Back to Multiple platform build/check report for BioC 3.19: simplified long |
|
This page was generated on 2024-10-18 20:39 -0400 (Fri, 18 Oct 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4763 |
palomino7 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4500 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4530 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4480 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 987/2300 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.10.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.10.0 |
Command: E:\biocbuild\bbs-3.19-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.19-bioc\R\library --no-vignettes --timings HPiP_1.10.0.tar.gz |
StartedAt: 2024-10-17 02:23:57 -0400 (Thu, 17 Oct 2024) |
EndedAt: 2024-10-17 02:28:57 -0400 (Thu, 17 Oct 2024) |
EllapsedTime: 300.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### E:\biocbuild\bbs-3.19-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.19-bioc\R\library --no-vignettes --timings HPiP_1.10.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'E:/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck' * using R version 4.4.1 (2024-06-14 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.2.0 GNU Fortran (GCC) 13.2.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.10.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 33.97 1.98 36.15 corr_plot 33.21 1.68 34.92 var_imp 32.94 1.32 34.25 pred_ensembel 15.21 0.46 11.67 enrichfindP 0.59 0.14 13.94 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See 'E:/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### E:\biocbuild\bbs-3.19-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'E:/biocbuild/bbs-3.19-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 98.556749 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.343401 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.209083 iter 10 value 94.439858 iter 20 value 86.614283 iter 30 value 83.661313 iter 40 value 83.564520 iter 50 value 83.563671 final value 83.563640 converged Fitting Repeat 4 # weights: 103 initial value 105.053982 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.524554 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.687721 final value 94.443243 converged Fitting Repeat 2 # weights: 305 initial value 96.162642 iter 10 value 94.476471 iter 10 value 94.476471 iter 10 value 94.476471 final value 94.476471 converged Fitting Repeat 3 # weights: 305 initial value 101.364461 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 117.280308 final value 94.443243 converged Fitting Repeat 5 # weights: 305 initial value 97.291988 iter 10 value 93.487638 iter 20 value 93.395985 iter 30 value 93.196112 final value 93.196015 converged Fitting Repeat 1 # weights: 507 initial value 96.283686 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 104.873619 final value 94.443243 converged Fitting Repeat 3 # weights: 507 initial value 107.095772 final value 94.443243 converged Fitting Repeat 4 # weights: 507 initial value 102.257822 iter 10 value 94.413881 final value 94.400000 converged Fitting Repeat 5 # weights: 507 initial value 106.629320 final value 94.443243 converged Fitting Repeat 1 # weights: 103 initial value 118.867070 iter 10 value 94.463909 iter 20 value 92.820601 iter 30 value 91.795272 iter 40 value 91.377547 iter 50 value 91.101129 iter 60 value 91.048610 iter 70 value 90.953127 final value 90.950849 converged Fitting Repeat 2 # weights: 103 initial value 98.350381 iter 10 value 94.444481 iter 20 value 94.419757 iter 30 value 92.985708 iter 40 value 89.525928 iter 50 value 85.925181 iter 60 value 85.589648 iter 70 value 85.196229 iter 80 value 84.837526 iter 90 value 84.625727 final value 84.625447 converged Fitting Repeat 3 # weights: 103 initial value 96.584213 iter 10 value 94.481782 iter 20 value 93.222134 iter 30 value 88.923327 iter 40 value 86.130242 iter 50 value 84.995538 iter 60 value 84.640726 iter 70 value 84.638211 final value 84.637945 converged Fitting Repeat 4 # weights: 103 initial value 106.286581 iter 10 value 90.696785 iter 20 value 82.400936 iter 30 value 81.611931 iter 40 value 81.341136 iter 50 value 81.047079 iter 60 value 81.029191 final value 81.017477 converged Fitting Repeat 5 # weights: 103 initial value 98.705284 iter 10 value 89.809173 iter 20 value 84.281384 iter 30 value 83.992059 iter 40 value 83.202762 iter 50 value 82.604280 iter 60 value 81.987195 iter 70 value 81.776608 iter 80 value 81.371661 iter 90 value 81.345588 final value 81.345309 converged Fitting Repeat 1 # weights: 305 initial value 99.945858 iter 10 value 94.526170 iter 20 value 94.495216 iter 30 value 93.932113 iter 40 value 91.914759 iter 50 value 91.409560 iter 60 value 90.816401 iter 70 value 90.759819 iter 80 value 89.214703 iter 90 value 85.504499 iter 100 value 83.717807 final value 83.717807 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.702956 iter 10 value 94.475126 iter 20 value 94.213880 iter 30 value 87.571119 iter 40 value 86.885457 iter 50 value 86.408191 iter 60 value 85.808578 iter 70 value 81.605372 iter 80 value 80.637078 iter 90 value 80.031153 iter 100 value 79.916417 final value 79.916417 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.336950 iter 10 value 94.463632 iter 20 value 85.723853 iter 30 value 82.906129 iter 40 value 82.032431 iter 50 value 81.945353 iter 60 value 81.724894 iter 70 value 81.161922 iter 80 value 80.116120 iter 90 value 79.838136 iter 100 value 79.804443 final value 79.804443 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.859152 iter 10 value 93.220564 iter 20 value 86.903122 iter 30 value 85.761111 iter 40 value 85.459550 iter 50 value 85.243800 iter 60 value 83.839176 iter 70 value 82.568139 iter 80 value 82.213618 iter 90 value 81.430869 iter 100 value 81.369260 final value 81.369260 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.054237 iter 10 value 93.358451 iter 20 value 88.510657 iter 30 value 87.201408 iter 40 value 84.909022 iter 50 value 82.828697 iter 60 value 82.581145 iter 70 value 82.516050 iter 80 value 82.418227 iter 90 value 81.625640 iter 100 value 80.674863 final value 80.674863 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.995822 iter 10 value 88.909434 iter 20 value 85.328313 iter 30 value 84.468774 iter 40 value 84.387244 iter 50 value 83.527909 iter 60 