Back to Multiple platform build/check report for BioC 3.19:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2024-10-18 20:39 -0400 (Fri, 18 Oct 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 22.04.3 LTS)x86_644.4.1 (2024-06-14) -- "Race for Your Life" 4763
palomino7Windows Server 2022 Datacenterx644.4.1 (2024-06-14 ucrt) -- "Race for Your Life" 4500
merida1macOS 12.7.5 Montereyx86_644.4.1 (2024-06-14) -- "Race for Your Life" 4530
kjohnson1macOS 13.6.6 Venturaarm644.4.1 (2024-06-14) -- "Race for Your Life" 4480
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 987/2300HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.10.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2024-10-16 14:00 -0400 (Wed, 16 Oct 2024)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_19
git_last_commit: 09dc3c1
git_last_commit_date: 2024-04-30 11:37:16 -0400 (Tue, 30 Apr 2024)
nebbiolo1Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published


CHECK results for HPiP on palomino7

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.10.0
Command: E:\biocbuild\bbs-3.19-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.19-bioc\R\library --no-vignettes --timings HPiP_1.10.0.tar.gz
StartedAt: 2024-10-17 02:23:57 -0400 (Thu, 17 Oct 2024)
EndedAt: 2024-10-17 02:28:57 -0400 (Thu, 17 Oct 2024)
EllapsedTime: 300.1 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   E:\biocbuild\bbs-3.19-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.19-bioc\R\library --no-vignettes --timings HPiP_1.10.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'E:/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck'
* using R version 4.4.1 (2024-06-14 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.2.0
    GNU Fortran (GCC) 13.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.10.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
FSmethod      33.97   1.98   36.15
corr_plot     33.21   1.68   34.92
var_imp       32.94   1.32   34.25
pred_ensembel 15.21   0.46   11.67
enrichfindP    0.59   0.14   13.94
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  'E:/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck/00check.log'
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   E:\biocbuild\bbs-3.19-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'E:/biocbuild/bbs-3.19-bioc/R/library'
* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 98.556749 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.343401 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.209083 
iter  10 value 94.439858
iter  20 value 86.614283
iter  30 value 83.661313
iter  40 value 83.564520
iter  50 value 83.563671
final  value 83.563640 
converged
Fitting Repeat 4 

# weights:  103
initial  value 105.053982 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.524554 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.687721 
final  value 94.443243 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.162642 
iter  10 value 94.476471
iter  10 value 94.476471
iter  10 value 94.476471
final  value 94.476471 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.364461 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 117.280308 
final  value 94.443243 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.291988 
iter  10 value 93.487638
iter  20 value 93.395985
iter  30 value 93.196112
final  value 93.196015 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.283686 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 104.873619 
final  value 94.443243 
converged
Fitting Repeat 3 

# weights:  507
initial  value 107.095772 
final  value 94.443243 
converged
Fitting Repeat 4 

# weights:  507
initial  value 102.257822 
iter  10 value 94.413881
final  value 94.400000 
converged
Fitting Repeat 5 

# weights:  507
initial  value 106.629320 
final  value 94.443243 
converged
Fitting Repeat 1 

# weights:  103
initial  value 118.867070 
iter  10 value 94.463909
iter  20 value 92.820601
iter  30 value 91.795272
iter  40 value 91.377547
iter  50 value 91.101129
iter  60 value 91.048610
iter  70 value 90.953127
final  value 90.950849 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.350381 
iter  10 value 94.444481
iter  20 value 94.419757
iter  30 value 92.985708
iter  40 value 89.525928
iter  50 value 85.925181
iter  60 value 85.589648
iter  70 value 85.196229
iter  80 value 84.837526
iter  90 value 84.625727
final  value 84.625447 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.584213 
iter  10 value 94.481782
iter  20 value 93.222134
iter  30 value 88.923327
iter  40 value 86.130242
iter  50 value 84.995538
iter  60 value 84.640726
iter  70 value 84.638211
final  value 84.637945 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.286581 
iter  10 value 90.696785
iter  20 value 82.400936
iter  30 value 81.611931
iter  40 value 81.341136
iter  50 value 81.047079
iter  60 value 81.029191
final  value 81.017477 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.705284 
iter  10 value 89.809173
iter  20 value 84.281384
iter  30 value 83.992059
iter  40 value 83.202762
iter  50 value 82.604280
iter  60 value 81.987195
iter  70 value 81.776608
iter  80 value 81.371661
iter  90 value 81.345588
final  value 81.345309 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.945858 
iter  10 value 94.526170
iter  20 value 94.495216
iter  30 value 93.932113
iter  40 value 91.914759
iter  50 value 91.409560
iter  60 value 90.816401
iter  70 value 90.759819
iter  80 value 89.214703
iter  90 value 85.504499
iter 100 value 83.717807
final  value 83.717807 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 107.702956 
iter  10 value 94.475126
iter  20 value 94.213880
iter  30 value 87.571119
iter  40 value 86.885457
iter  50 value 86.408191
iter  60 value 85.808578
iter  70 value 81.605372
iter  80 value 80.637078
iter  90 value 80.031153
iter 100 value 79.916417
final  value 79.916417 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 110.336950 
iter  10 value 94.463632
iter  20 value 85.723853
iter  30 value 82.906129
iter  40 value 82.032431
iter  50 value 81.945353
iter  60 value 81.724894
iter  70 value 81.161922
iter  80 value 80.116120
iter  90 value 79.838136
iter 100 value 79.804443
final  value 79.804443 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.859152 
iter  10 value 93.220564
iter  20 value 86.903122
iter  30 value 85.761111
iter  40 value 85.459550
iter  50 value 85.243800
iter  60 value 83.839176
iter  70 value 82.568139
iter  80 value 82.213618
iter  90 value 81.430869
iter 100 value 81.369260
final  value 81.369260 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.054237 
iter  10 value 93.358451
iter  20 value 88.510657
iter  30 value 87.201408
iter  40 value 84.909022
iter  50 value 82.828697
iter  60 value 82.581145
iter  70 value 82.516050
iter  80 value 82.418227
iter  90 value 81.625640
iter 100 value 80.674863
final  value 80.674863 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 104.995822 
iter  10 value 88.909434
iter  20 value 85.328313
iter  30 value 84.468774
iter  40 value 84.387244
iter  50 value 83.527909
iter  60 value 82.611108
iter  70 value 82.146762
iter  80 value 81.790578
iter  90 value 80.893893
iter 100 value 80.728907
final  value 80.728907 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 113.034434 
iter  10 value 95.535743
iter  20 value 94.498633
iter  30 value 94.310032
iter  40 value 89.963011
iter  50 value 86.867006
iter  60 value 84.719795
iter  70 value 83.435219
iter  80 value 82.617751
iter  90 value 82.355456
iter 100 value 81.523138
final  value 81.523138 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 118.726153 
iter  10 value 93.847308
iter  20 value 90.873204
iter  30 value 88.190001
iter  40 value 86.749777
iter  50 value 83.170362
iter  60 value 81.228562
iter  70 value 79.945364
iter  80 value 79.845373
iter  90 value 79.829622
iter 100 value 79.807868
final  value 79.807868 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 116.452346 
iter  10 value 94.946428
iter  20 value 89.265873
iter  30 value 86.266035
iter  40 value 85.547680
iter  50 value 85.106684
iter  60 value 83.745197
iter  70 value 81.896341
iter  80 value 80.499003
iter  90 value 80.167354
iter 100 value 79.926428
final  value 79.926428 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.383853 
iter  10 value 93.813564
iter  20 value 86.454742
iter  30 value 85.855592
iter  40 value 82.942527
iter  50 value 80.674920
iter  60 value 79.731129
iter  70 value 79.561900
iter  80 value 79.514856
iter  90 value 79.260013
iter 100 value 79.177583
final  value 79.177583 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.237703 
final  value 94.479813 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.094592 
final  value 94.485579 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.741689 
final  value 94.485841 
converged
Fitting Repeat 4 

