Back to Multiple platform build/check report for BioC 3.19:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2024-10-18 20:41 -0400 (Fri, 18 Oct 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 22.04.3 LTS)x86_644.4.1 (2024-06-14) -- "Race for Your Life" 4763
palomino7Windows Server 2022 Datacenterx644.4.1 (2024-06-14 ucrt) -- "Race for Your Life" 4500
merida1macOS 12.7.5 Montereyx86_644.4.1 (2024-06-14) -- "Race for Your Life" 4530
kjohnson1macOS 13.6.6 Venturaarm644.4.1 (2024-06-14) -- "Race for Your Life" 4480
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1992/2300HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.14.0  (landing page)
Joshua David Campbell
Snapshot Date: 2024-10-16 14:00 -0400 (Wed, 16 Oct 2024)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_19
git_last_commit: cd29b84
git_last_commit_date: 2024-04-30 11:06:02 -0400 (Tue, 30 Apr 2024)
nebbiolo1Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    NA  


CHECK results for singleCellTK on merida1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.14.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.14.0.tar.gz
StartedAt: 2024-10-17 13:18:59 -0400 (Thu, 17 Oct 2024)
EndedAt: 2024-10-17 13:51:26 -0400 (Thu, 17 Oct 2024)
EllapsedTime: 1947.1 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.14.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.19-bioc/meat/singleCellTK.Rcheck’
* using R version 4.4.1 (2024-06-14)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.14.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.5Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) dedupRowNames.Rd:10: Lost braces
    10 | \item{x}{A matrix like or /linkS4class{SingleCellExperiment} object, on which
       |                                       ^
checkRd: (-1) dedupRowNames.Rd:14: Lost braces
    14 | /linkS4class{SingleCellExperiment} object. When set to \code{TRUE}, will
       |             ^
checkRd: (-1) dedupRowNames.Rd:22: Lost braces
    22 | By default, a matrix or /linkS4class{SingleCellExperiment} object
       |                                     ^
checkRd: (-1) dedupRowNames.Rd:24: Lost braces
    24 | When \code{x} is a /linkS4class{SingleCellExperiment} and \code{as.rowData}
       |                                ^
checkRd: (-1) plotBubble.Rd:42: Lost braces
    42 | \item{scale}{Option to scale the data. Default: /code{FALSE}. Selected assay will not be scaled.}
       |                                                      ^
checkRd: (-1) runClusterSummaryMetrics.Rd:27: Lost braces
    27 | \item{scale}{Option to scale the data. Default: /code{FALSE}. Selected assay will not be scaled.}
       |                                                      ^
checkRd: (-1) runEmptyDrops.Rd:66: Lost braces
    66 | provided \\linkS4class{SingleCellExperiment} object.
       |                       ^
checkRd: (-1) runSCMerge.Rd:44: Lost braces
    44 | construct pseudo-replicates. The length of code{kmeansK} needs to be the same
       |                                                ^
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                             user system elapsed
plotScDblFinderResults     48.404  1.274  60.292
plotDoubletFinderResults   45.010  0.378  51.714
runDoubletFinder           39.292  0.278  44.721
runScDblFinder             34.621  0.555  40.015
importExampleData          26.441  2.916  36.856
plotBatchCorrCompare       14.060  0.237  16.776
plotScdsHybridResults      13.325  0.163  16.203
plotTSCANClusterDEG        12.848  0.198  15.905
plotBcdsResults            12.139  0.379  14.333
plotDecontXResults         12.010  0.138  13.571
plotFindMarkerHeatmap      11.833  0.107  13.985
plotDEGViolin              10.827  0.212  12.453
plotEmptyDropsScatter      10.596  0.085  12.345
plotEmptyDropsResults      10.530  0.085  12.382
runEmptyDrops               9.893  0.053  11.150
plotCxdsResults             9.371  0.125  10.861
detectCellOutlier           9.261  0.196  10.869
runSeuratSCTransform        9.266  0.147  10.715
convertSCEToSeurat          9.008  0.338  10.534
plotDEGRegression           9.066  0.156  10.747
runDecontX                  8.841  0.082  10.055
getFindMarkerTopTable       8.391  0.147   9.944
plotUMAP                    8.193  0.080   9.294
runFindMarker               8.081  0.084   9.174
runUMAP                     7.956  0.073   8.690
plotDEGHeatmap              7.100  0.175   7.862
plotTSCANPseudotimeHeatmap  5.674  0.057   6.666
plotTSCANDimReduceFeatures  5.546  0.056   6.642
plotTSCANClusterPseudo      5.488  0.061   6.675
plotRunPerCellQCResults     5.388  0.054   6.738
plotTSCANPseudotimeGenes    5.291  0.050   6.164
plotTSCANResults            5.219  0.067   6.274
importGeneSetsFromMSigDB    4.721  0.182   5.764
getEnrichRResult            0.738  0.062   8.195
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  ‘/Users/biocbuild/bbs-3.19-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.364   0.118   0.466 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, table, tapply,
    union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
No annotation package name available in the input data object.