value 82.611108 iter 70 value 82.146762 iter 80 value 81.790578 iter 90 value 80.893893 iter 100 value 80.728907 final value 80.728907 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.034434 iter 10 value 95.535743 iter 20 value 94.498633 iter 30 value 94.310032 iter 40 value 89.963011 iter 50 value 86.867006 iter 60 value 84.719795 iter 70 value 83.435219 iter 80 value 82.617751 iter 90 value 82.355456 iter 100 value 81.523138 final value 81.523138 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.726153 iter 10 value 93.847308 iter 20 value 90.873204 iter 30 value 88.190001 iter 40 value 86.749777 iter 50 value 83.170362 iter 60 value 81.228562 iter 70 value 79.945364 iter 80 value 79.845373 iter 90 value 79.829622 iter 100 value 79.807868 final value 79.807868 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 116.452346 iter 10 value 94.946428 iter 20 value 89.265873 iter 30 value 86.266035 iter 40 value 85.547680 iter 50 value 85.106684 iter 60 value 83.745197 iter 70 value 81.896341 iter 80 value 80.499003 iter 90 value 80.167354 iter 100 value 79.926428 final value 79.926428 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.383853 iter 10 value 93.813564 iter 20 value 86.454742 iter 30 value 85.855592 iter 40 value 82.942527 iter 50 value 80.674920 iter 60 value 79.731129 iter 70 value 79.561900 iter 80 value 79.514856 iter 90 value 79.260013 iter 100 value 79.177583 final value 79.177583 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.237703 final value 94.479813 converged Fitting Repeat 2 # weights: 103 initial value 97.094592 final value 94.485579 converged Fitting Repeat 3 # weights: 103 initial value 103.741689 final value 94.485841 converged Fitting Repeat 4 # weights: 103 initial value 108.545940 final value 94.485867 converged Fitting Repeat 5 # weights: 103 initial value 98.563767 final value 94.488168 converged Fitting Repeat 1 # weights: 305 initial value 101.220465 iter 10 value 92.643005 iter 20 value 92.628987 iter 30 value 92.576428 iter 40 value 92.529195 iter 50 value 92.528162 iter 60 value 92.527607 final value 92.527361 converged Fitting Repeat 2 # weights: 305 initial value 101.455916 iter 10 value 94.448310 iter 20 value 94.381122 iter 30 value 94.379491 final value 94.379475 converged Fitting Repeat 3 # weights: 305 initial value 96.813156 iter 10 value 94.359395 iter 20 value 84.714659 iter 30 value 83.862386 iter 40 value 83.749723 iter 50 value 83.500260 iter 60 value 83.489944 iter 70 value 83.485745 iter 80 value 83.456750 iter 90 value 83.455808 final value 83.454908 converged Fitting Repeat 4 # weights: 305 initial value 118.721693 iter 10 value 94.489173 iter 20 value 94.478288 iter 30 value 92.573235 iter 40 value 92.520391 iter 50 value 92.461139 iter 60 value 91.584854 iter 70 value 86.263872 iter 80 value 84.308571 iter 90 value 83.582654 iter 100 value 82.957015 final value 82.957015 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.414994 iter 10 value 94.448224 iter 20 value 94.443886 final value 94.443603 converged Fitting Repeat 1 # weights: 507 initial value 133.948773 iter 10 value 94.460778 iter 20 value 94.450597 iter 30 value 93.634152 iter 40 value 88.216097 iter 50 value 88.120369 iter 60 value 88.095665 iter 70 value 88.089041 iter 80 value 87.768006 iter 90 value 83.268469 iter 100 value 82.004638 final value 82.004638 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.846910 iter 10 value 94.484523 iter 20 value 94.458656 iter 30 value 88.231389 iter 40 value 88.146534 iter 50 value 87.739409 iter 60 value 87.586915 final value 87.579766 converged Fitting Repeat 3 # weights: 507 initial value 122.824704 iter 10 value 94.451298 iter 20 value 94.439104 iter 30 value 93.851974 iter 40 value 85.401795 iter 50 value 84.542820 iter 60 value 81.561330 iter 70 value 77.940896 iter 80 value 77.697029 iter 90 value 77.682334 iter 100 value 77.678480 final value 77.678480 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.280599 iter 10 value 94.492039 iter 20 value 88.765695 iter 30 value 88.216356 iter 40 value 88.208880 iter 50 value 88.208633 final value 88.207468 converged Fitting Repeat 5 # weights: 507 initial value 106.347344 iter 10 value 91.616031 iter 20 value 85.768238 iter 30 value 85.746072 iter 40 value 85.719671 iter 50 value 85.600889 final value 85.599245 converged Fitting Repeat 1 # weights: 103 initial value 109.526050 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.400455 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.663763 iter 10 value 90.372455 iter 20 value 90.292985 iter 30 value 88.503808 iter 40 value 86.469962 iter 50 value 86.433671 final value 86.431987 converged Fitting Repeat 4 # weights: 103 initial value 95.856028 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.523285 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.660031 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 112.635957 final value 93.809648 converged Fitting Repeat 3 # weights: 305 initial value 97.532650 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 124.751922 final value 94.484205 converged Fitting Repeat 5 # weights: 305 initial value 114.647574 final value 93.809648 converged Fitting Repeat 1 # weights: 507 initial value 100.350427 final value 94.484137 converged Fitting Repeat 2 # weights: 507 initial value 95.430806 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 107.447751 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 111.220695 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 96.471691 iter 10 value 93.576815 iter 20 value 92.270782 iter 30 value 92.270366 final value 92.270352 converged Fitting Repeat 1 # weights: 103 initial value 104.452061 iter 10 value 94.489018 iter 20 value 94.428000 iter 30 value 93.898208 iter 40 value 93.870064 iter 50 value 89.949906 iter 60 value 85.047388 iter 70 value 82.464523 iter 80 value 81.984306 iter 90 value 81.875054 iter 100 value 81.626584 final value 81.626584 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.600463 iter 10 value 94.500824 iter 20 value 93.913599 iter 30 value 87.654317 iter 40 value 85.270668 iter 50 value 84.783577 iter 60 value 83.076253 iter 70 value 82.454013 iter 80 value 82.327048 iter 90 value 82.301065 iter 100 value 82.277861 final value 82.277861 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.922912 iter 10 value 