# weights:  103
initial  value 108.545940 
final  value 94.485867 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.563767 
final  value 94.488168 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.220465 
iter  10 value 92.643005
iter  20 value 92.628987
iter  30 value 92.576428
iter  40 value 92.529195
iter  50 value 92.528162
iter  60 value 92.527607
final  value 92.527361 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.455916 
iter  10 value 94.448310
iter  20 value 94.381122
iter  30 value 94.379491
final  value 94.379475 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.813156 
iter  10 value 94.359395
iter  20 value 84.714659
iter  30 value 83.862386
iter  40 value 83.749723
iter  50 value 83.500260
iter  60 value 83.489944
iter  70 value 83.485745
iter  80 value 83.456750
iter  90 value 83.455808
final  value 83.454908 
converged
Fitting Repeat 4 

# weights:  305
initial  value 118.721693 
iter  10 value 94.489173
iter  20 value 94.478288
iter  30 value 92.573235
iter  40 value 92.520391
iter  50 value 92.461139
iter  60 value 91.584854
iter  70 value 86.263872
iter  80 value 84.308571
iter  90 value 83.582654
iter 100 value 82.957015
final  value 82.957015 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 97.414994 
iter  10 value 94.448224
iter  20 value 94.443886
final  value 94.443603 
converged
Fitting Repeat 1 

# weights:  507
initial  value 133.948773 
iter  10 value 94.460778
iter  20 value 94.450597
iter  30 value 93.634152
iter  40 value 88.216097
iter  50 value 88.120369
iter  60 value 88.095665
iter  70 value 88.089041
iter  80 value 87.768006
iter  90 value 83.268469
iter 100 value 82.004638
final  value 82.004638 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 115.846910 
iter  10 value 94.484523
iter  20 value 94.458656
iter  30 value 88.231389
iter  40 value 88.146534
iter  50 value 87.739409
iter  60 value 87.586915
final  value 87.579766 
converged
Fitting Repeat 3 

# weights:  507
initial  value 122.824704 
iter  10 value 94.451298
iter  20 value 94.439104
iter  30 value 93.851974
iter  40 value 85.401795
iter  50 value 84.542820
iter  60 value 81.561330
iter  70 value 77.940896
iter  80 value 77.697029
iter  90 value 77.682334
iter 100 value 77.678480
final  value 77.678480 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 111.280599 
iter  10 value 94.492039
iter  20 value 88.765695
iter  30 value 88.216356
iter  40 value 88.208880
iter  50 value 88.208633
final  value 88.207468 
converged
Fitting Repeat 5 

# weights:  507
initial  value 106.347344 
iter  10 value 91.616031
iter  20 value 85.768238
iter  30 value 85.746072
iter  40 value 85.719671
iter  50 value 85.600889
final  value 85.599245 
converged
Fitting Repeat 1 

# weights:  103
initial  value 109.526050 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.400455 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.663763 
iter  10 value 90.372455
iter  20 value 90.292985
iter  30 value 88.503808
iter  40 value 86.469962
iter  50 value 86.433671
final  value 86.431987 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.856028 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.523285 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.660031 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 112.635957 
final  value 93.809648 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.532650 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 124.751922 
final  value 94.484205 
converged
Fitting Repeat 5 

# weights:  305
initial  value 114.647574 
final  value 93.809648 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.350427 
final  value 94.484137 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.430806 
final  value 94.354396 
converged
Fitting Repeat 3 

# weights:  507
initial  value 107.447751 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 111.220695 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.471691 
iter  10 value 93.576815
iter  20 value 92.270782
iter  30 value 92.270366
final  value 92.270352 
converged
Fitting Repeat 1 

