Back to Multiple platform build/check report for BioC 3.19: simplified long |
|
This page was generated on 2024-10-18 20:42 -0400 (Fri, 18 Oct 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4763 |
palomino7 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4500 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4530 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4480 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 987/2300 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.10.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.10.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz |
StartedAt: 2024-10-18 00:45:24 -0400 (Fri, 18 Oct 2024) |
EndedAt: 2024-10-18 00:51:15 -0400 (Fri, 18 Oct 2024) |
EllapsedTime: 351.0 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck’ * using R version 4.4.1 (2024-06-14) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Ventura 13.6.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.10.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed corr_plot 52.090 2.866 55.804 FSmethod 52.245 2.667 55.544 var_imp 51.562 2.542 54.752 pred_ensembel 15.221 0.324 13.178 enrichfindP 0.539 0.084 7.941 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 105.454741 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.660312 final value 94.354396 converged Fitting Repeat 3 # weights: 103 initial value 97.748822 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.864796 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.342427 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.099113 iter 10 value 94.381465 final value 94.381462 converged Fitting Repeat 2 # weights: 305 initial value 96.552697 iter 10 value 94.405716 final value 94.405650 converged Fitting Repeat 3 # weights: 305 initial value 98.057934 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.316041 final value 94.381462 converged Fitting Repeat 5 # weights: 305 initial value 94.731269 iter 10 value 93.366879 iter 20 value 92.877566 iter 30 value 92.839029 final value 92.838096 converged Fitting Repeat 1 # weights: 507 initial value 102.771778 iter 10 value 94.382671 final value 94.381462 converged Fitting Repeat 2 # weights: 507 initial value 118.210101 final value 94.381462 converged Fitting Repeat 3 # weights: 507 initial value 113.750574 final value 94.322897 converged Fitting Repeat 4 # weights: 507 initial value 99.940980 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 98.217860 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 108.996860 iter 10 value 94.446619 iter 20 value 92.303930 iter 30 value 89.859077 iter 40 value 89.014346 iter 50 value 87.595492 iter 60 value 85.137973 iter 70 value 84.991412 iter 80 value 84.984028 iter 80 value 84.984027 iter 80 value 84.984027 final value 84.984027 converged Fitting Repeat 2 # weights: 103 initial value 99.000384 iter 10 value 94.492323 iter 20 value 94.410593 iter 30 value 90.918092 iter 40 value 87.019743 iter 50 value 86.659683 iter 60 value 83.974090 iter 70 value 83.970639 iter 80 value 83.965247 iter 90 value 83.956742 final value 83.948098 converged Fitting Repeat 3 # weights: 103 initial value 105.775502 iter 10 value 94.489302 iter 20 value 91.498114 iter 30 value 87.264497 iter 40 value 85.180003 iter 50 value 84.772490 iter 60 value 84.584756 iter 70 value 84.478108 iter 80 value 83.976376 iter 90 value 83.951681 final value 83.948098 converged Fitting Repeat 4 # weights: 103 initial value 97.029705 iter 10 value 94.460405 iter 20 value 86.894425 iter 30 value 86.105718 iter 40 value 85.014788 iter 50 value 84.988753 iter 60 value 84.968961 iter 70 value 84.965393 final value 84.965272 converged Fitting Repeat 5 # weights: 103 initial value 97.326374 iter 10 value 94.440187 iter 20 value 87.076825 iter 30 value 85.494676 iter 40 value 85.300338 iter 50 value 84.987027 final value 84.984027 converged Fitting Repeat 1 # weights: 305 initial value 103.860258 iter 10 value 94.171895 iter 20 value 93.347400 iter 30 value 92.875771 iter 40 value 92.629180 iter 50 value 85.275140 iter 60 value 85.007108 iter 70 value 82.834895 iter 80 value 81.421846 iter 90 value 80.086571 iter 100 value 79.724272 final value 79.724272 