91.836625 iter 20 value 86.151424 iter 30 value 85.732176 iter 40 value 84.060667 iter 50 value 82.948811 iter 60 value 82.346835 iter 70 value 82.299570 iter 80 value 82.277863 final value 82.277856 converged Fitting Repeat 4 # weights: 103 initial value 97.396475 iter 10 value 94.509984 iter 20 value 86.852858 iter 30 value 85.061331 iter 40 value 84.706611 iter 50 value 83.789850 iter 60 value 83.252314 iter 70 value 83.112146 iter 80 value 82.592151 iter 90 value 82.276328 iter 100 value 81.764088 final value 81.764088 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 102.260592 iter 10 value 94.448938 iter 20 value 92.854634 iter 30 value 92.386161 iter 40 value 83.491076 iter 50 value 82.751893 iter 60 value 82.265719 iter 70 value 81.562032 iter 80 value 81.468512 final value 81.468233 converged Fitting Repeat 1 # weights: 305 initial value 101.777953 iter 10 value 94.465309 iter 20 value 84.616190 iter 30 value 84.234219 iter 40 value 83.942832 iter 50 value 83.721013 iter 60 value 83.184495 iter 70 value 82.286224 iter 80 value 82.112006 iter 90 value 82.036182 iter 100 value 82.001436 final value 82.001436 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.630910 iter 10 value 97.042817 iter 20 value 86.178306 iter 30 value 83.869369 iter 40 value 83.387383 iter 50 value 82.655236 iter 60 value 82.170704 iter 70 value 81.968183 iter 80 value 81.143412 iter 90 value 80.776448 iter 100 value 80.764181 final value 80.764181 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.006003 iter 10 value 94.438862 iter 20 value 93.951357 iter 30 value 93.843070 iter 40 value 87.131299 iter 50 value 84.695125 iter 60 value 84.097290 iter 70 value 82.678484 iter 80 value 81.616029 iter 90 value 80.896022 iter 100 value 80.841043 final value 80.841043 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 121.030922 iter 10 value 94.464739 iter 20 value 92.947481 iter 30 value 88.393382 iter 40 value 84.377117 iter 50 value 83.875504 iter 60 value 83.682808 iter 70 value 83.470329 iter 80 value 83.011044 iter 90 value 81.974107 iter 100 value 81.258667 final value 81.258667 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.188664 iter 10 value 94.224389 iter 20 value 84.791329 iter 30 value 84.366680 iter 40 value 83.182524 iter 50 value 82.023950 iter 60 value 81.227179 iter 70 value 81.050941 iter 80 value 80.870695 iter 90 value 80.629324 iter 100 value 80.519456 final value 80.519456 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 122.614862 iter 10 value 94.653280 iter 20 value 86.932976 iter 30 value 85.428825 iter 40 value 82.357320 iter 50 value 81.438511 iter 60 value 80.139011 iter 70 value 80.095612 iter 80 value 79.925851 iter 90 value 79.860084 iter 100 value 79.782090 final value 79.782090 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.706529 iter 10 value 93.798216 iter 20 value 87.828185 iter 30 value 84.252556 iter 40 value 82.363148 iter 50 value 81.768917 iter 60 value 81.181684 iter 70 value 80.610937 iter 80 value 80.541916 iter 90 value 80.481551 iter 100 value 80.388596 final value 80.388596 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.077088 iter 10 value 95.846375 iter 20 value 95.260592 iter 30 value 87.265074 iter 40 value 84.819702 iter 50 value 82.529664 iter 60 value 82.303836 iter 70 value 82.274786 iter 80 value 81.789270 iter 90 value 80.861979 iter 100 value 80.323288 final value 80.323288 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.814175 iter 10 value 90.511341 iter 20 value 84.244425 iter 30 value 83.644318 iter 40 value 83.027294 iter 50 value 82.790122 iter 60 value 82.281789 iter 70 value 82.255487 iter 80 value 82.074630 iter 90 value 81.505486 iter 100 value 81.097131 final value 81.097131 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.308988 iter 10 value 94.762745 iter 20 value 94.408502 iter 30 value 86.166536 iter 40 value 85.286221 iter 50 value 85.157106 iter 60 value 84.816180 iter 70 value 84.004080 iter 80 value 82.022487 iter 90 value 81.362116 iter 100 value 80.816412 final value 80.816412 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.748296 final value 94.485789 converged Fitting Repeat 2 # weights: 103 initial value 96.877273 final value 94.486012 converged Fitting Repeat 3 # weights: 103 initial value 96.836913 final value 94.485972 converged Fitting Repeat 4 # weights: 103 initial value 104.214847 iter 10 value 94.485941 final value 94.484218 converged Fitting Repeat 5 # weights: 103 initial value 96.963778 final value 94.485744 converged Fitting Repeat 1 # weights: 305 initial value 99.437822 iter 10 value 94.489416 iter 20 value 94.484006 final value 93.810448 converged Fitting Repeat 2 # weights: 305 initial value 98.954837 iter 10 value 88.966350 iter 20 value 88.249920 iter 30 value 86.949924 iter 40 value 86.938236 iter 50 value 86.935846 iter 60 value 84.866332 iter 70 value 84.825442 iter 80 value 84.823214 iter 80 value 84.823214 final value 84.823214 converged Fitting Repeat 3 # weights: 305 initial value 96.073459 iter 10 value 94.392548 iter 20 value 94.340006 iter 30 value 94.321063 iter 40 value 90.253702 iter 50 value 88.799752 iter 60 value 87.534357 iter 70 value 84.377780 iter 80 value 84.044904 iter 90 value 83.779007 iter 100 value 82.700590 final value 82.700590 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.666069 iter 10 value 94.383507 iter 20 value 94.359271 iter 30 value 94.356730 iter 40 value 94.315360 iter 50 value 85.402353 iter 60 value 82.515896 iter 70 value 82.085606 iter 80 value 81.441647 iter 90 value 80.655011 iter 100 value 80.480845 final value 80.480845 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.123453 iter 10 value 94.489800 iter 20 value 94.484288 iter 30 value 91.923993 iter 40 value 90.722603 iter 50 value 82.294270 iter 60 value 81.575580 iter 70 value 81.342149 iter 80 value 81.279352 iter 90 value 80.753066 iter 100 value 80.444944 final value 80.444944 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.753248 iter 10 value 94.362877 iter 20 value 94.357565 iter 30 value 93.050577 iter 40 value 86.957431 iter 50 value 86.943379 iter 60 value 86.939908 iter 70 value 85.742376 iter 80 value 83.154701 iter 90 value 82.166125 iter 100 value 81.913823 final value 81.913823 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 128.489614 iter 10 value 94.361161 