# weights:  103
initial  value 104.452061 
iter  10 value 94.489018
iter  20 value 94.428000
iter  30 value 93.898208
iter  40 value 93.870064
iter  50 value 89.949906
iter  60 value 85.047388
iter  70 value 82.464523
iter  80 value 81.984306
iter  90 value 81.875054
iter 100 value 81.626584
final  value 81.626584 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 98.600463 
iter  10 value 94.500824
iter  20 value 93.913599
iter  30 value 87.654317
iter  40 value 85.270668
iter  50 value 84.783577
iter  60 value 83.076253
iter  70 value 82.454013
iter  80 value 82.327048
iter  90 value 82.301065
iter 100 value 82.277861
final  value 82.277861 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 103.922912 
iter  10 value 91.836625
iter  20 value 86.151424
iter  30 value 85.732176
iter  40 value 84.060667
iter  50 value 82.948811
iter  60 value 82.346835
iter  70 value 82.299570
iter  80 value 82.277863
final  value 82.277856 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.396475 
iter  10 value 94.509984
iter  20 value 86.852858
iter  30 value 85.061331
iter  40 value 84.706611
iter  50 value 83.789850
iter  60 value 83.252314
iter  70 value 83.112146
iter  80 value 82.592151
iter  90 value 82.276328
iter 100 value 81.764088
final  value 81.764088 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 102.260592 
iter  10 value 94.448938
iter  20 value 92.854634
iter  30 value 92.386161
iter  40 value 83.491076
iter  50 value 82.751893
iter  60 value 82.265719
iter  70 value 81.562032
iter  80 value 81.468512
final  value 81.468233 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.777953 
iter  10 value 94.465309
iter  20 value 84.616190
iter  30 value 84.234219
iter  40 value 83.942832
iter  50 value 83.721013
iter  60 value 83.184495
iter  70 value 82.286224
iter  80 value 82.112006
iter  90 value 82.036182
iter 100 value 82.001436
final  value 82.001436 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.630910 
iter  10 value 97.042817
iter  20 value 86.178306
iter  30 value 83.869369
iter  40 value 83.387383
iter  50 value 82.655236
iter  60 value 82.170704
iter  70 value 81.968183
iter  80 value 81.143412
iter  90 value 80.776448
iter 100 value 80.764181
final  value 80.764181 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 107.006003 
iter  10 value 94.438862
iter  20 value 93.951357
iter  30 value 93.843070
iter  40 value 87.131299
iter  50 value 84.695125
iter  60 value 84.097290
iter  70 value 82.678484
iter  80 value 81.616029
iter  90 value 80.896022
iter 100 value 80.841043
final  value 80.841043 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 121.030922 
iter  10 value 94.464739
iter  20 value 92.947481
iter  30 value 88.393382
iter  40 value 84.377117
iter  50 value 83.875504
iter  60 value 83.682808
iter  70 value 83.470329
iter  80 value 83.011044
iter  90 value 81.974107
iter 100 value 81.258667
final  value 81.258667 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.188664 
iter  10 value 94.224389
iter  20 value 84.791329
iter  30 value 84.366680
iter  40 value 83.182524
iter  50 value 82.023950
iter  60 value 81.227179
iter  70 value 81.050941
iter  80 value 80.870695
iter  90 value 80.629324
iter 100 value 80.519456
final  value 80.519456 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 122.614862 
iter  10 value 94.653280
iter  20 value 86.932976
iter  30 value 85.428825
iter  40 value 82.357320
iter  50 value 81.438511
iter  60 value 80.139011
iter  70 value 80.095612
iter  80 value 79.925851
iter  90 value 79.860084
iter 100 value 79.782090
final  value 79.782090 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 111.706529 
iter  10 value 93.798216
iter  20 value 87.828185
iter  30 value 84.252556
iter  40 value 82.363148
iter  50 value 81.768917
iter  60 value 81.181684
iter  70 value 80.610937
iter  80 value 80.541916
iter  90 value 80.481551
iter 100 value 80.388596
final  value 80.388596 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 105.077088 
iter  10 value 95.846375
iter  20 value 95.260592
iter  30 value 87.265074
iter  40 value 84.819702
iter  50 value 82.529664
iter  60 value 82.303836
iter  70 value 82.274786
iter  80 value 81.789270
iter  90 value 80.861979
iter 100 value 80.323288
final  value 80.323288 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 103.814175 
iter  10 value 90.511341
iter  20 value 84.244425
iter  30 value 83.644318
iter  40 value 83.027294
iter  50 value 82.790122
iter  60 value 82.281789
iter  70 value 82.255487
iter  80 value 82.074630
iter  90 value 81.505486
iter 100 value 81.097131
final  value 81.097131 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 119.308988 
iter  10 value 94.762745
iter  20 value 94.408502
iter  30 value 86.166536
iter  40 value 85.286221
iter  50 value 85.157106
iter  60 value 84.816180
iter  70 value 84.004080
iter  80 value 82.022487
iter  90 value 81.362116
iter 100 value 80.816412
final  value 80.816412 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.748296 
final  value 94.485789 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.877273 
final  value 94.486012 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.836913 
final  value 94.485972 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.214847 
iter  10 value 94.485941
final  value 94.484218 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.963778 
final  value 94.485744 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.437822 
iter  10 value 94.489416
iter  20 value 94.484006
final  value 93.810448 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.954837 
iter  10 value 88.966350
iter  20 value 88.249920
iter  30 value 86.949924
iter  40 value 86.938236
iter  50 value 86.935846
iter  60 value 84.866332
iter  70 value 84.825442
iter  80 value 84.823214
iter  80 value 84.823214
final  value 84.823214 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.073459 
iter  10 value 94.392548
iter  20 value 94.340006
iter  30 value 94.321063
iter  40 value 90.253702
iter  50 value 88.799752
iter  60 value 87.534357
iter  70 value 84.377780
iter  80 value 84.044904
iter  90 value 83.779007
iter 100 value 82.700590
final  value 82.700590 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.666069 
iter  10 value 94.383507
iter  20 value 94.359271
iter  30 value 94.356730
iter  40 value 94.315360
iter  50 value 85.402353
iter  60 value 82.515896
iter  70 value 82.085606
iter  80 value 81.441647
iter  90 value 80.655011
iter 100 value 80.480845
final  value 80.480845 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.123453 
iter  10 value 94.489800
iter  20 value 94.484288
iter  30 value 91.923993
iter  40 value 90.722603
iter  50 value 82.294270
iter  60 value 81.575580
iter  70 value 81.342149
iter  80 value 81.279352
iter  90 value 80.753066
iter 100 value 80.444944
final  value 80.444944 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 101.753248 
iter  10 value 94.362877
iter  20 value 94.357565
iter  30 value 93.050577
iter  40 value 86.957431
iter  50 value 86.943379
iter  60 value 86.939908
iter  70 value 85.742376
iter  80 value 83.154701
iter  90 value 82.166125
iter 100 value 81.913823
final  value 81.913823 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 128.489614 
iter  10 value 94.361161
iter  20 value 94.328158
iter  30 value 90.458382
iter  40 value 86.315544
iter  50 value 86.313300
iter  60 value 85.466357
final  value 85.465999 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.342308 
iter  10 value 94.362337
iter  20 value 94.354540
iter  30 value 92.606383
iter  40 value 86.345931
iter  50 value 84.299453
iter  60 value 83.849550
iter  70 value 82.875199
iter  80 value 81.692592
iter  90 value 81.692190
final  value 81.691930 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.603215 
iter  10 value 92.249323
iter  20 value 91.899525
iter  30 value 91.898740
iter  40 value 91.893792
iter  50 value 91.561361
iter  60 value 90.910043
iter  70 value 83.883734
iter  80 value 81.932379
iter  90 value 80.370089
iter 100 value 79.654499
final  value 79.654499 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 103.822547 
iter  10 value 94.364678
iter  20 value 94.358698
iter  30 value 93.930725
iter  40 value 88.106674
iter  50 value 84.848207
iter  60 value 84.823475
iter  70 value 84.798377
iter  80 value 84.798147
iter  90 value 84.797364
iter 100 value 83.833638
final  value 83.833638 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 115.122782 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.414498 
final  value 93.836066 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.009720 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.649514 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.230663 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.893237 
iter  10 value 93.901766
iter  20 value 85.323632
iter  30 value 85.321488
iter  40 value 85.321378
iter  40 value 85.321378
iter  40 value 85.321378
final  value 85.321378 
converged
Fitting Repeat 2 

