmp5,na.rm=TRUE)
[1] 14241.86
> Var(tmp5,na.rm=TRUE)
[1] 832.2919
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.19567 69.98538 68.52035 67.10046 72.86259 69.95125 68.84054 69.53648
 [9] 71.50935 67.06766
> rowSums(tmp5,na.rm=TRUE)
 [1] 1803.913 1399.708 1370.407 1342.009 1457.252 1399.025 1376.811 1321.193
 [9] 1430.187 1341.353
> rowVars(tmp5,na.rm=TRUE)
 [1] 7645.53091   44.52745   69.16213   80.81771   76.53679   58.68647
 [7]   65.53243   56.80423   82.42274   59.85510
> rowSd(tmp5,na.rm=TRUE)
 [1] 87.438727  6.672890  8.316377  8.989867  8.748531  7.660710  8.095210
 [8]  7.536858  9.078697  7.736608
> rowMax(tmp5,na.rm=TRUE)
 [1] 459.93043  80.61839  81.65031  83.81807  91.11204  82.13206  83.78753
 [8]  83.43061  88.85150  81.32122
> rowMin(tmp5,na.rm=TRUE)
 [1] 53.96907 58.72281 56.30862 52.92969 54.74521 55.76210 56.52808 56.65009
 [9] 56.53197 56.79893
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 104.90647  69.38825  69.03601  65.64088  72.32517  71.53853  70.04817
 [8]  68.63319  69.32140  70.84021  70.85183  72.22950  70.35583  70.41424
[15]  68.55714  72.60489  71.05913  67.93686  68.22500  67.35716
> colSums(tmp5,na.rm=TRUE)
 [1] 1049.0647  693.8825  690.3601  656.4088  723.2517  715.3853  700.4817
 [8]  686.3319  693.2140  637.5619  708.5183  722.2950  703.5583  704.1424
[15]  685.5714  726.0489  710.5913  679.3686  682.2500  673.5716
> colVars(tmp5,na.rm=TRUE)
 [1] 15623.12412    56.41420   100.57824    36.86421   116.34585    63.98702
 [7]   104.91131    99.30407    78.16260    58.07639    43.38235    29.80254
[13]    40.90645    97.54444    49.94138    49.36093   109.90228    31.31574
[19]    94.93412    64.22795
> colSd(tmp5,na.rm=TRUE)
 [1] 124.992496   7.510938  10.028870   6.071590  10.786373   7.999189
 [7]  10.242622   9.965143   8.840961   7.620787   6.586528   5.459170
[13]   6.395815   9.876459   7.066921   7.025733  10.483429   5.596047
[19]   9.743414   8.014234
> colMax(tmp5,na.rm=TRUE)
 [1] 459.93043  80.23701  81.74862  73.98012  91.11204  81.32122  88.85150
 [8]  82.43348  81.49175  80.62767  79.34927  77.79945  81.65031  84.83492
[15]  77.90939  83.43061  83.81807  77.28952  81.41339  79.84199
> colMin(tmp5,na.rm=TRUE)
 [1] 56.65009 57.76091 53.96907 55.76210 58.24858 60.24329 54.74521 52.92969
 [9] 56.30862 58.44844 61.19863 60.80231 62.77465 57.96206 57.01338 59.59229
[17] 56.53197 59.37218 53.01538 53.76403
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.19567 69.98538 68.52035 67.10046 72.86259 69.95125 68.84054      NaN
 [9] 71.50935 67.06766
> rowSums(tmp5,na.rm=TRUE)
 [1] 1803.913 1399.708 1370.407 1342.009 1457.252 1399.025 1376.811    0.000
 [9] 1430.187 1341.353
> rowVars(tmp5,na.rm=TRUE)
 [1] 7645.53091   44.52745   69.16213   80.81771   76.53679   58.68647
 [7]   65.53243         NA   82.42274   59.85510
> rowSd(tmp5,na.rm=TRUE)
 [1] 87.438727  6.672890  8.316377  8.989867  8.748531  7.660710  8.095210
 [8]        NA  9.078697  7.736608
> rowMax(tmp5,na.rm=TRUE)
 [1] 459.93043  80.61839  81.65031  83.81807  91.11204  82.13206  83.78753
 [8]        NA  88.85150  81.32122
> rowMin(tmp5,na.rm=TRUE)
 [1] 53.96907 58.72281 56.30862 52.92969 54.74521 55.76210 56.52808       NA
 [9] 56.53197 56.79893
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 110.26829  70.11946  70.02446  65.16702  73.88924  72.79355  69.14353
 [8]  68.36941  69.45177       NaN  70.71022  72.20575  69.64691  69.92853
[15]  68.05871  71.40203  70.03984  67.84764  68.49483  67.22807
> colSums(tmp5,na.rm=TRUE)
 [1] 992.4146 631.0751 630.2201 586.5032 665.0032 655.1420 622.2918 615.3247
 [9] 625.0659   0.0000 636.3919 649.8517 626.8222 629.3568 612.5284 642.6183
[17] 630.3586 610.6288 616.4535 605.0526
> colVars(tmp5,na.rm=TRUE)
 [1] 17252.58711    57.45095   102.15901    38.94611   103.36816    54.26563
 [7]   108.81859   110.93436    87.74173          NA    48.57953    33.52150
[13]    40.36578   107.08348    53.38922    39.25380   111.95203    35.14067
[19]   105.98180    72.06895
> colSd(tmp5,na.rm=TRUE)
 [1] 131.349104   7.579640  10.107374   6.240682  10.167013   7.366521
 [7]  10.431615  10.532538   9.367055         NA   6.969901   5.789776
[13]   6.353407  10.348115   7.306792   6.265285  10.580738   5.927957
[19]  10.294746   8.489344
> colMax(tmp5,na.rm=TRUE)
 [1] 459.93043  80.23701  81.74862  73.98012  91.11204  81.32122  88.85150
 [8]  82.43348  81.49175      -Inf  79.34927  77.79945  81.65031  84.83492
[15]  77.90939  78.15966  83.81807  77.28952  81.41339  79.84199
> colMin(tmp5,na.rm=TRUE)
 [1] 59.27422 57.76091 53.96907 55.76210 59.89669 60.99693 54.74521 52.92969
 [9] 56.30862      Inf 61.19863 60.80231 62.77465 57.96206 57.01338 59.59229
[17] 56.53197 59.37218 53.01538 53.76403