iter 20 value 94.328158 iter 30 value 90.458382 iter 40 value 86.315544 iter 50 value 86.313300 iter 60 value 85.466357 final value 85.465999 converged Fitting Repeat 3 # weights: 507 initial value 97.342308 iter 10 value 94.362337 iter 20 value 94.354540 iter 30 value 92.606383 iter 40 value 86.345931 iter 50 value 84.299453 iter 60 value 83.849550 iter 70 value 82.875199 iter 80 value 81.692592 iter 90 value 81.692190 final value 81.691930 converged Fitting Repeat 4 # weights: 507 initial value 101.603215 iter 10 value 92.249323 iter 20 value 91.899525 iter 30 value 91.898740 iter 40 value 91.893792 iter 50 value 91.561361 iter 60 value 90.910043 iter 70 value 83.883734 iter 80 value 81.932379 iter 90 value 80.370089 iter 100 value 79.654499 final value 79.654499 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.822547 iter 10 value 94.364678 iter 20 value 94.358698 iter 30 value 93.930725 iter 40 value 88.106674 iter 50 value 84.848207 iter 60 value 84.823475 iter 70 value 84.798377 iter 80 value 84.798147 iter 90 value 84.797364 iter 100 value 83.833638 final value 83.833638 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 115.122782 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 102.414498 final value 93.836066 converged Fitting Repeat 3 # weights: 103 initial value 102.009720 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 100.649514 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 96.230663 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 101.893237 iter 10 value 93.901766 iter 20 value 85.323632 iter 30 value 85.321488 iter 40 value 85.321378 iter 40 value 85.321378 iter 40 value 85.321378 final value 85.321378 converged Fitting Repeat 2 # weights: 305 initial value 108.074364 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 95.963820 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 104.146725 final value 93.836066 converged Fitting Repeat 5 # weights: 305 initial value 104.704921 iter 10 value 85.976292 iter 20 value 84.734963 iter 30 value 84.734144 iter 30 value 84.734144 iter 30 value 84.734144 final value 84.734144 converged Fitting Repeat 1 # weights: 507 initial value 100.289975 iter 10 value 93.836067 final value 93.836066 converged Fitting Repeat 2 # weights: 507 initial value 107.241171 iter 10 value 93.836166 final value 93.836066 converged Fitting Repeat 3 # weights: 507 initial value 96.081111 final value 94.052447 converged Fitting Repeat 4 # weights: 507 initial value 101.832754 iter 10 value 88.065838 iter 20 value 85.746854 iter 30 value 85.652946 iter 40 value 85.651313 final value 85.651282 converged Fitting Repeat 5 # weights: 507 initial value 96.184194 final value 93.836066 converged Fitting Repeat 1 # weights: 103 initial value 99.032911 iter 10 value 93.898025 iter 20 value 93.423615 iter 30 value 92.702047 iter 40 value 82.694996 iter 50 value 82.276368 iter 60 value 82.117655 iter 70 value 81.365422 iter 80 value 81.324922 iter 90 value 80.540993 iter 100 value 80.538893 final value 80.538893 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 95.707825 iter 10 value 92.130961 iter 20 value 86.994686 iter 30 value 86.299374 iter 40 value 84.132390 iter 50 value 83.539683 iter 60 value 82.435052 iter 70 value 81.586881 iter 80 value 80.815268 iter 90 value 80.723728 iter 100 value 80.599454 final value 80.599454 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.656427 iter 10 value 94.057323 iter 20 value 94.028433 iter 30 value 93.941886 iter 40 value 93.936336 iter 50 value 93.935612 iter 60 value 93.935094 iter 70 value 93.717662 iter 80 value 88.777539 iter 90 value 83.460039 iter 100 value 82.472619 final value 82.472619 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.654769 iter 10 value 93.978763 iter 20 value 87.861415 iter 30 value 85.479754 iter 40 value 82.216766 iter 50 value 81.323438 iter 60 value 80.841976 iter 70 value 80.839463 final value 80.839355 converged Fitting Repeat 5 # weights: 103 initial value 100.536063 iter 10 value 93.887887 iter 20 value 89.039161 iter 30 value 87.372673 iter 40 value 85.895743 iter 50 value 81.789181 iter 60 value 81.009145 iter 70 value 80.998883 final value 80.998875 converged Fitting Repeat 1 # weights: 305 initial value 123.833673 iter 10 value 94.255270 iter 20 value 93.172773 iter 30 value 87.874841 iter 40 value 86.007702 iter 50 value 82.584147 iter 60 value 80.037288 iter 70 value 77.908562 iter 80 value 77.148861 iter 90 value 77.089007 iter 100 value 76.770059 final value 76.770059 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.713030 iter 10 value 94.651693 iter 20 value 94.016640 iter 30 value 90.526552 iter 40 value 88.853356 iter 50 value 82.148336 iter 60 value 81.738742 iter 70 value 81.644631 iter 80 value 80.949003 iter 90 value 79.039200 iter 100 value 77.739286 final value 77.739286 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.083270 iter 10 value 90.334969 iter 20 value 84.180927 iter 30 value 82.612437 iter 40 value 81.974363 iter 50 value 80.027790 iter 60 value 78.781629 iter 70 value 78.737143 iter 80 value 78.714333 iter 90 value 78.316271 iter 100 value 77.509620 final value 77.509620 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.492491 iter 10 value 93.905672 iter 20 value 89.212941 iter 30 value 88.217740 iter 40 value 87.616991 iter 50 value 84.207065 iter 60 value 81.950166 iter 70 value 81.748830 iter 80 value 81.323098 iter 90 value 81.039155 iter 100 value 79.682923 final value 79.682923 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.107728 iter 10 value 94.733671 iter 20 value 93.993643 iter 30 value 89.794816 iter 40 value 84.615854 iter 50 value 83.551080 iter 60 value 81.647222 iter 70 value 80.466817 iter 80 value 79.270026 iter 90 value 78.330012 iter 100 value 77.969443 final value 77.969443 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.163211 iter 10 value 94.044512 iter 20 value 86.611110 iter 30 value 79.927152 iter 40 value 78.534945 iter 50 value 77.544784 iter 60 value 77.255497 iter 70 value 77.145716 iter 80 value 76.980199 iter 90 value 76.858686 iter 100 value 76.779341 final value 76.779341 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.478394 iter 10 value 91.112850 iter 20 value 82.348693 iter 30 value 81.565700 iter 40 value 79.266124 iter 50 value 78.533896 iter 60 value 77.948758 iter 70 