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 121.704929 iter 10 value 94.701683 iter 20 value 94.410645 iter 30 value 87.021072 iter 40 value 85.669731 iter 50 value 85.103765 iter 60 value 84.153499 iter 70 value 82.303812 iter 80 value 80.001945 iter 90 value 79.887462 iter 100 value 79.580463 final value 79.580463 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.974871 iter 10 value 94.444285 iter 20 value 92.760610 iter 30 value 87.872261 iter 40 value 86.641117 iter 50 value 83.159756 iter 60 value 82.823522 iter 70 value 82.527502 iter 80 value 82.469302 iter 90 value 82.383703 iter 100 value 82.043853 final value 82.043853 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.113116 iter 10 value 93.830441 iter 20 value 87.894464 iter 30 value 84.756574 iter 40 value 83.756454 iter 50 value 83.336926 iter 60 value 83.228268 iter 70 value 83.182947 iter 80 value 83.033219 iter 90 value 81.079427 iter 100 value 80.315741 final value 80.315741 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.565789 iter 10 value 94.292983 iter 20 value 89.736504 iter 30 value 85.950954 iter 40 value 81.776138 iter 50 value 79.868467 iter 60 value 79.717489 iter 70 value 79.605258 iter 80 value 79.367225 iter 90 value 79.302515 iter 100 value 79.220682 final value 79.220682 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.868083 iter 10 value 94.592365 iter 20 value 94.491667 iter 30 value 93.941537 iter 40 value 88.099744 iter 50 value 84.014071 iter 60 value 80.930117 iter 70 value 79.704424 iter 80 value 79.219400 iter 90 value 79.148629 iter 100 value 78.932570 final value 78.932570 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.574577 iter 10 value 94.322653 iter 20 value 92.585828 iter 30 value 90.360889 iter 40 value 87.194081 iter 50 value 85.420309 iter 60 value 82.461784 iter 70 value 80.567211 iter 80 value 80.200343 iter 90 value 79.610711 iter 100 value 79.393058 final value 79.393058 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 137.196841 iter 10 value 94.453051 iter 20 value 87.438174 iter 30 value 86.085904 iter 40 value 83.280617 iter 50 value 81.601781 iter 60 value 81.500093 iter 70 value 80.838946 iter 80 value 80.755583 iter 90 value 80.524548 iter 100 value 80.399217 final value 80.399217 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.907371 iter 10 value 94.521241 iter 20 value 87.573487 iter 30 value 86.729529 iter 40 value 84.272523 iter 50 value 81.990978 iter 60 value 81.703168 iter 70 value 81.549010 iter 80 value 81.299459 iter 90 value 80.142233 iter 100 value 79.895570 final value 79.895570 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 117.306019 iter 10 value 94.549494 iter 20 value 90.610060 iter 30 value 88.063841 iter 40 value 86.964695 iter 50 value 84.854999 iter 60 value 83.307358 iter 70 value 81.996710 iter 80 value 80.195659 iter 90 value 79.496329 iter 100 value 79.360501 final value 79.360501 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.249517 final value 94.485740 converged Fitting Repeat 2 # weights: 103 initial value 96.222582 final value 94.485801 converged Fitting Repeat 3 # weights: 103 initial value 97.672244 final value 94.485936 converged Fitting Repeat 4 # weights: 103 initial value 108.026690 iter 10 value 94.485901 iter 20 value 94.484237 final value 94.484216 converged Fitting Repeat 5 # weights: 103 initial value 104.442334 final value 94.485730 converged Fitting Repeat 1 # weights: 305 initial value 100.728544 iter 10 value 94.411368 iter 20 value 94.401352 iter 30 value 89.112739 iter 40 value 86.966710 iter 50 value 83.045565 iter 60 value 81.395914 iter 70 value 81.211649 iter 80 value 81.208287 iter 90 value 81.182133 iter 100 value 81.165798 final value 81.165798 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.994150 iter 10 value 94.488880 iter 20 value 94.481410 iter 30 value 87.182409 iter 40 value 84.699085 iter 50 value 83.532580 iter 60 value 83.087156 iter 70 value 80.055378 iter 80 value 77.911667 iter 90 value 77.563264 iter 100 value 77.170562 final value 77.170562 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.776383 iter 10 value 94.488743 iter 20 value 94.422766 iter 30 value 87.996060 iter 40 