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 237.0498 339.9207 226.4087 183.9105 128.1775 262.1080 220.2211 167.0573
 [9] 189.2328 331.6570
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 237.0498 339.9207 226.4087 183.9105 128.1775 262.1080 220.2211 167.0573
 [9] 189.2328 331.6570
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  0.000000e+00 -7.105427e-14  2.842171e-13  5.684342e-14  0.000000e+00
 [6] -5.684342e-14 -2.842171e-13  7.105427e-14  5.684342e-14  1.705303e-13
[11]  1.705303e-13 -5.684342e-14 -2.842171e-14  0.000000e+00  0.000000e+00
[16] -5.684342e-14  1.421085e-13  5.684342e-14  8.526513e-14 -8.526513e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
4   19 
4   19 
10   20 
9   18 
6   2 
2   13 
2   2 
10   18 
3   4 
6   1 
4   15 
5   17 
9   7 
8   11 
6   11 
8   12 
1   10 
5   10 
1   5 
2   5 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 3.687709
> Min(tmp)
[1] -3.047733
> mean(tmp)
[1] 0.01545178
> Sum(tmp)
[1] 1.545178
> Var(tmp)
[1] 1.190917
> 
> rowMeans(tmp)
[1] 0.01545178
> rowSums(tmp)
[1] 1.545178
> rowVars(tmp)
[1] 1.190917
> rowSd(tmp)
[1] 1.091291
> rowMax(tmp)
[1] 3.687709
> rowMin(tmp)
[1] -3.047733
> 
> colMeans(tmp)
  [1] -1.426287121  0.992940851 -1.086015503  1.283076036 -1.904794887
  [6]  1.645475187 -0.294053107  0.811344432 -0.546256690 -0.146430459
 [11]  1.607549797 -1.383387342  0.286579869 -0.802997932 -0.977561165
 [16] -0.009213057 -0.007912424 -0.367970600  0.451373680  0.449303148
 [21]  3.687709131 -2.086136414  0.080487300  0.572212500 -0.174384664
 [26] -1.498878449  0.799639534 -1.016470548 -1.145099858 -0.915241549
 [31] -1.924918894  0.687293671  0.202235485 -0.696304015 -0.195575094
 [36] -0.790965400  0.329353884  0.422646992 -0.105641025  0.425319419
 [41] -0.116297626 -2.052146030  0.236560062  1.068924063  0.208873895
 [46] -0.133630048  0.834785341  1.271611748 -0.468297624  0.537113805
 [51] -0.756608390  0.453263627  0.358729204 -0.598963455  0.627861532
 [56]  0.801308543  0.097223071 -0.262916732 -0.978422584  0.843423767
 [61] -0.675202076  0.707011260  1.411464791  0.126172269  0.046965326
 [66]  0.114858979 -0.398770474 -2.304963562  0.606029997  0.971891378
 [71] -0.237557669  0.359818973 -0.715475280 -0.492051848  1.187792578
 [76] -0.955564600 -0.569008691 -1.176813502 -1.053747452 -1.187620799
 [81]  0.990995637  1.175273450  2.353500432  1.088041099 -0.301046705
 [86]  1.907610772  1.221137872  1.536168251 -2.709081826  0.831113899
 [91]  0.371659022 -3.047732613  0.132939605  0.207630072  0.033667004
 [96]  0.595678588 -0.353893927  1.010956401  1.557700701 -0.026810449
> colSums(tmp)
  [1] -1.426287121  0.992940851 -1.086015503  1.283076036 -1.904794887
  [6]  1.645475187 -0.294053107  0.811344432 -0.546256690 -0.146430459
 [11]  1.607549797 -1.383387342  0.286579869 -0.802997932 -0.977561165
 [16] -0.009213057 -0.007912424 -0.367970600  0.451373680  0.449303148
 [21]  3.687709131 -2.086136414  0.080487300  0.572212500 -0.174384664
 [26] -1.498878449  0.799639534 -1.016470548 -1.145099858 -0.915241549
 [31] -1.924918894  0.687293671  0.202235485 -0.696304015 -0.195575094
 [36] -0.790965400  0.329353884  0.422646992 -0.105641025  0.425319419
 [41] -0.116297626 -2.052146030  0.236560062  1.068924063  0.208873895
 [46] -0.133630048  0.834785341  1.271611748 -0.468297624  0.537113805
 [51] -0.756608390  0.453263627  0.358729204 -0.598963455  0.627861532
 [56]  0.801308543  0.097223071 -0.262916732 -0.978422584  0.843423767
 [61] -0.675202076  0.707011260  1.411464791  0.126172269  0.046965326
 [66]  0.114858979 -0.398770474 -2.304963562  0.606029997  0.971891378
 [71] -0.237557669  0.359818973 -0.715475280 -0.492051848  1.187792578
 [76] -0.955564600 -0.569008691 -1.176813502 -1.053747452 -1.187620799
 [81]  0.990995637  1.175273450  2.353500432  1.088041099 -0.301046705
 [86]  1.907610772  1.221137872  1.536168251 -2.709081826  0.831113899
 [91]  0.371659022 -3.047732613  0.132939605  0.207630072  0.033667004
 [96]  0.595678588 -0.353893927  1.010956401  1.557700701 -0.026810449
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -1.426287121  0.992940851 -1.086015503  1.283076036 -1.904794887
  [6]  1.645475187 -0.294053107  0.811344432 -0.546256690 -0.146430459
 [11]  1.607549797 -1.383387342  0.286579869 -0.802997932 -0.977561165
 [16] -0.009213057 -0.007912424 -0.367970600  0.451373680  0.449303148
 [21]  3.687709131 -2.086136414  0.080487300  0.572212500 -0.174384664
 [26] -1.498878449  0.799639534 -1.016470548 -1.145099858 -0.915241549
 [31] -1.924918894  0.687293671  0.202235485 -0.696304015 -0.195575094
 [36] -0.790965400  0.329353884  0.422646992 -0.105641025  0.425319419
 [41] -0.116297626 -2.052146030  0.236560062  1.068924063  0.208873895