value 77.178768 iter 80 value 76.904582 iter 90 value 76.440859 iter 100 value 76.339485 final value 76.339485 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.147552 iter 10 value 90.900880 iter 20 value 84.976890 iter 30 value 80.634955 iter 40 value 79.147269 iter 50 value 78.146873 iter 60 value 77.956356 iter 70 value 77.484002 iter 80 value 76.995978 iter 90 value 76.913914 iter 100 value 76.733604 final value 76.733604 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 124.149290 iter 10 value 94.343616 iter 20 value 89.531149 iter 30 value 83.980555 iter 40 value 78.819426 iter 50 value 78.111947 iter 60 value 77.736776 iter 70 value 77.583567 iter 80 value 77.159277 iter 90 value 76.906618 iter 100 value 76.802369 final value 76.802369 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 120.821903 iter 10 value 90.482540 iter 20 value 85.838819 iter 30 value 79.850292 iter 40 value 78.757247 iter 50 value 78.420891 iter 60 value 77.644893 iter 70 value 76.904018 iter 80 value 76.571673 iter 90 value 76.445219 iter 100 value 76.283113 final value 76.283113 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 111.136740 final value 94.054532 converged Fitting Repeat 2 # weights: 103 initial value 95.494652 final value 94.054449 converged Fitting Repeat 3 # weights: 103 initial value 107.364144 final value 94.054474 converged Fitting Repeat 4 # weights: 103 initial value 94.369193 final value 94.054363 converged Fitting Repeat 5 # weights: 103 initial value 96.060323 iter 10 value 94.054427 final value 94.052924 converged Fitting Repeat 1 # weights: 305 initial value 103.104132 iter 10 value 94.058122 iter 20 value 94.045268 iter 30 value 84.981868 final value 83.651293 converged Fitting Repeat 2 # weights: 305 initial value 104.225060 iter 10 value 90.578742 iter 20 value 89.926505 iter 30 value 89.924768 iter 30 value 89.924767 iter 30 value 89.924767 final value 89.924767 converged Fitting Repeat 3 # weights: 305 initial value 102.177751 iter 10 value 94.057695 iter 20 value 94.054389 iter 30 value 94.052634 iter 40 value 89.657158 iter 50 value 81.837822 iter 60 value 81.756084 iter 70 value 81.750206 iter 80 value 81.749912 iter 90 value 81.749152 iter 100 value 81.533356 final value 81.533356 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.285835 iter 10 value 94.057422 iter 20 value 94.056966 iter 30 value 94.054531 iter 40 value 93.990988 iter 50 value 93.838458 iter 60 value 93.837168 iter 70 value 93.398370 iter 80 value 84.233507 iter 90 value 84.063074 iter 100 value 82.640109 final value 82.640109 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.789352 iter 10 value 93.729320 iter 20 value 89.034874 iter 30 value 83.042441 iter 40 value 78.939588 iter 50 value 78.508989 iter 60 value 77.762772 iter 70 value 77.567836 iter 80 value 77.567703 final value 77.567333 converged Fitting Repeat 1 # weights: 507 initial value 132.403958 iter 10 value 94.020918 iter 20 value 94.012676 iter 30 value 91.401230 iter 40 value 81.248139 iter 50 value 77.800585 iter 60 value 76.387053 iter 70 value 75.984133 iter 80 value 75.979842 iter 90 value 75.978281 final value 75.978155 converged Fitting Repeat 2 # weights: 507 initial value 101.824480 iter 10 value 93.844131 iter 20 value 92.620093 iter 30 value 81.871217 iter 40 value 81.827048 iter 50 value 81.826881 iter 60 value 81.826225 iter 70 value 81.742894 iter 80 value 80.740855 iter 90 value 79.585457 iter 100 value 78.103783 final value 78.103783 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 92.940053 iter 10 value 91.058138 iter 20 value 91.014475 iter 30 value 90.978496 final value 90.972559 converged Fitting Repeat 4 # weights: 507 initial value 101.983234 iter 10 value 93.844049 iter 20 value 93.838433 iter 30 value 93.836133 iter 40 value 92.860030 iter 50 value 82.236883 iter 60 value 80.679658 iter 70 value 77.908094 iter 80 value 77.158535 iter 90 value 75.811229 iter 100 value 75.565560 final value 75.565560 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 100.988789 iter 10 value 94.059960 iter 20 value 93.964301 iter 30 value 83.656783 final value 83.651588 converged Fitting Repeat 1 # weights: 103 initial value 97.102719 final value 94.252920 converged Fitting Repeat 2 # weights: 103 initial value 96.405241 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 107.670622 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 103.483547 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.648653 iter 10 value 90.755543 iter 20 value 87.395633 iter 30 value 85.116479 iter 40 value 85.077370 iter 50 value 85.060968 iter 60 value 85.059554 final value 85.059491 converged Fitting Repeat 1 # weights: 305 initial value 103.456669 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.987095 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 113.683873 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 104.658741 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 115.752835 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 95.808797 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 101.854875 final value 94.466823 converged Fitting Repeat 3 # weights: 507 initial value 110.180717 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 102.701609 final value 94.466823 converged Fitting Repeat 5 # weights: 507 initial value 95.971748 iter 10 value 90.052453 iter 20 value 85.888450 iter 30 value 85.172935 iter 40 value 84.879999 final value 84.878678 converged Fitting Repeat 1 # weights: 103 initial value 100.800672 iter 10 value 94.025134 iter 20 value 93.498681 iter 30 value 91.541189 iter 40 value 88.962702 iter 50 value 88.644304 iter 60 value 88.571570 iter 70 value 88.557991 iter 80 value 88.006452 iter 90 value 84.236252 iter 100 value 82.940097 final value 82.940097 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.834264 iter 10 value 94.486965 iter 20 value 93.613654 iter 30 value 88.946525 iter 40 value 87.442430 iter 50 value 87.120728 iter 60 value 86.836549 iter 70 value 84.136147 iter 80 value 83.897758 iter 90 value 83.883254 iter 100 value 83.875939 final value 83.875939 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.555707 iter 10 value 94.491331 iter 20 value 94.334835 iter 30 value 94.033536 iter 40 value 93.984968 iter 50 value 93.948221 iter 60 value 85.759250 iter 70 value 84.269694 iter 80 