Back to Multiple platform build/check report for BioC 3.19:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2024-10-18 20:42 -0400 (Fri, 18 Oct 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 22.04.3 LTS)x86_644.4.1 (2024-06-14) -- "Race for Your Life" 4763
palomino7Windows Server 2022 Datacenterx644.4.1 (2024-06-14 ucrt) -- "Race for Your Life" 4500
merida1macOS 12.7.5 Montereyx86_644.4.1 (2024-06-14) -- "Race for Your Life" 4530
kjohnson1macOS 13.6.6 Venturaarm644.4.1 (2024-06-14) -- "Race for Your Life" 4480
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1992/2300HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.14.0  (landing page)
Joshua David Campbell
Snapshot Date: 2024-10-16 14:00 -0400 (Wed, 16 Oct 2024)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_19
git_last_commit: cd29b84
git_last_commit_date: 2024-04-30 11:06:02 -0400 (Tue, 30 Apr 2024)
nebbiolo1Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    NA  


CHECK results for singleCellTK on kjohnson1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.14.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.14.0.tar.gz
StartedAt: 2024-10-18 12:39:37 -0400 (Fri, 18 Oct 2024)
EndedAt: 2024-10-18 12:59:16 -0400 (Fri, 18 Oct 2024)
EllapsedTime: 1179.4 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.14.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.19-bioc/meat/singleCellTK.Rcheck’
* using R version 4.4.1 (2024-06-14)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Ventura 13.6.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.14.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    extdata   1.5Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) dedupRowNames.Rd:10: Lost braces
    10 | \item{x}{A matrix like or /linkS4class{SingleCellExperiment} object, on which
       |                                       ^
checkRd: (-1) dedupRowNames.Rd:14: Lost braces
    14 | /linkS4class{SingleCellExperiment} object. When set to \code{TRUE}, will
       |             ^
checkRd: (-1) dedupRowNames.Rd:22: Lost braces
    22 | By default, a matrix or /linkS4class{SingleCellExperiment} object
       |                                     ^
checkRd: (-1) dedupRowNames.Rd:24: Lost braces
    24 | When \code{x} is a /linkS4class{SingleCellExperiment} and \code{as.rowData}
       |                                ^
checkRd: (-1) plotBubble.Rd:42: Lost braces
    42 | \item{scale}{Option to scale the data. Default: /code{FALSE}. Selected assay will not be scaled.}
       |                                                      ^
checkRd: (-1) runClusterSummaryMetrics.Rd:27: Lost braces
    27 | \item{scale}{Option to scale the data. Default: /code{FALSE}. Selected assay will not be scaled.}
       |                                                      ^
checkRd: (-1) runEmptyDrops.Rd:66: Lost braces
    66 | provided \\linkS4class{SingleCellExperiment} object.
       |                       ^
checkRd: (-1) runSCMerge.Rd:44: Lost braces
    44 | construct pseudo-replicates. The length of code{kmeansK} needs to be the same
       |                                                ^
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotDoubletFinderResults 45.655  0.304  47.670
runDoubletFinder         40.892  0.234  41.824
plotScDblFinderResults   38.544  0.828  41.821
importExampleData        24.689  2.293  31.262
runScDblFinder           22.584  0.422  24.148
plotBatchCorrCompare     14.681  0.149  15.323
plotScdsHybridResults    11.079  0.239  11.727
plotBcdsResults          10.212  0.254  10.877
plotDecontXResults       10.246  0.087  11.018
runDecontX                9.076  0.075  10.209
runUMAP                   8.951  0.071   9.548
plotUMAP                  8.851  0.079   9.309
detectCellOutlier         8.317  0.151   8.937
plotCxdsResults           7.979  0.077   8.392
runSeuratSCTransform      7.112  0.100   7.418
plotEmptyDropsScatter     6.855  0.036   7.062
plotEmptyDropsResults     6.849  0.039   7.343
plotTSCANClusterDEG       5.928  0.100   6.131
runEmptyDrops             5.792  0.032   6.009
convertSCEToSeurat        5.092  0.283   5.696
plotFindMarkerHeatmap     5.054  0.048   5.278
plotDEGViolin             4.798  0.109   5.196
getEnrichRResult          0.266  0.048   7.318
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  ‘/Users/biocbuild/bbs-3.19-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.233   0.079   0.323 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, table, tapply,
    union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
No annotation package name available in the input data object.
Attempting to directly match identifiers in data to gene sets.
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

No annotation package name available in the input data object.
Attempting to directly match identifiers in data to gene sets.
Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 224 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 224 ]
> 
> proc.time()
   user  system elapsed 
324.248   7.770 360.684 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0040.0040.007
SEG0.0050.0040.008
calcEffectSizes0.2340.0230.268
combineSCE1.5850.0611.698
computeZScore0.3210.0110.350
convertSCEToSeurat5.0920.2835.696
convertSeuratToSCE0.5600.0120.593
dedupRowNames0.0740.0050.081
detectCellOutlier8.3170.1518.937
diffAbundanceFET0.0870.0070.137
discreteColorPalette0.0080.0010.008
distinctColors0.0020.0010.002
downSampleCells0.8230.0980.967
downSampleDepth0.6630.0620.755
expData-ANY-character-method0.3390.0090.355
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3980.0110.430
expData-set0.3840.0310.430
expData0.3590.0280.406
expDataNames-ANY-method0.3650.0300.411
expDataNames0.3330.0090.353
expDeleteDataTag0.0500.0040.054
expSetDataTag0.0400.0050.045
expTaggedData0.0410.0050.046
exportSCE0.0330.0070.042
exportSCEtoAnnData0.1360.0110.149
exportSCEtoFlatFile0.1340.0080.145
featureIndex0.0490.0060.057
generateSimulatedData0.0790.0090.092
getBiomarker0.0850.0080.097
getDEGTopTable0.9600.0501.041
getDiffAbundanceResults0.0680.0060.077
getEnrichRResult0.2660.0487.318
getFindMarkerTopTable3.7830.0653.965
getMSigDBTable0.0050.0040.009
getPathwayResultNames0.0380.0050.045
getSampleSummaryStatsTable0.3800.0090.399
getSoupX000
getTSCANResults2.1590.0582.330
getTopHVG1.4350.0261.504
importAnnData0.0020.0000.003
importBUStools0.2900.0050.305
importCellRanger1.3730.0471.494
importCellRangerV2Sample0.2750.0040.283
importCellRangerV3Sample0.4600.0190.502
importDropEst0.3640.0050.377
importExampleData24.689 2.29331.262
importGeneSetsFromCollection0.8650.0830.964
importGeneSetsFromGMT0.0820.0080.097
importGeneSetsFromList0.1470.0080.165
importGeneSetsFromMSigDB3.1870.1753.545
importMitoGeneSet0.0740.0100.086
importOptimus0.0020.0000.003
importSEQC0.3480.0110.368
importSTARsolo0.2890.0050.303
iterateSimulations0.4460.0130.476
listSampleSummaryStatsTables0.5610.0090.588
mergeSCEColData0.5380.0230.578
mouseBrainSubsetSCE0.0530.0070.060
msigdb_table0.0020.0030.005
plotBarcodeRankDropsResults1.0410.0201.084
plotBarcodeRankScatter0.9550.0120.983
plotBatchCorrCompare14.681 0.14915.323
plotBatchVariance0.3880.0270.436
plotBcdsResults10.212 0.25410.877
plotBubble1.2510.0361.325
plotClusterAbundance0.9260.0130.969
plotCxdsResults7.9790.0778.392
plotDEGHeatmap3.2860.1203.580
plotDEGRegression3.9660.0804.326
plotDEGViolin4.7980.1095.196
plotDEGVolcano1.2640.0201.339
plotDecontXResults10.246 0.08711.018
plotDimRed0.3350.0090.354
plotDoubletFinderResults45.655 0.30447.670
plotEmptyDropsResults6.8490.0397.343
plotEmptyDropsScatter6.8550.0367.062
plotFindMarkerHeatmap5.0540.0485.278
plotMASTThresholdGenes1.7330.0411.857
plotPCA0.5500.0150.598
plotPathway0.9410.0180.996
plotRunPerCellQCResults2.3700.0312.538
plotSCEBarAssayData0.2390.0120.254
plotSCEBarColData0.1700.0100.186
plotSCEBatchFeatureMean0.2370.0040.248
plotSCEDensity0.2940.0110.310
plotSCEDensityAssayData0.1950.0090.213
plotSCEDensityColData0.2350.0110.252
plotSCEDimReduceColData0.7970.0190.844
plotSCEDimReduceFeatures0.4670.0130.493
plotSCEHeatmap0.7200.0120.748
plotSCEScatter0.3960.0130.417
plotSCEViolin0.2740.0120.293
plotSCEViolinAssayData0.3470.0110.368
plotSCEViolinColData0.2610.0110.277