 [46] -0.133630048  0.834785341  1.271611748 -0.468297624  0.537113805
 [51] -0.756608390  0.453263627  0.358729204 -0.598963455  0.627861532
 [56]  0.801308543  0.097223071 -0.262916732 -0.978422584  0.843423767
 [61] -0.675202076  0.707011260  1.411464791  0.126172269  0.046965326
 [66]  0.114858979 -0.398770474 -2.304963562  0.606029997  0.971891378
 [71] -0.237557669  0.359818973 -0.715475280 -0.492051848  1.187792578
 [76] -0.955564600 -0.569008691 -1.176813502 -1.053747452 -1.187620799
 [81]  0.990995637  1.175273450  2.353500432  1.088041099 -0.301046705
 [86]  1.907610772  1.221137872  1.536168251 -2.709081826  0.831113899
 [91]  0.371659022 -3.047732613  0.132939605  0.207630072  0.033667004
 [96]  0.595678588 -0.353893927  1.010956401  1.557700701 -0.026810449
> colMin(tmp)
  [1] -1.426287121  0.992940851 -1.086015503  1.283076036 -1.904794887
  [6]  1.645475187 -0.294053107  0.811344432 -0.546256690 -0.146430459
 [11]  1.607549797 -1.383387342  0.286579869 -0.802997932 -0.977561165
 [16] -0.009213057 -0.007912424 -0.367970600  0.451373680  0.449303148
 [21]  3.687709131 -2.086136414  0.080487300  0.572212500 -0.174384664
 [26] -1.498878449  0.799639534 -1.016470548 -1.145099858 -0.915241549
 [31] -1.924918894  0.687293671  0.202235485 -0.696304015 -0.195575094
 [36] -0.790965400  0.329353884  0.422646992 -0.105641025  0.425319419
 [41] -0.116297626 -2.052146030  0.236560062  1.068924063  0.208873895
 [46] -0.133630048  0.834785341  1.271611748 -0.468297624  0.537113805
 [51] -0.756608390  0.453263627  0.358729204 -0.598963455  0.627861532
 [56]  0.801308543  0.097223071 -0.262916732 -0.978422584  0.843423767
 [61] -0.675202076  0.707011260  1.411464791  0.126172269  0.046965326
 [66]  0.114858979 -0.398770474 -2.304963562  0.606029997  0.971891378
 [71] -0.237557669  0.359818973 -0.715475280 -0.492051848  1.187792578
 [76] -0.955564600 -0.569008691 -1.176813502 -1.053747452 -1.187620799
 [81]  0.990995637  1.175273450  2.353500432  1.088041099 -0.301046705
 [86]  1.907610772  1.221137872  1.536168251 -2.709081826  0.831113899
 [91]  0.371659022 -3.047732613  0.132939605  0.207630072  0.033667004
 [96]  0.595678588 -0.353893927  1.010956401  1.557700701 -0.026810449
> colMedians(tmp)
  [1] -1.426287121  0.992940851 -1.086015503  1.283076036 -1.904794887
  [6]  1.645475187 -0.294053107  0.811344432 -0.546256690 -0.146430459
 [11]  1.607549797 -1.383387342  0.286579869 -0.802997932 -0.977561165
 [16] -0.009213057 -0.007912424 -0.367970600  0.451373680  0.449303148
 [21]  3.687709131 -2.086136414  0.080487300  0.572212500 -0.174384664
 [26] -1.498878449  0.799639534 -1.016470548 -1.145099858 -0.915241549
 [31] -1.924918894  0.687293671  0.202235485 -0.696304015 -0.195575094
 [36] -0.790965400  0.329353884  0.422646992 -0.105641025  0.425319419
 [41] -0.116297626 -2.052146030  0.236560062  1.068924063  0.208873895
 [46] -0.133630048  0.834785341  1.271611748 -0.468297624  0.537113805
 [51] -0.756608390  0.453263627  0.358729204 -0.598963455  0.627861532
 [56]  0.801308543  0.097223071 -0.262916732 -0.978422584  0.843423767
 [61] -0.675202076  0.707011260  1.411464791  0.126172269  0.046965326
 [66]  0.114858979 -0.398770474 -2.304963562  0.606029997  0.971891378
 [71] -0.237557669  0.359818973 -0.715475280 -0.492051848  1.187792578
 [76] -0.955564600 -0.569008691 -1.176813502 -1.053747452 -1.187620799
 [81]  0.990995637  1.175273450  2.353500432  1.088041099 -0.301046705
 [86]  1.907610772  1.221137872  1.536168251 -2.709081826  0.831113899
 [91]  0.371659022 -3.047732613  0.132939605  0.207630072  0.033667004
 [96]  0.595678588 -0.353893927  1.010956401  1.557700701 -0.026810449
> colRanges(tmp)
          [,1]      [,2]      [,3]     [,4]      [,5]     [,6]       [,7]
[1,] -1.426287 0.9929409 -1.086016 1.283076 -1.904795 1.645475 -0.2940531
[2,] -1.426287 0.9929409 -1.086016 1.283076 -1.904795 1.645475 -0.2940531
          [,8]       [,9]      [,10]   [,11]     [,12]     [,13]      [,14]
[1,] 0.8113444 -0.5462567 -0.1464305 1.60755 -1.383387 0.2865799 -0.8029979
[2,] 0.8113444 -0.5462567 -0.1464305 1.60755 -1.383387 0.2865799 -0.8029979
          [,15]        [,16]        [,17]      [,18]     [,19]     [,20]
[1,] -0.9775612 -0.009213057 -0.007912424 -0.3679706 0.4513737 0.4493031
[2,] -0.9775612 -0.009213057 -0.007912424 -0.3679706 0.4513737 0.4493031
        [,21]     [,22]     [,23]     [,24]      [,25]     [,26]     [,27]
[1,] 3.687709 -2.086136 0.0804873 0.5722125 -0.1743847 -1.498878 0.7996395
[2,] 3.687709 -2.086136 0.0804873 0.5722125 -0.1743847 -1.498878 0.7996395
         [,28]   [,29]      [,30]     [,31]     [,32]     [,33]     [,34]
[1,] -1.016471 -1.1451 -0.9152415 -1.924919 0.6872937 0.2022355 -0.696304