value 84.041923 iter 90 value 83.963932 iter 100 value 83.936500 final value 83.936500 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.150496 iter 10 value 94.447699 iter 20 value 94.035954 iter 30 value 93.993842 iter 40 value 92.062214 iter 50 value 84.679873 iter 60 value 83.124428 iter 70 value 81.641224 iter 80 value 81.114583 final value 81.102143 converged Fitting Repeat 5 # weights: 103 initial value 100.417542 iter 10 value 94.023762 iter 20 value 93.980211 iter 30 value 93.955924 iter 40 value 89.532657 iter 50 value 85.195744 iter 60 value 84.742926 iter 70 value 84.021191 iter 80 value 83.925331 iter 90 value 83.876137 final value 83.874865 converged Fitting Repeat 1 # weights: 305 initial value 104.427699 iter 10 value 94.260464 iter 20 value 87.997508 iter 30 value 84.832423 iter 40 value 84.628964 iter 50 value 84.108758 iter 60 value 84.033258 iter 70 value 83.713217 iter 80 value 81.226524 iter 90 value 80.645140 iter 100 value 80.479766 final value 80.479766 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.869454 iter 10 value 94.524240 iter 20 value 93.773061 iter 30 value 89.651713 iter 40 value 88.839032 iter 50 value 88.347004 iter 60 value 86.171443 iter 70 value 84.726562 iter 80 value 83.706617 iter 90 value 82.103086 iter 100 value 80.460189 final value 80.460189 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.844392 iter 10 value 94.498030 iter 20 value 94.103729 iter 30 value 93.314195 iter 40 value 88.369564 iter 50 value 85.946057 iter 60 value 85.519073 iter 70 value 85.179625 iter 80 value 83.265466 iter 90 value 80.859714 iter 100 value 80.305724 final value 80.305724 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.647394 iter 10 value 94.458850 iter 20 value 93.591489 iter 30 value 88.965653 iter 40 value 86.660548 iter 50 value 84.388442 iter 60 value 82.834685 iter 70 value 81.764930 iter 80 value 81.492421 iter 90 value 80.922837 iter 100 value 80.741650 final value 80.741650 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.423442 iter 10 value 94.873595 iter 20 value 89.346334 iter 30 value 88.708341 iter 40 value 87.511499 iter 50 value 83.280829 iter 60 value 81.914616 iter 70 value 81.728888 iter 80 value 81.073483 iter 90 value 80.015894 iter 100 value 79.897787 final value 79.897787 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.243546 iter 10 value 94.561900 iter 20 value 92.740765 iter 30 value 88.585147 iter 40 value 85.079457 iter 50 value 82.514276 iter 60 value 81.977765 iter 70 value 81.773806 iter 80 value 81.488092 iter 90 value 81.238501 iter 100 value 80.565913 final value 80.565913 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 114.244703 iter 10 value 94.467672 iter 20 value 90.158221 iter 30 value 86.840886 iter 40 value 83.236722 iter 50 value 82.608225 iter 60 value 81.768717 iter 70 value 80.865532 iter 80 value 80.394768 iter 90 value 80.242341 iter 100 value 79.934485 final value 79.934485 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.667795 iter 10 value 86.710852 iter 20 value 84.349199 iter 30 value 81.973956 iter 40 value 81.471605 iter 50 value 81.010872 iter 60 value 80.494191 iter 70 value 79.898873 iter 80 value 79.741219 iter 90 value 79.692127 iter 100 value 79.622118 final value 79.622118 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.005981 iter 10 value 94.603972 iter 20 value 94.438304 iter 30 value 94.025712 iter 40 value 90.690051 iter 50 value 83.292363 iter 60 value 82.515635 iter 70 value 81.630212 iter 80 value 80.622215 iter 90 value 80.233064 iter 100 value 80.161080 final value 80.161080 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.337423 iter 10 value 94.444569 iter 20 value 90.587879 iter 30 value 86.222318 iter 40 value 84.908326 iter 50 value 83.624708 iter 60 value 83.328864 iter 70 value 82.680480 iter 80 value 81.575747 iter 90 value 81.115033 iter 100 value 80.218590 final value 80.218590 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.783420 final value 94.485790 converged Fitting Repeat 2 # weights: 103 initial value 99.514460 final value 94.485706 converged Fitting Repeat 3 # weights: 103 initial value 100.764046 iter 10 value 94.485846 iter 20 value 94.484250 iter 30 value 85.850504 final value 85.747542 converged Fitting Repeat 4 # weights: 103 initial value 104.293862 final value 94.485895 converged Fitting Repeat 5 # weights: 103 initial value 98.501067 final value 94.486147 converged Fitting Repeat 1 # weights: 305 initial value 96.713284 iter 10 value 94.485988 iter 20 value 89.501032 iter 30 value 87.091213 iter 40 value 86.580995 iter 50 value 86.479191 iter 60 value 86.476206 iter 70 value 86.475694 iter 80 value 86.472365 iter 90 value 86.469387 iter 100 value 86.467765 final value 86.467765 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.390614 iter 10 value 94.488445 iter 20 value 94.346115 iter 30 value 90.969750 iter 40 value 85.227173 iter 50 value 82.932145 iter 60 value 81.662280 iter 70 value 81.646422 iter 80 value 81.645526 final value 81.644121 converged Fitting Repeat 3 # weights: 305 initial value 100.277780 iter 10 value 94.489044 iter 20 value 94.462123 iter 30 value 93.991513 iter 30 value 93.991512 final value 93.991501 converged Fitting Repeat 4 # weights: 305 initial value 103.947483 iter 10 value 94.489120 iter 20 value 94.484447 final value 94.484224 converged Fitting Repeat 5 # weights: 305 initial value 95.884394 iter 10 value 94.488167 iter 20 value 94.209606 iter 30 value 86.002378 iter 40 value 83.765627 final value 83.756405 converged Fitting Repeat 1 # weights: 507 initial value 118.669842 iter 10 value 94.494960 iter 20 value 93.716500 iter 30 value 93.005078 iter 40 value 92.154812 iter 50 value 92.130892 iter 60 value 91.211211 iter 70 value 91.181965 iter 80 value 91.084801 iter 90 value 90.993916 iter 100 value 90.991570 final value 90.991570 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.578726 iter 10 value 94.474713 iter 20 value 94.467605 final value 94.466905 converged Fitting Repeat 3 # weights: 507 initial value 110.483507 iter 10 value 86.111256 iter 20 value 85.449609 iter 30 value 85.442564 iter 40 value 84.112642 iter 50 value 84.077969 iter 60 value 83.951793 iter 70 value 83.908849 iter 80 value 83.370083 iter 90 value 83.077941 iter 100 value 81.895646 final value 81.895646 