plotScDblFinderResults38.544 0.82841.821
plotScanpyDotPlot0.0390.0020.042
plotScanpyEmbedding0.0380.0060.045
plotScanpyHVG0.0390.0070.048
plotScanpyHeatmap0.0350.0060.045
plotScanpyMarkerGenes0.0350.0040.041
plotScanpyMarkerGenesDotPlot0.0380.0070.048
plotScanpyMarkerGenesHeatmap0.0340.0050.042
plotScanpyMarkerGenesMatrixPlot0.0330.0050.041
plotScanpyMarkerGenesViolin0.0390.0040.045
plotScanpyMatrixPlot0.0360.0060.048
plotScanpyPCA0.0350.0040.039
plotScanpyPCAGeneRanking0.0380.0080.048
plotScanpyPCAVariance0.0360.0050.042
plotScanpyViolin0.0370.0030.039
plotScdsHybridResults11.079 0.23911.727
plotScrubletResults0.0350.0080.043
plotSeuratElbow0.0320.0050.039
plotSeuratHVG0.0400.0060.045
plotSeuratJackStraw0.0380.0060.046
plotSeuratReduction0.0350.0050.040
plotSoupXResults0.0000.0010.000
plotTSCANClusterDEG5.9280.1006.131
plotTSCANClusterPseudo2.6170.0402.844
plotTSCANDimReduceFeatures2.6520.0382.750
plotTSCANPseudotimeGenes2.4410.0362.523
plotTSCANPseudotimeHeatmap2.7340.0412.840
plotTSCANResults2.4640.0362.617
plotTSNE0.6210.0160.650
plotTopHVG0.6370.0170.668
plotUMAP8.8510.0799.309
readSingleCellMatrix0.0060.0010.007
reportCellQC0.2130.0090.247
reportDropletQC0.0370.0060.043
reportQCTool0.2100.0080.234
retrieveSCEIndex0.0430.0050.059
runBBKNN0.0000.0000.001
runBarcodeRankDrops0.4920.0140.559
runBcds2.1210.1492.505
runCellQC0.2120.0140.252
runClusterSummaryMetrics0.8660.0391.025
runComBatSeq0.5450.0170.629
runCxds0.5620.0130.647
runCxdsBcdsHybrid2.1480.1602.570
runDEAnalysis0.9090.0381.083
runDecontX 9.076 0.07510.209
runDimReduce0.5210.0150.604
runDoubletFinder40.892 0.23441.824
runDropletQC0.0360.0090.045
runEmptyDrops5.7920.0326.009
runEnrichR0.3490.0363.639
runFastMNN1.7610.0381.896
runFeatureSelection0.2640.0070.289
runFindMarker3.8130.0664.204
runGSVA1.0150.0401.117
runHarmony0.0440.0020.047
runKMeans0.5380.0160.579
runLimmaBC0.0890.0020.093
runMNNCorrect0.6900.0100.729
runModelGeneVar0.5340.0120.561
runNormalization2.3080.0342.418
runPerCellQC0.5840.0150.615
runSCANORAMA000
runSCMerge0.0060.0010.007
runScDblFinder22.584 0.42224.148
runScanpyFindClusters0.0350.0050.040
runScanpyFindHVG0.0360.0040.040
runScanpyFindMarkers0.0360.0070.043
runScanpyNormalizeData0.2300.0060.239
runScanpyPCA0.0350.0040.047
runScanpyScaleData0.0350.0040.039
runScanpyTSNE0.0390.0030.041
runScanpyUMAP0.0350.0030.040
runScranSNN0.8830.0180.943
runScrublet0.0340.0070.045
runSeuratFindClusters0.0350.0040.039
runSeuratFindHVG0.9560.0581.029
runSeuratHeatmap0.0380.0050.044
runSeuratICA0.0420.0030.047
runSeuratJackStraw0.0380.0070.046
runSeuratNormalizeData0.0350.0030.038
runSeuratPCA0.0380.0060.045
runSeuratSCTransform7.1120.1007.418
runSeuratScaleData0.0390.0070.047
runSeuratUMAP0.0390.0080.049
runSingleR0.0420.0040.049
runSoupX000
runTSCAN1.7960.0281.892
runTSCANClusterDEAnalysis1.8270.0271.970
runTSCANDEG1.7850.0291.878
runTSNE1.1470.0211.199
runUMAP8.9510.0719.548
runVAM0.5390.0110.579
runZINBWaVE0.0030.0000.005
sampleSummaryStats0.2660.0090.302
scaterCPM0.1880.0060.200
scaterPCA0.7780.0150.829
scaterlogNormCounts0.3210.0060.341
sce0.0350.0100.050
sctkListGeneSetCollections0.1020.0110.120
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.1960.0170.231
setSCTKDisplayRow0.4730.0100.514
singleCellTK000
subDiffEx0.6180.0310.668
subsetSCECols0.2230.0110.241
subsetSCERows0.4940.0150.529
summarizeSCE0.0880.0110.103
trimCounts0.2730.0200.312