[2,] -1.016471 -1.1451 -0.9152415 -1.924919 0.6872937 0.2022355 -0.696304
          [,35]      [,36]     [,37]    [,38]     [,39]     [,40]      [,41]
[1,] -0.1955751 -0.7909654 0.3293539 0.422647 -0.105641 0.4253194 -0.1162976
[2,] -0.1955751 -0.7909654 0.3293539 0.422647 -0.105641 0.4253194 -0.1162976
         [,42]     [,43]    [,44]     [,45]    [,46]     [,47]    [,48]
[1,] -2.052146 0.2365601 1.068924 0.2088739 -0.13363 0.8347853 1.271612
[2,] -2.052146 0.2365601 1.068924 0.2088739 -0.13363 0.8347853 1.271612
          [,49]     [,50]      [,51]     [,52]     [,53]      [,54]     [,55]
[1,] -0.4682976 0.5371138 -0.7566084 0.4532636 0.3587292 -0.5989635 0.6278615
[2,] -0.4682976 0.5371138 -0.7566084 0.4532636 0.3587292 -0.5989635 0.6278615
         [,56]      [,57]      [,58]      [,59]     [,60]      [,61]     [,62]
[1,] 0.8013085 0.09722307 -0.2629167 -0.9784226 0.8434238 -0.6752021 0.7070113
[2,] 0.8013085 0.09722307 -0.2629167 -0.9784226 0.8434238 -0.6752021 0.7070113
        [,63]     [,64]      [,65]    [,66]      [,67]     [,68]   [,69]
[1,] 1.411465 0.1261723 0.04696533 0.114859 -0.3987705 -2.304964 0.60603
[2,] 1.411465 0.1261723 0.04696533 0.114859 -0.3987705 -2.304964 0.60603
         [,70]      [,71]    [,72]      [,73]      [,74]    [,75]      [,76]
[1,] 0.9718914 -0.2375577 0.359819 -0.7154753 -0.4920518 1.187793 -0.9555646
[2,] 0.9718914 -0.2375577 0.359819 -0.7154753 -0.4920518 1.187793 -0.9555646
          [,77]     [,78]     [,79]     [,80]     [,81]    [,82]  [,83]
[1,] -0.5690087 -1.176814 -1.053747 -1.187621 0.9909956 1.175273 2.3535
[2,] -0.5690087 -1.176814 -1.053747 -1.187621 0.9909956 1.175273 2.3535
        [,84]      [,85]    [,86]    [,87]    [,88]     [,89]     [,90]
[1,] 1.088041 -0.3010467 1.907611 1.221138 1.536168 -2.709082 0.8311139
[2,] 1.088041 -0.3010467 1.907611 1.221138 1.536168 -2.709082 0.8311139
        [,91]     [,92]     [,93]     [,94]    [,95]     [,96]      [,97]
[1,] 0.371659 -3.047733 0.1329396 0.2076301 0.033667 0.5956786 -0.3538939
[2,] 0.371659 -3.047733 0.1329396 0.2076301 0.033667 0.5956786 -0.3538939
        [,98]    [,99]      [,100]
[1,] 1.010956 1.557701 -0.02681045
[2,] 1.010956 1.557701 -0.02681045
> 
> 
> Max(tmp2)
[1] 2.252906
> Min(tmp2)
[1] -3.260344
> mean(tmp2)
[1] -0.1032953
> Sum(tmp2)
[1] -10.32953
> Var(tmp2)
[1] 1.160791
> 
> rowMeans(tmp2)
  [1]  0.80568386 -0.28012605  0.97801357  0.26453213 -1.49540808  0.43059951
  [7]  0.81034984  1.73933803  0.46037217  1.24663409 -1.16616807  0.02647050
 [13]  0.47489363 -0.13269699  0.33304015 -1.32482681 -0.28170113  0.60290792
 [19] -1.78860281  0.14324023  0.66156712  0.23772954 -1.07940993  0.36529705
 [25]  1.20448941 -1.28135614  0.83542669 -0.74542477  1.05375034  0.28917678
 [31] -0.15506618 -1.54995685 -1.74156811 -0.27572493  0.08777069 -0.71982946
 [37]  1.99932942  0.74101513 -0.90347440 -0.82681543 -0.09643039  0.45167511
 [43]  0.25303714  1.37481915  0.26720911  1.71743630  1.15710179 -2.05118647
 [49] -1.53239931  0.15169958  0.80108947 -0.03683372  0.75883617 -0.43873830
 [55]  0.67215845 -1.34998087 -0.53888112  0.93697570 -0.65419251  2.25290553
 [61]  0.07797723 -1.04544904  0.31224060  0.77713637 -0.61768569 -1.99889431
 [67]  0.52748643  0.26039693 -1.45587538  0.24493649  1.06930109 -0.11251654
 [73]  0.62109459  0.58554870 -0.13980005 -0.31163245  1.53781755 -1.37200492
 [79] -0.08390561  0.08887101  0.46841163  2.05915830 -0.87018284 -0.09001306
 [85] -2.50080342 -1.23644984 -2.21272091  0.61802796 -0.48742957  0.09514050
 [91]  0.36587117 -1.61626637 -0.23615580  0.05518080 -1.34960117 -3.26034408
 [97] -2.12639154  0.55564195 -0.01037184 -1.65504626
> rowSums(tmp2)
  [1]  0.80568386 -0.28012605  0.97801357  0.26453213 -1.49540808  0.43059951
  [7]  0.81034984  1.73933803  0.46037217  1.24663409 -1.16616807  0.02647050
 [13]  0.47489363 -0.13269699  0.33304015 -1.32482681 -0.28170113  0.60290792
 [19] -1.78860281  0.14324023  0.66156712  0.23772954 -1.07940993  0.36529705
 [25]  1.20448941 -1.28135614  0.83542669 -0.74542477  1.05375034  0.28917678
 [31] -0.15506618 -1.54995685 -1.74156811 -0.27572493  0.08777069 -0.71982946
 [37]  1.99932942  0.74101513 -0.90347440 -0.82681543 -0.09643039  0.45167511
 [43]  0.25303714  1.37481915  0.26720911  1.71743630  1.15710179 -2.05118647
 [49] -1.53239931  0.15169958  0.80108947 -0.03683372  0.75883617 -0.43873830
 [55]  0.67215845 -1.34998087 -0.53888112  0.93697570 -0.65419251  2.25290553
 [61]  0.07797723 -1.04544904  0.31224060  0.77713637 -0.61768569 -1.99889431
 [67]  0.52748643  0.26039693 -1.45587538  0.24493649  1.06930109 -0.11251654
 [73]  0.62109459  0.58554870 -0.13980005 -0.31163245  1.53781755 -1.37200492
 [79] -0.08390561  0.08887101  0.46841163  2.05915830 -0.87018284 -0.09001306