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.873063 iter 10 value 94.491893 iter 20 value 94.443829 iter 30 value 92.280238 final value 92.279738 converged Fitting Repeat 5 # weights: 507 initial value 101.308201 iter 10 value 94.491751 iter 20 value 94.484302 iter 30 value 92.204697 iter 40 value 86.251199 iter 50 value 85.557834 iter 60 value 81.738680 iter 70 value 79.348693 iter 80 value 79.306618 iter 90 value 79.299333 iter 100 value 79.286002 final value 79.286002 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.146145 final value 94.052911 converged Fitting Repeat 2 # weights: 103 initial value 98.400992 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 99.894729 final value 93.836066 converged Fitting Repeat 4 # weights: 103 initial value 96.643252 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.453768 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 112.762370 iter 10 value 93.593528 iter 20 value 93.573797 final value 93.573739 converged Fitting Repeat 2 # weights: 305 initial value 97.940106 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 105.613263 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 97.157751 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 100.195361 iter 10 value 93.841263 final value 93.518236 converged Fitting Repeat 1 # weights: 507 initial value 99.728928 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 104.753110 iter 10 value 93.549199 iter 20 value 93.544799 iter 30 value 93.480142 final value 93.479964 converged Fitting Repeat 3 # weights: 507 initial value 94.500953 final value 94.052908 converged Fitting Repeat 4 # weights: 507 initial value 101.726234 iter 10 value 93.694307 iter 20 value 93.687934 final value 93.687903 converged Fitting Repeat 5 # weights: 507 initial value 94.554701 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 99.388869 iter 10 value 93.607441 iter 20 value 93.120921 iter 30 value 90.688775 iter 40 value 87.809107 iter 50 value 87.159039 iter 60 value 86.960845 iter 70 value 86.578653 iter 80 value 85.481848 iter 90 value 84.912194 iter 100 value 84.714867 final value 84.714867 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.572965 iter 10 value 94.011200 iter 20 value 93.621923 iter 30 value 89.940693 iter 40 value 86.839152 iter 50 value 86.518261 iter 60 value 86.451485 final value 86.438677 converged Fitting Repeat 3 # weights: 103 initial value 95.730907 iter 10 value 94.044790 iter 20 value 93.816491 iter 30 value 93.027074 iter 40 value 90.280158 iter 50 value 89.364464 iter 60 value 88.889783 iter 70 value 88.154718 iter 80 value 87.905292 final value 87.872463 converged Fitting Repeat 4 # weights: 103 initial value 100.555721 iter 10 value 94.056515 iter 20 value 93.912495 iter 30 value 93.740854 iter 40 value 91.554858 iter 50 value 89.780391 iter 60 value 85.792149 iter 70 value 85.235353 iter 80 value 84.926866 iter 90 value 84.765668 iter 100 value 84.714010 final value 84.714010 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.653384 iter 10 value 94.106776 iter 20 value 93.691686 iter 30 value 93.597078 iter 40 value 92.272443 iter 50 value 90.015550 iter 60 value 88.464218 iter 70 value 88.136382 iter 80 value 87.662860 iter 90 value 87.302874 iter 100 value 87.021174 final value 87.021174 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 113.648890 iter 10 value 94.056361 iter 20 value 93.616686 iter 30 value 93.586340 iter 40 value 92.912846 iter 50 value 87.022992 iter 60 value 86.633298 iter 70 value 85.332337 iter 80 value 84.705319 iter 90 value 84.149526 iter 100 value 83.963347 final value 83.963347 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.164874 iter 10 value 93.640739 iter 20 value 91.229381 iter 30 value 87.908065 iter 40 value 87.511777 iter 50 value 86.203261 iter 60 value 85.797408 iter 70 value 85.217773 iter 80 value 84.811053 iter 90 value 84.457383 iter 100 value 83.958867 final value 83.958867 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.183138 iter 10 value 94.057397 iter 20 value 93.361217 iter 30 value 91.679268 iter 40 value 88.729314 iter 50 value 86.740238 iter 60 value 86.106709 iter 70 value 85.498571 iter 80 value 84.292099 iter 90 value 83.761573 iter 100 value 83.377232 final value 83.377232 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.338297 iter 10 value 94.159209 iter 20 value 88.052420 iter 30 value 87.661030 iter 40 value 87.610625 iter 50 value 87.403090 iter 60 value 86.402561 iter 70 value 85.521935 iter 80 value 84.164910 iter 90 value 83.767465 iter 100 value 83.690299 final value 83.690299 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.565934 iter 10 value 96.981644 iter 20 value 91.434773 iter 30 value 87.244915 iter 40 value 86.933898 iter 50 value 86.656292 iter 60 value 86.378096 iter 70 value 86.222248 iter 80 value 86.049356 iter 90 value 86.036360 iter 100 value 85.940878 final value 85.940878 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.357600 iter 10 value 94.091241 iter 20 value 90.266591 iter 30 value 87.664206 iter 40 value 86.752796 iter 50 value 86.156893 iter 60 value 85.882358 iter 70 value 84.474829 iter 80 value 84.261534 iter 90 value 83.976299 iter 100 value 83.576090 final value 83.576090 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.380413 iter 10 value 94.148661 iter 20 value 91.162017 iter 30 value 87.360254 iter 40 value 86.456143 iter 50 value 85.407093 iter 60 value 84.428253 iter 70 value 83.892406 iter 80 value 83.578727 iter 90 value 83.300819 iter 100 value 83.155080 final value 83.155080 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.333932 iter 10 value 93.930801 iter 20 value 91.405826 iter 30 value 89.540728 iter 40 value 89.336989 iter 50 value 87.487733 iter 60 value 87.015091 iter 70 value 85.802528 iter 80 value 84.531408 iter 90 value 83.922170 iter 100 value 83.716939 final value 83.716939 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 121.024078 iter 10 value 94.021537 iter 20 value 91.489361 iter 30 value 89.038863 iter 40 value 88.270027 iter 50 value 87.395086 iter 60 value 85.153474 iter 70 value 84.850590 iter 80 value 84.584986 iter 90 value 83.910258 iter 100 value 83.562386 final value 83.562386 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.518212 iter 10 value 93.958316 iter 20 value 93.606989 iter 30 value 88.014709 iter 40 value 87.001758 