# weights:  305
initial  value 108.074364 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.963820 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.146725 
final  value 93.836066 
converged
Fitting Repeat 5 

# weights:  305
initial  value 104.704921 
iter  10 value 85.976292
iter  20 value 84.734963
iter  30 value 84.734144
iter  30 value 84.734144
iter  30 value 84.734144
final  value 84.734144 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.289975 
iter  10 value 93.836067
final  value 93.836066 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.241171 
iter  10 value 93.836166
final  value 93.836066 
converged
Fitting Repeat 3 

# weights:  507
initial  value 96.081111 
final  value 94.052447 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.832754 
iter  10 value 88.065838
iter  20 value 85.746854
iter  30 value 85.652946
iter  40 value 85.651313
final  value 85.651282 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.184194 
final  value 93.836066 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.032911 
iter  10 value 93.898025
iter  20 value 93.423615
iter  30 value 92.702047
iter  40 value 82.694996
iter  50 value 82.276368
iter  60 value 82.117655
iter  70 value 81.365422
iter  80 value 81.324922
iter  90 value 80.540993
iter 100 value 80.538893
final  value 80.538893 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 95.707825 
iter  10 value 92.130961
iter  20 value 86.994686
iter  30 value 86.299374
iter  40 value 84.132390
iter  50 value 83.539683
iter  60 value 82.435052
iter  70 value 81.586881
iter  80 value 80.815268
iter  90 value 80.723728
iter 100 value 80.599454
final  value 80.599454 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 96.656427 
iter  10 value 94.057323
iter  20 value 94.028433
iter  30 value 93.941886
iter  40 value 93.936336
iter  50 value 93.935612
iter  60 value 93.935094
iter  70 value 93.717662
iter  80 value 88.777539
iter  90 value 83.460039
iter 100 value 82.472619
final  value 82.472619 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 100.654769 
iter  10 value 93.978763
iter  20 value 87.861415
iter  30 value 85.479754
iter  40 value 82.216766
iter  50 value 81.323438
iter  60 value 80.841976
iter  70 value 80.839463
final  value 80.839355 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.536063 
iter  10 value 93.887887
iter  20 value 89.039161
iter  30 value 87.372673
iter  40 value 85.895743
iter  50 value 81.789181
iter  60 value 81.009145
iter  70 value 80.998883
final  value 80.998875 
converged
Fitting Repeat 1 

# weights:  305
initial  value 123.833673 
iter  10 value 94.255270
iter  20 value 93.172773
iter  30 value 87.874841
iter  40 value 86.007702
iter  50 value 82.584147
iter  60 value 80.037288
iter  70 value 77.908562
iter  80 value 77.148861
iter  90 value 77.089007
iter 100 value 76.770059
final  value 76.770059 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.713030 
iter  10 value 94.651693
iter  20 value 94.016640
iter  30 value 90.526552
iter  40 value 88.853356
iter  50 value 82.148336
iter  60 value 81.738742
iter  70 value 81.644631
iter  80 value 80.949003
iter  90 value 79.039200
iter 100 value 77.739286
final  value 77.739286 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 116.083270 
iter  10 value 90.334969
iter  20 value 84.180927
iter  30 value 82.612437
iter  40 value 81.974363
iter  50 value 80.027790
iter  60 value 78.781629
iter  70 value 78.737143
iter  80 value 78.714333
iter  90 value 78.316271
iter 100 value 77.509620
final  value 77.509620 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.492491 
iter  10 value 93.905672
iter  20 value 89.212941
iter  30 value 88.217740
iter  40 value 87.616991
iter  50 value 84.207065
iter  60 value 81.950166
iter  70 value 81.748830
iter  80 value 81.323098
iter  90 value 81.039155
iter 100 value 79.682923
final  value 79.682923 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.107728 
iter  10 value 94.733671
iter  20 value 93.993643
iter  30 value 89.794816
iter  40 value 84.615854
iter  50 value 83.551080
iter  60 value 81.647222
iter  70 value 80.466817
iter  80 value 79.270026
iter  90 value 78.330012
iter 100 value 77.969443
final  value 77.969443 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.163211 
iter  10 value 94.044512
iter  20 value 86.611110
iter  30 value 79.927152
iter  40 value 78.534945
iter  50 value 77.544784
iter  60 value 77.255497
iter  70 value 77.145716
iter  80 value 76.980199
iter  90 value 76.858686
iter 100 value 76.779341
final  value 76.779341 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 104.478394 
iter  10 value 91.112850
iter  20 value 82.348693
iter  30 value 81.565700
iter  40 value 79.266124
iter  50 value 78.533896
iter  60 value 77.948758
iter  70 value 77.178768
iter  80 value 76.904582
iter  90 value 76.440859
iter 100 value 76.339485
final  value 76.339485 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 106.147552 
iter  10 value 90.900880
iter  20 value 84.976890
iter  30 value 80.634955
iter  40 value 79.147269
iter  50 value 78.146873
iter  60 value 77.956356
iter  70 value 77.484002
iter  80 value 76.995978
iter  90 value 76.913914
iter 100 value 76.733604
final  value 76.733604 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 124.149290 
iter  10 value 94.343616
iter  20 value 89.531149
iter  30 value 83.980555
iter  40 value 78.819426
iter  50 value 78.111947
iter  60 value 77.736776
iter  70 value 77.583567
iter  80 value 77.159277
iter  90 value 76.906618
iter 100 value 76.802369
final  value 76.802369 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 120.821903 
iter  10 value 90.482540
iter  20 value 85.838819
iter  30 value 79.850292
iter  40 value 78.757247
iter  50 value 78.420891
iter  60 value 77.644893
iter  70 value 76.904018
iter  80 value 76.571673
iter  90 value 76.445219
iter 100 value 76.283113
final  value 76.283113 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 111.136740 
final  value 94.054532 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.494652 
final  value 94.054449 
converged
Fitting Repeat 3 