 [85] -2.50080342 -1.23644984 -2.21272091  0.61802796 -0.48742957  0.09514050
 [91]  0.36587117 -1.61626637 -0.23615580  0.05518080 -1.34960117 -3.26034408
 [97] -2.12639154  0.55564195 -0.01037184 -1.65504626
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.80568386 -0.28012605  0.97801357  0.26453213 -1.49540808  0.43059951
  [7]  0.81034984  1.73933803  0.46037217  1.24663409 -1.16616807  0.02647050
 [13]  0.47489363 -0.13269699  0.33304015 -1.32482681 -0.28170113  0.60290792
 [19] -1.78860281  0.14324023  0.66156712  0.23772954 -1.07940993  0.36529705
 [25]  1.20448941 -1.28135614  0.83542669 -0.74542477  1.05375034  0.28917678
 [31] -0.15506618 -1.54995685 -1.74156811 -0.27572493  0.08777069 -0.71982946
 [37]  1.99932942  0.74101513 -0.90347440 -0.82681543 -0.09643039  0.45167511
 [43]  0.25303714  1.37481915  0.26720911  1.71743630  1.15710179 -2.05118647
 [49] -1.53239931  0.15169958  0.80108947 -0.03683372  0.75883617 -0.43873830
 [55]  0.67215845 -1.34998087 -0.53888112  0.93697570 -0.65419251  2.25290553
 [61]  0.07797723 -1.04544904  0.31224060  0.77713637 -0.61768569 -1.99889431
 [67]  0.52748643  0.26039693 -1.45587538  0.24493649  1.06930109 -0.11251654
 [73]  0.62109459  0.58554870 -0.13980005 -0.31163245  1.53781755 -1.37200492
 [79] -0.08390561  0.08887101  0.46841163  2.05915830 -0.87018284 -0.09001306
 [85] -2.50080342 -1.23644984 -2.21272091  0.61802796 -0.48742957  0.09514050
 [91]  0.36587117 -1.61626637 -0.23615580  0.05518080 -1.34960117 -3.26034408
 [97] -2.12639154  0.55564195 -0.01037184 -1.65504626
> rowMin(tmp2)
  [1]  0.80568386 -0.28012605  0.97801357  0.26453213 -1.49540808  0.43059951
  [7]  0.81034984  1.73933803  0.46037217  1.24663409 -1.16616807  0.02647050
 [13]  0.47489363 -0.13269699  0.33304015 -1.32482681 -0.28170113  0.60290792
 [19] -1.78860281  0.14324023  0.66156712  0.23772954 -1.07940993  0.36529705
 [25]  1.20448941 -1.28135614  0.83542669 -0.74542477  1.05375034  0.28917678
 [31] -0.15506618 -1.54995685 -1.74156811 -0.27572493  0.08777069 -0.71982946
 [37]  1.99932942  0.74101513 -0.90347440 -0.82681543 -0.09643039  0.45167511
 [43]  0.25303714  1.37481915  0.26720911  1.71743630  1.15710179 -2.05118647
 [49] -1.53239931  0.15169958  0.80108947 -0.03683372  0.75883617 -0.43873830
 [55]  0.67215845 -1.34998087 -0.53888112  0.93697570 -0.65419251  2.25290553
 [61]  0.07797723 -1.04544904  0.31224060  0.77713637 -0.61768569 -1.99889431
 [67]  0.52748643  0.26039693 -1.45587538  0.24493649  1.06930109 -0.11251654
 [73]  0.62109459  0.58554870 -0.13980005 -0.31163245  1.53781755 -1.37200492
 [79] -0.08390561  0.08887101  0.46841163  2.05915830 -0.87018284 -0.09001306
 [85] -2.50080342 -1.23644984 -2.21272091  0.61802796 -0.48742957  0.09514050
 [91]  0.36587117 -1.61626637 -0.23615580  0.05518080 -1.34960117 -3.26034408
 [97] -2.12639154  0.55564195 -0.01037184 -1.65504626
> 
> colMeans(tmp2)
[1] -0.1032953
> colSums(tmp2)
[1] -10.32953
> colVars(tmp2)
[1] 1.160791
> colSd(tmp2)
[1] 1.0774
> colMax(tmp2)
[1] 2.252906
> colMin(tmp2)
[1] -3.260344
> colMedians(tmp2)
[1] 0.08287396
> colRanges(tmp2)
          [,1]
[1,] -3.260344
[2,]  2.252906
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  2.4471841  3.7498625 -2.9352297  6.2094160  0.9251822 -4.2070571
 [7] -3.8021629  2.2978501 -2.1625610  4.9172008
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.3337318
[2,] -0.3314390
[3,]  0.2543604
[4,]  1.2256657
[5,]  1.6127624
> 
> rowApply(tmp,sum)
 [1]  5.5209005  2.4100400 -1.3035513 -2.8228625 -0.4432390 -2.5616185
 [7] -1.6683358  0.3480436  7.3068182  0.6534898
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    4    2    8    1    3    8    9   10    8     1
 [2,]    9    7    2    3    4    9    8    6    7    10
 [3,]   10    6    1    7    2    1    1    3    6     2
 [4,]    3    4    6   10    8    7    7    8   10     9
 [5,]    2    5    7    2   10    3   10    5    3     6
 [6,]    5    3    3    5    1    4    4    9    5     5
 [7,]    6    1    4    4    9    6    2    2    4     3
 [8,]    8    9    9    8    7   10    3    4    2     4
 [9,]    1   10    5    6    5    2    6    7    1     7
[10,]    7    8   10    9    6    5    5    1    9     8
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.5582463 -1.4661799  1.3325641 -0.1568157 -0.5290017  0.1334075
 [7] -2.7559325  0.5694682 -0.9529217 -1.6075822 -0.7577677 -1.4508966
[13]  1.9275527 -0.4028718  1.5297227 -0.2658177 -1.7736726  0.3755061
[19]  1.5498383  2.7048023
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.6525911
[2,] -0.5251507
[3,] -0.4573366
[4,]  0.9391729
[5,]  2.2541519
> 
> rowApply(tmp,sum)
[1] -3.6895890  0.6361958 -5.2325029 -0.3607142  7.2082582
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    2   17    7    7   20