Attempting to directly match identifiers in data to gene sets.
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

No annotation package name available in the input data object.
Attempting to directly match identifiers in data to gene sets.
Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 224 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 224 ]
> 
> proc.time()
   user  system elapsed 
483.000  11.394 572.993 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0040.0050.010
SEG0.0040.0040.008
calcEffectSizes0.4790.0590.607
combineSCE3.3570.1313.921
computeZScore0.4510.0190.534
convertSCEToSeurat 9.008 0.33810.534
convertSeuratToSCE1.2190.0211.467
dedupRowNames0.1460.0110.186
detectCellOutlier 9.261 0.19610.869
diffAbundanceFET0.1090.0090.139
discreteColorPalette0.0110.0000.013
distinctColors0.0040.0010.005
downSampleCells1.4370.1611.904
downSampleDepth1.2910.0821.653
expData-ANY-character-method0.7690.0250.949
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.8380.0160.991
expData-set0.8020.0170.939
expData0.7880.0701.010
expDataNames-ANY-method0.8190.0831.065
expDataNames0.7240.0120.853
expDeleteDataTag0.0660.0040.080
expSetDataTag0.0490.0070.066
expTaggedData0.0530.0040.064
exportSCE0.0440.0080.061
exportSCEtoAnnData0.1430.0060.172
exportSCEtoFlatFile0.1410.0040.173
featureIndex0.0830.0080.107
generateSimulatedData0.1000.0110.127
getBiomarker0.1150.0080.143
getDEGTopTable2.0620.0642.468
getDiffAbundanceResults0.0910.0050.113
getEnrichRResult0.7380.0628.195
getFindMarkerTopTable8.3910.1479.944
getMSigDBTable0.0080.0070.017
getPathwayResultNames0.0430.0080.061
getSampleSummaryStatsTable0.7310.0110.862
getSoupX0.0000.0010.001
getTSCANResults4.1870.0804.936
getTopHVG2.5650.0373.017
importAnnData0.0030.0010.006
importBUStools0.6490.0100.760
importCellRanger2.6350.0693.263
importCellRangerV2Sample0.6440.0230.795
importCellRangerV3Sample0.9660.0401.225
importDropEst0.7440.0120.881
importExampleData26.441 2.91636.856
importGeneSetsFromCollection1.6960.1542.325
importGeneSetsFromGMT0.1390.0100.167
importGeneSetsFromList0.2910.0110.350
importGeneSetsFromMSigDB4.7210.1825.764
importMitoGeneSet0.1090.0150.145
importOptimus0.0030.0010.004
importSEQC0.6390.0280.774
importSTARsolo0.6380.0110.756
iterateSimulations0.7820.0160.913
listSampleSummaryStatsTables0.9590.0191.098
mergeSCEColData1.0790.0361.292
mouseBrainSubsetSCE0.0620.0070.081
msigdb_table0.0020.0060.009
plotBarcodeRankDropsResults1.9970.0542.479
plotBarcodeRankScatter2.1350.0342.488
plotBatchCorrCompare14.060 0.23716.776
plotBatchVariance0.7970.0670.976
plotBcdsResults12.139 0.37914.333
plotBubble2.4300.0922.943
plotClusterAbundance2.1450.0322.479
plotCxdsResults 9.371 0.12510.861
plotDEGHeatmap7.1000.1757.862
plotDEGRegression 9.066 0.15610.747
plotDEGViolin10.827 0.21212.453
plotDEGVolcano2.2480.0343.019
plotDecontXResults12.010 0.13813.571
plotDimRed0.6500.0100.768
plotDoubletFinderResults45.010 0.37851.714
plotEmptyDropsResults10.530 0.08512.382
plotEmptyDropsScatter10.596 0.08512.345
plotFindMarkerHeatmap11.833 0.10713.985
plotMASTThresholdGenes4.0170.0564.885
plotPCA1.1500.0161.375
plotPathway2.0440.0262.425
plotRunPerCellQCResults5.3880.0546.738
plotSCEBarAssayData0.4300.0100.517
plotSCEBarColData0.3400.0090.438
plotSCEBatchFeatureMean0.5450.0070.710
plotSCEDensity0.5570.0130.744
plotSCEDensityAssayData0.3920.0110.517
plotSCEDensityColData0.4890.0100.611
plotSCEDimReduceColData1.7500.0272.256
plotSCEDimReduceFeatures0.9410.0191.149
plotSCEHeatmap1.5930.0201.965
plotSCEScatter0.8530.0181.095
plotSCEViolin0.5890.0130.724
plotSCEViolinAssayData0.6790.0130.841