# weights:  103
initial  value 107.364144 
final  value 94.054474 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.369193 
final  value 94.054363 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.060323 
iter  10 value 94.054427
final  value 94.052924 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.104132 
iter  10 value 94.058122
iter  20 value 94.045268
iter  30 value 84.981868
final  value 83.651293 
converged
Fitting Repeat 2 

# weights:  305
initial  value 104.225060 
iter  10 value 90.578742
iter  20 value 89.926505
iter  30 value 89.924768
iter  30 value 89.924767
iter  30 value 89.924767
final  value 89.924767 
converged
Fitting Repeat 3 

# weights:  305
initial  value 102.177751 
iter  10 value 94.057695
iter  20 value 94.054389
iter  30 value 94.052634
iter  40 value 89.657158
iter  50 value 81.837822
iter  60 value 81.756084
iter  70 value 81.750206
iter  80 value 81.749912
iter  90 value 81.749152
iter 100 value 81.533356
final  value 81.533356 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.285835 
iter  10 value 94.057422
iter  20 value 94.056966
iter  30 value 94.054531
iter  40 value 93.990988
iter  50 value 93.838458
iter  60 value 93.837168
iter  70 value 93.398370
iter  80 value 84.233507
iter  90 value 84.063074
iter 100 value 82.640109
final  value 82.640109 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 97.789352 
iter  10 value 93.729320
iter  20 value 89.034874
iter  30 value 83.042441
iter  40 value 78.939588
iter  50 value 78.508989
iter  60 value 77.762772
iter  70 value 77.567836
iter  80 value 77.567703
final  value 77.567333 
converged
Fitting Repeat 1 