[2,]    7   10    4   10   11
[3,]   14    5    6   18   18
[4,]    6   20    2   15    9
[5,]   12    7   18    3    5
> 
> 
> as.matrix(tmp)
           [,1]        [,2]         [,3]        [,4]       [,5]       [,6]
[1,] -1.6525911 -0.35462185 -0.002946786 -0.67424527 -0.1630200  0.3036906
[2,]  0.9391729  0.10669275 -0.644757340  1.57942246 -0.4388371 -0.3748927
[3,] -0.4573366 -1.14680106 -0.501844426 -1.48534620  1.1395919  0.1472413
[4,] -0.5251507 -0.14208487  1.041448392  0.49103472 -0.6606814  0.4223309
[5,]  2.2541519  0.07063512  1.440664285 -0.06768141 -0.4060551 -0.3649626
            [,7]       [,8]         [,9]      [,10]      [,11]      [,12]
[1,] -0.25369392  0.6884799 -2.465891686 -0.8680949  1.4386068 -0.9278256
[2,] -1.58375871 -0.9846276  0.379274962  0.2334665 -0.5096987  0.8317770
[3,] -0.26975115  0.3938164 -0.125933477 -1.2798444  1.2381745 -0.1638442
[4,] -0.59997362  1.1203954 -0.002389334  0.4594495 -2.3111840 -0.9419531
[5,] -0.04875515 -0.6485959  1.262017789 -0.1525589 -0.6136664 -0.2490507
           [,13]       [,14]       [,15]        [,16]      [,17]      [,18]
[1,] -0.88086332 -0.04965435  0.82204245 -0.245558325 -0.3258237 -0.3431309
[2,]  1.20175622  1.29786920 -1.26281503 -0.008068665  0.3404255  0.4656920
[3,]  1.87270359 -2.72208797 -0.02611098 -0.065598370 -0.4500628 -0.4331147
[4,] -0.33703034  1.68044798  0.77758526 -0.146371571 -0.6468156 -0.6218488
[5,]  0.07098654 -0.60944667  1.21902095  0.199779265 -0.6913961  1.3079085
          [,19]       [,20]
[1,]  0.7665699  1.49898321
[2,] -1.3958031  0.46390527
[3,]  0.1134884 -1.00984260
[4,]  0.6816515 -0.09957462
[5,]  1.3839316  1.85133109
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  647  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  561  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1    col2        col3      col4      col5       col6      col7
row1 -0.5055706 1.48986 -0.06787603 0.1900589 0.7491186 -0.4179087 0.5277439
         col8       col9    col10     col11      col12     col13      col14
row1 1.788986 0.09542441 -0.26999 0.8605142 -0.8582476 -1.487936 -0.2609613
         col15     col16     col17    col18      col19    col20
row1 -2.131209 -1.080484 0.1696466 1.384098 -0.4543774 1.629344
> tmp[,"col10"]
          col10
row1 -0.2699900
row2  0.1307068
row3 -0.3752574
row4  0.3527049
row5 -0.1830454
> tmp[c("row1","row5"),]
           col1      col2        col3       col4       col5       col6
row1 -0.5055706  1.489860 -0.06787603 0.19005893  0.7491186 -0.4179087
row5 -0.4486480 -2.681693 -1.03484101 0.09102656 -1.0734335  1.7926755
          col7       col8        col9      col10      col11      col12
row1 0.5277439  1.7889859  0.09542441 -0.2699900  0.8605142 -0.8582476
row5 0.2491880 -0.8822473 -0.48753624 -0.1830454 -0.5905873  0.7152838
          col13      col14     col15      col16     col17     col18      col19
row1 -1.4879360 -0.2609613 -2.131209 -1.0804842 0.1696466  1.384098 -0.4543774
row5  0.4945989 -0.9970326  1.765059 -0.4046552 0.1512378 -1.739301 -0.2540204
         col20
row1 1.6293440
row5 0.5035712
> tmp[,c("col6","col20")]
           col6       col20
row1 -0.4179087  1.62934405
row2 -1.2420978 -1.14618843
row3 -0.8748030  0.05890115
row4 -2.7158418  0.01067782
row5  1.7926755  0.50357118
> tmp[c("row1","row5"),c("col6","col20")]
           col6     col20
row1 -0.4179087 1.6293440
row5  1.7926755 0.5035712
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1    col2     col3     col4     col5     col6     col7     col8
row1 52.17432 51.4386 50.41444 51.25786 51.74461 106.1199 51.28156 50.92265
         col9    col10    col11    col12  col13    col14    col15    col16
row1 50.00251 48.52235 49.22029 48.51027 51.253 49.70732 49.90965 50.78538
        col17    col18    col19    col20
row1 50.41024 50.89992 49.89969 105.4257
> tmp[,"col10"]
        col10
row1 48.52235
row2 30.17839
row3 29.29401
row4 29.87619
row5 47.70466
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 52.17432 51.43860 50.41444 51.25786 51.74461 106.1199 51.28156 50.92265
row5 51.95498 47.81277 49.59573 48.92144 51.48937 104.4819 48.97830 49.83842
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.00251 48.52235 49.22029 48.51027 51.25300 49.70732 49.90965 50.78538
row5 51.94365 47.70466 48.76130 50.15354 49.70642 49.39891 49.95738 49.38876
        col17    col18    col19    col20
row1 50.41024 50.89992 49.89969 105.4257
row5 48.19429 50.88581 51.08217 106.3698
> tmp[,c("col6","col20")]
          col6     col20
row1 106.11987 105.42574
row2  74.15304  74.39638
row3  75.72539  73.91862
row4  73.81355  75.17231
row5 104.48193 106.36977
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 106.1199 105.4257