iter 50 value 86.335316 iter 60 value 85.242482 iter 70 value 84.007127 iter 80 value 83.756220 iter 90 value 83.722621 iter 100 value 83.620817 final value 83.620817 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.047766 final value 93.838034 converged Fitting Repeat 2 # weights: 103 initial value 96.995565 iter 10 value 94.054448 iter 20 value 94.052921 iter 30 value 90.426467 iter 40 value 90.324499 iter 50 value 87.387915 final value 87.377201 converged Fitting Repeat 3 # weights: 103 initial value 103.162409 iter 10 value 94.032429 iter 20 value 93.837864 final value 93.837772 converged Fitting Repeat 4 # weights: 103 initial value 97.523784 iter 10 value 93.837715 iter 20 value 93.837623 iter 30 value 93.606111 iter 40 value 93.605535 final value 93.604888 converged Fitting Repeat 5 # weights: 103 initial value 108.642538 final value 94.054395 converged Fitting Repeat 1 # weights: 305 initial value 105.858284 iter 10 value 93.846117 iter 20 value 93.613499 iter 30 value 93.608823 final value 93.607236 converged Fitting Repeat 2 # weights: 305 initial value 97.837015 iter 10 value 88.412460 iter 20 value 88.134379 iter 30 value 87.958153 iter 40 value 87.813063 iter 50 value 87.812399 iter 60 value 87.810651 final value 87.810447 converged Fitting Repeat 3 # weights: 305 initial value 94.907669 iter 10 value 94.057329 iter 20 value 94.048656 iter 30 value 92.784181 iter 40 value 92.497394 iter 50 value 92.496863 iter 60 value 90.149823 iter 70 value 89.976183 iter 80 value 87.112896 iter 90 value 86.209881 iter 100 value 84.196967 final value 84.196967 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.175206 iter 10 value 94.057703 iter 20 value 94.012026 iter 30 value 92.949458 iter 40 value 92.933850 iter 50 value 92.933310 iter 60 value 92.735872 iter 70 value 87.365989 final value 87.365983 converged Fitting Repeat 5 # weights: 305 initial value 106.419402 iter 10 value 94.058099 iter 20 value 93.994490 final value 93.836280 converged Fitting Repeat 1 # weights: 507 initial value 109.107795 iter 10 value 93.297300 iter 20 value 93.286554 iter 30 value 89.814889 iter 40 value 87.038740 iter 50 value 84.880985 iter 60 value 84.333825 iter 70 value 83.991086 iter 80 value 83.977053 iter 90 value 83.380989 iter 100 value 83.106857 final value 83.106857 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.831908 iter 10 value 94.061353 iter 20 value 93.958398 iter 30 value 87.423267 iter 40 value 87.366260 iter 50 value 87.334407 iter 60 value 87.333492 iter 60 value 87.333491 iter 60 value 87.333491 final value 87.333491 converged Fitting Repeat 3 # weights: 507 initial value 123.805963 iter 10 value 94.061109 iter 20 value 94.039948 iter 30 value 90.281118 iter 40 value 89.096321 iter 50 value 89.065213 iter 60 value 89.064220 iter 60 value 89.064220 iter 60 value 89.064220 final value 89.064220 converged Fitting Repeat 4 # weights: 507 initial value 104.421687 iter 10 value 93.670228 iter 20 value 93.581948 iter 30 value 93.579933 iter 40 value 93.574127 iter 50 value 93.565413 iter 60 value 88.574883 iter 70 value 87.941647 iter 80 value 87.153987 iter 90 value 87.137896 iter 100 value 86.929938 final value 86.929938 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 98.196570 iter 10 value 92.009801 iter 20 value 88.209912 iter 30 value 86.160638 iter 40 value 86.051904 iter 50 value 85.999504 iter 60 value 85.995009 iter 70 value 84.727221 iter 80 value 84.483896 iter 90 value 83.886189 iter 100 value 83.743878 final value 83.743878 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 174.362197 iter 10 value 124.163988 iter 20 value 112.583673 iter 30 value 110.050567 iter 40 value 109.539256 iter 50 value 109.381319 iter 60 value 105.873744 iter 70 value 103.314772 iter 80 value 102.743046 iter 90 value 102.526741 iter 100 value 102.350160 final value 102.350160 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 124.415333 iter 10 value 116.807906 iter 20 value 108.059833 iter 30 value 105.826537 iter 40 value 102.725754 iter 50 value 102.250525 iter 60 value 101.394333 iter 70 value 101.082950 iter 80 value 100.994933 iter 90 value 100.845609 iter 100 value 100.811919 final value 100.811919 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 126.165270 iter 10 value 121.043781 iter 20 value 115.252380 iter 30 value 114.339045 iter 40 value 113.859630 iter 50 value 111.968962 iter 60 value 107.720173 iter 70 value 103.857819 iter 80 value 102.914992 iter 90 value 102.562159 iter 100 value 102.235604 final value 102.235604 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 127.492728 iter 10 value 117.104704 iter 20 value 108.771068 iter 30 value 107.426567 iter 40 value 106.632513 iter 50 value 105.012727 iter 60 value 103.624889 iter 70 value 103.002500 iter 80 value 102.767192 iter 90 value 102.593155 iter 100 value 101.900270 final value 101.900270 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 123.727015 iter 10 value 117.765401 iter 20 value 117.565306 iter 30 value 111.702901 iter 40 value 109.228728 iter 50 value 107.436670 iter 60 value 104.306352 iter 70 value 103.112573 iter 80 value 102.845194 iter 90 value 102.777313 iter 100 value 102.228195 final value 102.228195 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Thu Oct 17 02:28:46 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 45.28 1.60 48.40
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.97 | 1.98 | 36.15 | |
FreqInteractors | 0.25 | 0.00 | 0.26 | |
calculateAAC | 0.04 | 0.00 | 0.04 | |
calculateAutocor | 0.44 | 0.13 | 0.57 | |
calculateCTDC | 0.09 | 0.00 | 0.09 | |
calculateCTDD | 0.67 | 0.05 | 0.72 | |
calculateCTDT | 0.31 | 0.01 | 0.32 | |
calculateCTriad | 0.35 | 0.06 | 0.41 | |
calculateDC | 0.09 | 0.00 | 0.09 | |
calculateF | 0.38 | 0.00 | 0.37 | |
calculateKSAAP | 0.15 | 0.02 | 0.18 | |
calculateQD_Sm | 2.08 | 0.14 | 2.21 | |
calculateTC | 1.92 | 0.11 | 2.04 | |
calculateTC_Sm | 0.28 | 0.00 | 0.28 | |
corr_plot | 33.21 | 1.68 | 34.92 | |
enrichfindP | 0.59 | 0.14 | 13.94 | |
enrichfind_hp | 0.11 | 0.02 | 1.04 | |
enrichplot | 0.41 | 0.01 | 0.44 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.02 | 0.02 | 2.29 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.00 | 0.02 | 0.02 | |
plotPPI | 0.08 | 0.00 | 0.08 | |
pred_ensembel | 15.21 | 0.46 | 11.67 | |
var_imp | 32.94 | 1.32 | 34.25 | |