# weights:  507
initial  value 132.403958 
iter  10 value 94.020918
iter  20 value 94.012676
iter  30 value 91.401230
iter  40 value 81.248139
iter  50 value 77.800585
iter  60 value 76.387053
iter  70 value 75.984133
iter  80 value 75.979842
iter  90 value 75.978281
final  value 75.978155 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.824480 
iter  10 value 93.844131
iter  20 value 92.620093
iter  30 value 81.871217
iter  40 value 81.827048
iter  50 value 81.826881
iter  60 value 81.826225
iter  70 value 81.742894
iter  80 value 80.740855
iter  90 value 79.585457
iter 100 value 78.103783
final  value 78.103783 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 92.940053 
iter  10 value 91.058138
iter  20 value 91.014475
iter  30 value 90.978496
final  value 90.972559 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.983234 
iter  10 value 93.844049
iter  20 value 93.838433
iter  30 value 93.836133
iter  40 value 92.860030
iter  50 value 82.236883
iter  60 value 80.679658
iter  70 value 77.908094
iter  80 value 77.158535
iter  90 value 75.811229
iter 100 value 75.565560
final  value 75.565560 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 100.988789 
iter  10 value 94.059960
iter  20 value 93.964301
iter  30 value 83.656783
final  value 83.651588 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.102719 
final  value 94.252920 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.405241 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 107.670622 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.483547 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.648653 
iter  10 value 90.755543
iter  20 value 87.395633
iter  30 value 85.116479
iter  40 value 85.077370
iter  50 value 85.060968
iter  60 value 85.059554
final  value 85.059491 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.456669 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.987095 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 113.683873 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.658741 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 115.752835 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.808797 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.854875 
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  507
initial  value 110.180717 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 102.701609 
final  value 94.466823 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.971748 
iter  10 value 90.052453
iter  20 value 85.888450
iter  30 value 85.172935
iter  40 value 84.879999
final  value 84.878678 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.800672 
iter  10 value 94.025134
iter  20 value 93.498681
iter  30 value 91.541189
iter  40 value 88.962702
iter  50 value 88.644304
iter  60 value 88.571570
iter  70 value 88.557991
iter  80 value 88.006452
iter  90 value 84.236252
iter 100 value 82.940097
final  value 82.940097 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 99.834264 
iter  10 value 94.486965
iter  20 value 93.613654
iter  30 value 88.946525
iter  40 value 87.442430
iter  50 value 87.120728
iter  60 value 86.836549
iter  70 value 84.136147
iter  80 value 83.897758
iter  90 value 83.883254
iter 100 value 83.875939
final  value 83.875939 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 97.555707 
iter  10 value 94.491331
iter  20 value 94.334835
iter  30 value 94.033536
iter  40 value 93.984968
iter  50 value 93.948221
iter  60 value 85.759250
iter  70 value 84.269694
iter  80 value 84.041923
iter  90 value 83.963932
iter 100 value 83.936500
final  value 83.936500 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 101.150496 
iter  10 value 94.447699
iter  20 value 94.035954
iter  30 value 93.993842
iter  40 value 92.062214
iter  50 value 84.679873
iter  60 value 83.124428
iter  70 value 81.641224
iter  80 value 81.114583
final  value 81.102143 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.417542 
iter  10 value 94.023762
iter  20 value 93.980211
iter  30 value 93.955924
iter  40 value 89.532657
iter  50 value 85.195744
iter  60 value 84.742926
iter  70 value 84.021191
iter  80 value 83.925331
iter  90 value 83.876137
final  value 83.874865 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.427699 
iter  10 value 94.260464
iter  20 value 87.997508
iter  30 value 84.832423
iter  40 value 84.628964
iter  50 value 84.108758
iter  60 value 84.033258
iter  70 value 83.713217
iter  80 value 81.226524
iter  90 value 80.645140
iter 100 value 80.479766
final  value 80.479766 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.869454 
iter  10 value 94.524240
iter  20 value 93.773061
iter  30 value 89.651713
iter  40 value 88.839032
iter  50 value 88.347004
iter  60 value 86.171443
iter  70 value 84.726562
iter  80 value 83.706617
iter  90 value 82.103086
iter 100 value 80.460189
final  value 80.460189 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 101.844392 
iter  10 value 94.498030
iter  20 value 94.103729
iter  30 value 93.314195
iter  40 value 88.369564
iter  50 value 85.946057
iter  60 value 85.519073
iter  70 value 85.179625
iter  80 value 83.265466
iter  90 value 80.859714
iter 100 value 80.305724
final  value 80.305724 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 114.647394 
iter  10 value 94.458850
iter  20 value 93.591489
iter  30 value 88.965653
iter  40 value 86.660548
iter  50 value 84.388442
iter  60 value 82.834685
iter  70 value 81.764930
iter  80 value 81.492421
iter  90 value 80.922837
iter 100 value 80.741650
final  value 80.741650 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 100.423442 
iter  10 value 94.873595
iter  20 value 89.346334
iter  30 value 88.708341
iter  40 value 87.511499
iter  50 value 83.280829
iter  60 value 81.914616
iter  70 value 81.728888
iter  80 value 81.073483
iter  90 value 80.015894
iter 100 value 79.897787
final  value 79.897787 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 114.243546 
iter  10 value 94.561900
iter  20 value 92.740765
iter  30 value 88.585147
iter  40 value 85.079457
iter  50 value 82.514276
iter  60 value 81.977765
iter  70 value 81.773806
iter  80 value 81.488092
iter  90 value 81.238501
iter 100 value 80.565913
final  value 80.565913 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 114.244703 
iter  10 value 94.467672
iter  20 value 90.158221
iter  30 value 86.840886
iter  40 value 83.236722
iter  50 value 82.608225
iter  60 value 81.768717
iter  70 value 80.865532
iter  80 value 80.394768
iter  90 value 80.242341
iter 100 value 79.934485
final  value 79.934485 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 109.667795 
iter  10 value 86.710852
iter  20 value 84.349199
iter  30 value 81.973956
iter  40 value 81.471605
iter  50 value 81.010872
iter  60 value 80.494191
iter  70 value 79.898873
iter  80 value 79.741219
iter  90 value 79.692127
iter 100 value 79.622118
final  value 79.622118 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 115.005981 
iter  10 value 94.603972
iter  20 value 94.438304
iter  30 value 94.025712
iter  40 value 90.690051
iter  50 value 83.292363
iter  60 value 82.515635
iter  70 value 81.630212
iter  80 value 80.622215
iter  90 value 80.233064
iter 100 value 80.161080
final  value 80.161080 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 109.337423 
iter  10 value 94.444569
iter  20 value 90.587879
iter  30 value 86.222318
iter  40 value 84.908326
iter  50 value 83.624708
iter  60 value 83.328864
iter  70 value 82.680480
iter  80 value 81.575747
iter  90 value 81.115033
iter 100 value 80.218590
final  value 80.218590 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.783420 
final  value 94.485790 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.514460 
final  value 94.485706 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.764046 
iter  10 value 94.485846
iter  20 value 94.484250
iter  30 value 85.850504
final  value 85.747542 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.293862 
final  value 94.485895 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.501067 
final  value 94.486147 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.713284 
iter  10 value 94.485988
iter  20 value 89.501032
iter  30 value 87.091213
iter  40 value 86.580995
iter  50 value 86.479191
iter  60 value 86.476206
iter  70 value 86.475694
iter  80 value 86.472365
iter  90 value 86.469387
iter 100 value 86.467765
final  value 86.467765 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 106.390614 
iter  10 value 94.488445
iter  20 value 94.346115
iter  30 value 90.969750
iter  40 value 85.227173
iter  50 value 82.932145
iter  60 value 81.662280
iter  70 value 81.646422
iter  80 value 81.645526
final  value 81.644121 
converged
Fitting Repeat 3 

# weights:  305
initial  value 100.277780 
iter  10 value 94.489044
iter  20 value 94.462123
iter  30 value 93.991513
iter  30 value 93.991512
final  value 93.991501 
converged
Fitting Repeat 4 

# weights:  305
initial  value 103.947483 
iter  10 value 94.489120
iter  20 value 94.484447
final  value 94.484224 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.884394 
iter  10 value 94.488167
iter  20 value 94.209606
iter  30 value 86.002378
iter  40 value 83.765627
final  value 83.756405 
converged
Fitting Repeat 1 

# weights:  507
initial  value 118.669842 
iter  10 value 94.494960
iter  20 value 93.716500
iter  30 value 93.005078
iter  40 value 92.154812
iter  50 value 92.130892
iter  60 value 91.211211
iter  70 value 91.181965
iter  80 value 91.084801
iter  90 value 90.993916
iter 100 value 90.991570
final  value 90.991570 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 111.578726 
iter  10 value 94.474713
iter  20 value 94.467605
final  value 94.466905 
converged
Fitting Repeat 3 

# weights:  507
initial  value 110.483507 
iter  10 value 86.111256
iter  20 value 85.449609
iter  30 value 85.442564
iter  40 value 84.112642
iter  50 value 84.077969
iter  60 value 83.951793
iter  70 value 83.908849
iter  80 value 83.370083
iter  90 value 83.077941
iter 100 value 81.895646
final  value 81.895646 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 111.873063 
iter  10 value 94.491893
iter  20 value 94.443829
iter  30 value 92.280238
final  value 92.279738 
converged
Fitting Repeat 5 