row5 104.4819 106.3698
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 106.1199 105.4257
row5 104.4819 106.3698
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -1.1919922
[2,]  0.1662508
[3,] -0.1699475
[4,] -0.4833379
[5,] -1.2802651
> tmp[,c("col17","col7")]
            col17       col7
[1,] -1.331613134  1.2512832
[2,]  0.031604519 -0.5380835
[3,]  1.118271122 -0.6888182
[4,]  0.440922905 -0.3163386
[5,] -0.003457623  0.3382470
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6        col20
[1,]  0.2403734  1.241057110
[2,] -0.6232057 -0.388546830
[3,]  0.0210348 -1.655118678
[4,] -1.2591109 -1.092300753
[5,] -0.6134360 -0.008312297
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] 0.2403734
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,]  0.2403734
[2,] -0.6232057
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]       [,4]       [,5]        [,6]
row3 -0.5687139 -0.6921006 -1.4147513 -0.3609244 -0.9904522  0.06159469
row1 -0.8139833 -0.3617755  0.6311567 -1.7720829 -0.2351217 -1.56062729
           [,7]       [,8]      [,9]      [,10]      [,11]     [,12]      [,13]
row3  0.9310775 -0.2408226  2.049444  0.5669411 -1.1581011 0.7860073 -0.3647581
row1 -0.4812261  0.6743744 -1.064121 -2.1074039  0.1339565 0.6625969 -0.4077778
          [,14]      [,15]      [,16]      [,17]      [,18]     [,19]     [,20]
row3 -0.2889659  0.8204553  1.8523740 -2.5125504 -0.4309231 -1.002304 0.9422141
row1 -1.2456798 -1.5984714 -0.0998658 -0.6254462  0.0474121  2.270338 1.9684028
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]      [,2]       [,3]    [,4]      [,5]      [,6]      [,7]
row2 -0.1783013 -1.499244 0.08905196 1.19288 0.8893705 -1.363667 0.7407492
          [,8]      [,9]      [,10]
row2 -1.223909 0.8734631 -0.9792732
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]      [,2]     [,3]       [,4]     [,5]      [,6]      [,7]
row5 -1.436335 0.1068052 1.380327 -0.1986145 1.114033 -0.702273 -1.099794
          [,8]     [,9]    [,10]    [,11]     [,12]      [,13]     [,14]
row5 0.6223528 1.367212 1.421024 1.204743 0.1222901 -0.1856603 -1.093908
         [,15]     [,16]    [,17]    [,18]      [,19]    [,20]
row5 0.3775222 -0.612368 1.046824 1.257988 -0.2085722 1.497831
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x6033e97801d0>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a72883983c"
 [2] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a75963dbb4"
 [3] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a77e963539"
 [4] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a76da4720b"
 [5] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a72be91e7c"
 [6] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a719e452fa"
 [7] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a73cd0fc7f"
 [8] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a7258d070f"
 [9] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a7e815bf5" 
[10] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a777ec94bb"
[11] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a77e3364f8"
[12] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a735829dab"
[13] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a73b3787fc"
[14] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a71e4af61a"
[15] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMa24a77ed9f903"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x6033ead84f30>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x6033ead84f30>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x6033ead84f30>
> rowMedians(tmp)
  [1] -0.363458386  0.343832752  0.264311676  0.030994990 -0.266842591
  [6]  0.196502658 -0.593524246 -0.002974269  0.682869658 -0.543623632
 [11] -0.313907221 -0.340650175  0.118247081 -0.171978069 -0.479364631
 [16] -0.669760321 -0.168652302 -0.146284488 -0.390240687 -0.299457183
 [21] -0.159420237 -0.138113515  0.060500499 -0.274803947 -0.108468682
 [26]  0.787586716  0.538700517 -0.283338593 -0.225685723  0.484742187
 [31]  0.008673653  0.756209548 -0.375178996 -0.300473191  0.592575409
 [36]  0.037561983  0.493539599 -0.296327246 -0.539839765 -0.170770460
 [41]  0.270666865 -0.072903809 -0.054832145  0.570694528  0.371758968
 [46]  0.223533120  0.042979734 -0.084366287  0.198361455  0.495673825
 [51] -0.121630468 -0.303478158 -0.001787037  0.399377411 -0.025823944
 [56]  0.446262746 -0.401144058  0.073466588 -0.230723610  0.052763675
 [61] -0.418745599  0.123552160  0.028490772 -0.236444643  0.261512598
 [66] -0.669005149  0.146895115  0.294606613 -0.338354750  0.110332671
 [71]  0.036858864 -0.112263380  0.128608712 -0.006813676 -0.466473926
 [76]  0.182295903 -0.603689641  0.468227475 -0.529102978 -0.200579173