plotSCEViolinColData0.5620.0140.703
plotScDblFinderResults48.404 1.27460.292
plotScanpyDotPlot0.0440.0070.065
plotScanpyEmbedding0.0440.0060.061
plotScanpyHVG0.0430.0050.058
plotScanpyHeatmap0.0440.0060.059
plotScanpyMarkerGenes0.0460.0040.057
plotScanpyMarkerGenesDotPlot0.0440.0060.061
plotScanpyMarkerGenesHeatmap0.0430.0060.059
plotScanpyMarkerGenesMatrixPlot0.0410.0060.057
plotScanpyMarkerGenesViolin0.0460.0050.065
plotScanpyMatrixPlot0.0440.0070.056
plotScanpyPCA0.0440.0060.058
plotScanpyPCAGeneRanking0.0390.0050.054
plotScanpyPCAVariance0.0420.0050.059
plotScanpyViolin0.0400.0050.056
plotScdsHybridResults13.325 0.16316.203
plotScrubletResults0.0410.0060.054
plotSeuratElbow0.0400.0060.051
plotSeuratHVG0.0420.0060.058
plotSeuratJackStraw0.0410.0060.054
plotSeuratReduction0.0430.0060.060
plotSoupXResults0.0000.0010.001
plotTSCANClusterDEG12.848 0.19815.905
plotTSCANClusterPseudo5.4880.0616.675
plotTSCANDimReduceFeatures5.5460.0566.642
plotTSCANPseudotimeGenes5.2910.0506.164
plotTSCANPseudotimeHeatmap5.6740.0576.666
plotTSCANResults5.2190.0676.274
plotTSNE1.2480.0181.438
plotTopHVG1.1660.0281.382
plotUMAP8.1930.0809.294
readSingleCellMatrix0.0100.0010.012
reportCellQC0.4080.0090.469
reportDropletQC0.0420.0040.052
reportQCTool0.4100.0090.467
retrieveSCEIndex0.0550.0050.068
runBBKNN0.0000.0000.001
runBarcodeRankDrops0.9580.0141.096
runBcds3.7850.0614.337
runCellQC0.4120.0110.466
runClusterSummaryMetrics1.7160.0591.999
runComBatSeq1.0190.0291.206
runCxds1.0590.0171.212
runCxdsBcdsHybrid3.8770.0824.475
runDEAnalysis1.6530.0401.929
runDecontX 8.841 0.08210.055
runDimReduce1.0510.0131.180
runDoubletFinder39.292 0.27844.721
runDropletQC0.0410.0060.051
runEmptyDrops 9.893 0.05311.150
runEnrichR0.6780.0411.870
runFastMNN4.0850.0714.741
runFeatureSelection0.4580.0080.522
runFindMarker8.0810.0849.174
runGSVA1.9410.0532.247
runHarmony0.0840.0020.097
runKMeans1.0420.0191.193
runLimmaBC0.1920.0020.217
runMNNCorrect1.2770.0181.472
runModelGeneVar1.0490.0161.196
runNormalization3.0870.0333.465
runPerCellQC1.1880.0211.387
runSCANORAMA0.0000.0010.001
runSCMerge0.0070.0020.009
runScDblFinder34.621 0.55540.015
runScanpyFindClusters0.0420.0060.058
runScanpyFindHVG0.0400.0050.050
runScanpyFindMarkers0.0410.0050.054
runScanpyNormalizeData0.4460.0090.510
runScanpyPCA0.0390.0060.049
runScanpyScaleData0.0410.0060.053
runScanpyTSNE0.0400.0070.055
runScanpyUMAP0.0400.0050.049
runScranSNN1.7470.0251.990
runScrublet0.0410.0050.048
runSeuratFindClusters0.0390.0030.049
runSeuratFindHVG1.8520.1142.240
runSeuratHeatmap0.0490.0060.061
runSeuratICA0.0450.0060.057
runSeuratJackStraw0.0440.0040.058
runSeuratNormalizeData0.0440.0050.058
runSeuratPCA0.0450.0040.053
runSeuratSCTransform 9.266 0.14710.715
runSeuratScaleData0.0430.0050.054
runSeuratUMAP0.0420.0050.054
runSingleR0.0860.0050.104
runSoupX0.0000.0000.001
runTSCAN3.5700.0504.087
runTSCANClusterDEAnalysis3.8060.0394.392
runTSCANDEG3.6160.0374.100
runTSNE1.7360.0241.996
runUMAP7.9560.0738.690
runVAM1.2810.0201.456
runZINBWaVE0.0070.0020.010
sampleSummaryStats0.6930.0110.780
scaterCPM0.2320.0040.257
scaterPCA1.5300.0141.682
scaterlogNormCounts0.4920.0080.546
sce0.0390.0080.052
sctkListGeneSetCollections0.1690.0110.200
sctkPythonInstallConda0.0000.0010.001
sctkPythonInstallVirtualEnv0.0010.0010.001
selectSCTKConda0.0000.0000.001
selectSCTKVirtualEnvironment0.0000.0010.001
setRowNames0.2390.0150.277
setSCTKDisplayRow0.9150.0131.011
singleCellTK0.0000.0010.000
subDiffEx1.0960.0361.245
subsetSCECols0.4150.0130.481
subsetSCERows0.9480.0191.059
summarizeSCE0.1310.0100.160
trimCounts0.3530.0120.398