# weights:  507
initial  value 101.308201 
iter  10 value 94.491751
iter  20 value 94.484302
iter  30 value 92.204697
iter  40 value 86.251199
iter  50 value 85.557834
iter  60 value 81.738680
iter  70 value 79.348693
iter  80 value 79.306618
iter  90 value 79.299333
iter 100 value 79.286002
final  value 79.286002 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 103.146145 
final  value 94.052911 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.400992 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.894729 
final  value 93.836066 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.643252 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.453768 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 112.762370 
iter  10 value 93.593528
iter  20 value 93.573797
final  value 93.573739 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.940106 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 105.613263 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.157751 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.195361 
iter  10 value 93.841263
final  value 93.518236 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.728928 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 104.753110 
iter  10 value 93.549199
iter  20 value 93.544799
iter  30 value 93.480142
final  value 93.479964 
converged
Fitting Repeat 3 

# weights:  507
initial  value 94.500953 
final  value 94.052908 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.726234 
iter  10 value 93.694307
iter  20 value 93.687934
final  value 93.687903 
converged
Fitting Repeat 5 

# weights:  507
initial  value 94.554701 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.388869 
iter  10 value 93.607441
iter  20 value 93.120921
iter  30 value 90.688775
iter  40 value 87.809107
iter  50 value 87.159039
iter  60 value 86.960845
iter  70 value 86.578653
iter  80 value 85.481848
iter  90 value 84.912194
iter 100 value 84.714867
final  value 84.714867 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 97.572965 
iter  10 value 94.011200
iter  20 value 93.621923
iter  30 value 89.940693
iter  40 value 86.839152
iter  50 value 86.518261
iter  60 value 86.451485
final  value 86.438677 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.730907 
iter  10 value 94.044790
iter  20 value 93.816491
iter  30 value 93.027074
iter  40 value 90.280158
iter  50 value 89.364464
iter  60 value 88.889783
iter  70 value 88.154718
iter  80 value 87.905292
final  value 87.872463 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.555721 
iter  10 value 94.056515
iter  20 value 93.912495
iter  30 value 93.740854
iter  40 value 91.554858
iter  50 value 89.780391
iter  60 value 85.792149
iter  70 value 85.235353
iter  80 value 84.926866
iter  90 value 84.765668
iter 100 value 84.714010
final  value 84.714010 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 98.653384 
iter  10 value 94.106776
iter  20 value 93.691686
iter  30 value 93.597078
iter  40 value 92.272443
iter  50 value 90.015550
iter  60 value 88.464218
iter  70 value 88.136382
iter  80 value 87.662860
iter  90 value 87.302874
iter 100 value 87.021174
final  value 87.021174 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 113.648890 
iter  10 value 94.056361
iter  20 value 93.616686
iter  30 value 93.586340
iter  40 value 92.912846
iter  50 value 87.022992
iter  60 value 86.633298
iter  70 value 85.332337
iter  80 value 84.705319
iter  90 value 84.149526
iter 100 value 83.963347
final  value 83.963347 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 112.164874 
iter  10 value 93.640739
iter  20 value 91.229381
iter  30 value 87.908065
iter  40 value 87.511777
iter  50 value 86.203261
iter  60 value 85.797408
iter  70 value 85.217773
iter  80 value 84.811053
iter  90 value 84.457383
iter 100 value 83.958867
final  value 83.958867 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.183138 
iter  10 value 94.057397
iter  20 value 93.361217
iter  30 value 91.679268
iter  40 value 88.729314
iter  50 value 86.740238
iter  60 value 86.106709
iter  70 value 85.498571
iter  80 value 84.292099
iter  90 value 83.761573
iter 100 value 83.377232
final  value 83.377232 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 109.338297 
iter  10 value 94.159209
iter  20 value 88.052420
iter  30 value 87.661030
iter  40 value 87.610625
iter  50 value 87.403090
iter  60 value 86.402561
iter  70 value 85.521935
iter  80 value 84.164910
iter  90 value 83.767465
iter 100 value 83.690299
final  value 83.690299 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.565934 
iter  10 value 96.981644
iter  20 value 91.434773
iter  30 value 87.244915
iter  40 value 86.933898
iter  50 value 86.656292
iter  60 value 86.378096
iter  70 value 86.222248
iter  80 value 86.049356
iter  90 value 86.036360
iter 100 value 85.940878
final  value 85.940878 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 116.357600 
iter  10 value 94.091241
iter  20 value 90.266591
iter  30 value 87.664206
iter  40 value 86.752796
iter  50 value 86.156893
iter  60 value 85.882358
iter  70 value 84.474829
iter  80 value 84.261534
iter  90 value 83.976299
iter 100 value 83.576090
final  value 83.576090 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 124.380413 
iter  10 value 94.148661
iter  20 value 91.162017
iter  30 value 87.360254
iter  40 value 86.456143
iter  50 value 85.407093
iter  60 value 84.428253
iter  70 value 83.892406
iter  80 value 83.578727
iter  90 value 83.300819
iter 100 value 83.155080
final  value 83.155080 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 111.333932 
iter  10 value 93.930801
iter  20 value 91.405826
iter  30 value 89.540728
iter  40 value 89.336989
iter  50 value 87.487733
iter  60 value 87.015091
iter  70 value 85.802528
iter  80 value 84.531408
iter  90 value 83.922170
iter 100 value 83.716939
final  value 83.716939 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 121.024078 
iter  10 value 94.021537
iter  20 value 91.489361
iter  30 value 89.038863
iter  40 value 88.270027
iter  50 value 87.395086
iter  60 value 85.153474
iter  70 value 84.850590
iter  80 value 84.584986
iter  90 value 83.910258
iter 100 value 83.562386
final  value 83.562386 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 103.518212 
iter  10 value 93.958316
iter  20 value 93.606989
iter  30 value 88.014709
iter  40 value 87.001758
iter  50 value 86.335316
iter  60 value 85.242482
iter  70 value 84.007127
iter  80 value 83.756220
iter  90 value 83.722621
iter 100 value 83.620817
final  value 83.620817 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.047766 
final  value 93.838034 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.995565 
iter  10 value 94.054448
iter  20 value 94.052921
iter  30 value 90.426467
iter  40 value 90.324499
iter  50 value 87.387915
final  value 87.377201 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.162409 
iter  10 value 94.032429
iter  20 value 93.837864
final  value 93.837772 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.523784 
iter  10 value 93.837715
iter  20 value 93.837623
iter  30 value 93.606111
iter  40 value 93.605535
final  value 93.604888 
converged
Fitting Repeat 5 