 [81]  0.204875736 -0.102547601 -0.045883581 -0.299681332 -0.075819880
 [86]  0.013278999 -0.404546704  0.299680900  0.394186025 -0.502479430
 [91]  0.593502502 -0.416591808  0.170089760  0.564968804 -0.568803804
 [96]  0.644118175 -0.448493074  0.242578952 -0.227043701  0.854693417
[101] -0.014885318 -0.164748052 -0.822286785 -0.001006963  0.179888604
[106] -0.057689292  0.138325731  0.518934028  0.275910416  0.109321481
[111]  0.077124221 -0.003788163 -0.322024041  0.265532863 -0.216241233
[116] -0.165890594  0.105597458 -0.083936389  0.450995608  0.128779381
[121] -0.148777097 -0.204406644 -0.198110207 -0.739075322  0.100432421
[126] -0.313191402  0.062342447  0.231907612 -0.389432136 -0.008163026
[131]  0.250008782  0.104120783 -0.086002205  0.079028869 -0.021729401
[136] -0.132548073 -0.178423310  0.124067323  0.014845861 -0.217980580
[141] -0.017663925 -0.501649445 -0.310127012  0.234362165  0.259265457
[146] -0.095249379  0.343835825  0.084539269  0.120948363  0.197377019
[151]  0.197786313 -0.507892998 -0.476558293 -0.334547624  0.039480840
[156] -0.286820661  0.360171733 -0.596951339 -0.478566366 -0.408203019
[161] -0.114092970  0.174484989 -0.086528066  0.055693860  0.047127550
[166] -0.001072040  0.046069189 -0.843964993 -0.360884045 -0.047075002
[171]  1.106914500 -0.154886988  0.301757940 -0.040483084 -0.939114334
[176]  0.046415749  0.006453247  0.226741890  0.500721965  0.070116379
[181] -0.229090102  0.306978047 -0.245972095  0.492383248  0.105861086
[186] -0.133606132 -0.029204559 -0.610598362 -0.219157817 -0.262661597
[191]  0.029428726  0.135637327 -0.262264889  0.564073747 -0.111168681
[196] -0.058606890 -0.231661961  0.578552950  0.050075993 -0.363555073
[201]  0.268744201  0.136101926 -0.580363354  0.436000337 -0.243513218
[206]  0.036894382  0.203084868 -0.024323436  0.002894583 -0.124637360
[211]  0.451183610  0.526924553 -0.297785563  0.102176981  0.115824252
[216]  0.294346210 -0.121406070 -0.270708202 -0.593749998  0.530534259
[221]  0.228420851  0.279200367 -0.243716194 -0.214056373  0.567005482
[226] -0.368970301  0.634792711  0.177194172 -0.012751466  0.200096487
> 
> proc.time()
   user  system elapsed 
  1.243   0.665   1.896 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x58ad406d8c80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x58ad406d8c80>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x58ad406d8c80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x58ad406d8c80>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x58ad4036fa00>
> .Call("R_bm_AddColumn",P)
<pointer: 0x58ad4036fa00>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x58ad4036fa00>
> .Call("R_bm_AddColumn",P)
<pointer: 0x58ad4036fa00>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x58ad4036fa00>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x58ad4043a660>
> .Call("R_bm_AddColumn",P)
<pointer: 0x58ad4043a660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x58ad4043a660>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x58ad4043a660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x58ad4043a660>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x58ad4043a660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x58ad4043a660>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x58ad4043a660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x58ad4043a660>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x58ad4095c3e0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x58ad4095c3e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x58ad4095c3e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x58ad4095c3e0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilea256e202b2e18" "BufferedMatrixFilea256e96943c"  
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilea256e202b2e18" "BufferedMatrixFilea256e96943c"  
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x58ad42ab9470>
> .Call("R_bm_AddColumn",P)
<pointer: 0x58ad42ab9470>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x58ad42ab9470>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x58ad42ab9470>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x58ad42ab9470>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x58ad42ab9470>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x58ad420f0e70>
> .Call("R_bm_AddColumn",P)
<pointer: 0x58ad420f0e70>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x58ad420f0e70>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x58ad420f0e70>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x58ad40f63720>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x58ad40f63720>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.249   0.039   0.277 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.237   0.052   0.278 

Example timings