# weights:  103
initial  value 108.642538 
final  value 94.054395 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.858284 
iter  10 value 93.846117
iter  20 value 93.613499
iter  30 value 93.608823
final  value 93.607236 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.837015 
iter  10 value 88.412460
iter  20 value 88.134379
iter  30 value 87.958153
iter  40 value 87.813063
iter  50 value 87.812399
iter  60 value 87.810651
final  value 87.810447 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.907669 
iter  10 value 94.057329
iter  20 value 94.048656
iter  30 value 92.784181
iter  40 value 92.497394
iter  50 value 92.496863
iter  60 value 90.149823
iter  70 value 89.976183
iter  80 value 87.112896
iter  90 value 86.209881
iter 100 value 84.196967
final  value 84.196967 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.175206 
iter  10 value 94.057703
iter  20 value 94.012026
iter  30 value 92.949458
iter  40 value 92.933850
iter  50 value 92.933310
iter  60 value 92.735872
iter  70 value 87.365989
final  value 87.365983 
converged
Fitting Repeat 5 

# weights:  305
initial  value 106.419402 
iter  10 value 94.058099
iter  20 value 93.994490
final  value 93.836280 
converged
Fitting Repeat 1 

# weights:  507
initial  value 109.107795 
iter  10 value 93.297300
iter  20 value 93.286554
iter  30 value 89.814889
iter  40 value 87.038740
iter  50 value 84.880985
iter  60 value 84.333825
iter  70 value 83.991086
iter  80 value 83.977053
iter  90 value 83.380989
iter 100 value 83.106857
final  value 83.106857 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 103.831908 
iter  10 value 94.061353
iter  20 value 93.958398
iter  30 value 87.423267
iter  40 value 87.366260
iter  50 value 87.334407
iter  60 value 87.333492
iter  60 value 87.333491
iter  60 value 87.333491
final  value 87.333491 
converged
Fitting Repeat 3 

# weights:  507
initial  value 123.805963 
iter  10 value 94.061109
iter  20 value 94.039948
iter  30 value 90.281118
iter  40 value 89.096321
iter  50 value 89.065213
iter  60 value 89.064220
iter  60 value 89.064220
iter  60 value 89.064220
final  value 89.064220 
converged
Fitting Repeat 4 

# weights:  507
initial  value 104.421687 
iter  10 value 93.670228
iter  20 value 93.581948
iter  30 value 93.579933
iter  40 value 93.574127
iter  50 value 93.565413
iter  60 value 88.574883
iter  70 value 87.941647
iter  80 value 87.153987
iter  90 value 87.137896
iter 100 value 86.929938
final  value 86.929938 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 98.196570 
iter  10 value 92.009801
iter  20 value 88.209912
iter  30 value 86.160638
iter  40 value 86.051904
iter  50 value 85.999504
iter  60 value 85.995009
iter  70 value 84.727221
iter  80 value 84.483896
iter  90 value 83.886189
iter 100 value 83.743878
final  value 83.743878 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 174.362197 
iter  10 value 124.163988
iter  20 value 112.583673
iter  30 value 110.050567
iter  40 value 109.539256
iter  50 value 109.381319
iter  60 value 105.873744
iter  70 value 103.314772
iter  80 value 102.743046
iter  90 value 102.526741
iter 100 value 102.350160
final  value 102.350160 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 124.415333 
iter  10 value 116.807906
iter  20 value 108.059833
iter  30 value 105.826537
iter  40 value 102.725754
iter  50 value 102.250525
iter  60 value 101.394333
iter  70 value 101.082950
iter  80 value 100.994933
iter  90 value 100.845609
iter 100 value 100.811919
final  value 100.811919 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 126.165270 
iter  10 value 121.043781
iter  20 value 115.252380
iter  30 value 114.339045
iter  40 value 113.859630
iter  50 value 111.968962
iter  60 value 107.720173
iter  70 value 103.857819
iter  80 value 102.914992
iter  90 value 102.562159
iter 100 value 102.235604
final  value 102.235604 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 127.492728 
iter  10 value 117.104704
iter  20 value 108.771068
iter  30 value 107.426567
iter  40 value 106.632513
iter  50 value 105.012727
iter  60 value 103.624889
iter  70 value 103.002500
iter  80 value 102.767192
iter  90 value 102.593155
iter 100 value 101.900270
final  value 101.900270 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 123.727015 
iter  10 value 117.765401
iter  20 value 117.565306
iter  30 value 111.702901
iter  40 value 109.228728
iter  50 value 107.436670
iter  60 value 104.306352
iter  70 value 103.112573
iter  80 value 102.845194
iter  90 value 102.777313
iter 100 value 102.228195
final  value 102.228195 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Thu Oct 17 02:28:46 2024 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  45.28    1.60   48.40 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod33.97 1.9836.15
FreqInteractors0.250.000.26
calculateAAC0.040.000.04
calculateAutocor0.440.130.57
calculateCTDC0.090.000.09
calculateCTDD0.670.050.72
calculateCTDT0.310.010.32
calculateCTriad0.350.060.41
calculateDC0.090.000.09
calculateF0.380.000.37
calculateKSAAP0.150.020.18
calculateQD_Sm2.080.142.21
calculateTC1.920.112.04
calculateTC_Sm0.280.000.28
corr_plot33.21 1.6834.92
enrichfindP 0.59 0.1413.94
enrichfind_hp0.110.021.04
enrichplot0.410.010.44
filter_missing_values000
getFASTA0.020.022.29
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data0.000.020.02
plotPPI0.080.000.08
pred_ensembel15.21 0.4611.67
var_imp32.94 1.3234.25