value 87.369571 iter 50 value 86.200842 iter 60 value 82.265476 iter 70 value 80.656743 iter 80 value 80.492879 iter 90 value 79.915143 iter 100 value 78.505846 final value 78.505846 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.235176 iter 10 value 94.488914 iter 20 value 94.484235 iter 30 value 88.015342 iter 40 value 86.153046 iter 50 value 86.062618 iter 60 value 85.909974 iter 70 value 85.904745 final value 85.904422 converged Fitting Repeat 5 # weights: 305 initial value 96.026836 iter 10 value 94.386878 iter 20 value 94.383065 iter 30 value 93.719824 iter 40 value 84.649968 iter 50 value 82.596990 iter 60 value 82.207448 iter 70 value 82.166932 final value 82.166733 converged Fitting Repeat 1 # weights: 507 initial value 105.379257 iter 10 value 94.392902 iter 20 value 92.972133 iter 30 value 86.095618 iter 40 value 86.022182 iter 50 value 85.873378 iter 60 value 85.872783 final value 85.872495 converged Fitting Repeat 2 # weights: 507 initial value 109.157617 iter 10 value 94.492302 iter 20 value 94.484004 iter 30 value 94.354929 iter 40 value 90.683765 iter 50 value 84.429261 iter 60 value 84.419354 final value 84.419027 converged Fitting Repeat 3 # weights: 507 initial value 111.099923 iter 10 value 94.491610 iter 20 value 94.409082 iter 30 value 86.771029 iter 40 value 83.730082 iter 50 value 83.559264 final value 83.557352 converged Fitting Repeat 4 # weights: 507 initial value 119.338333 iter 10 value 94.442638 iter 20 value 94.394649 iter 30 value 89.739553 iter 40 value 86.884510 iter 50 value 86.821563 iter 60 value 86.094747 iter 70 value 83.144021 iter 80 value 79.883801 iter 90 value 79.168941 iter 100 value 79.163423 final value 79.163423 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.049953 iter 10 value 94.491618 iter 20 value 93.583614 iter 30 value 91.650971 iter 30 value 91.650970 iter 40 value 85.151704 iter 50 value 84.751236 iter 60 value 84.748164 iter 70 value 84.746803 iter 80 value 84.730762 iter 90 value 84.247423 iter 100 value 82.072450 final value 82.072450 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.239920 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.009049 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.775781 final value 93.637380 converged Fitting Repeat 4 # weights: 103 initial value 94.723339 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.567223 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.335518 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 104.254992 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 97.719969 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 111.058359 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 118.944750 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 95.492980 iter 10 value 89.678543 iter 20 value 84.741986 iter 30 value 84.134428 iter 40 value 83.824010 iter 50 value 83.546509 iter 60 value 82.599032 iter 70 value 81.773328 iter 80 value 81.692320 iter 90 value 81.633929 iter 100 value 81.631545 final value 81.631545 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 97.775793 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 95.928511 iter 10 value 93.401047 iter 20 value 86.643690 iter 30 value 84.227035 iter 40 value 84.225557 final value 84.225554 converged Fitting Repeat 4 # weights: 507 initial value 116.556740 iter 10 value 94.012634 iter 20 value 93.704171 final value 93.703974 converged Fitting Repeat 5 # weights: 507 initial value 100.752032 iter 10 value 93.924678 iter 20 value 93.662855 iter 30 value 92.834313 iter 40 value 92.829467 final value 92.829462 converged Fitting Repeat 1 # weights: 103 initial value 114.419779 iter 10 value 94.162426 iter 20 value 86.468169 iter 30 value 85.030037 iter 40 value 84.339583 iter 50 value 83.491908 iter 60 value 83.272215 iter 70 value 82.911671 iter 80 value 82.480646 iter 90 value 82.339134 final value 82.339011 converged Fitting Repeat 2 # weights: 103 initial value 104.138609 iter 10 value 93.971810 iter 20 value 92.808682 iter 30 value 89.466938 iter 40 value 88.897354 iter 50 value 83.618059 iter 60 value 82.420303 iter 70 value 82.346095 iter 80 value 82.224764 final value 82.222728 converged Fitting Repeat 3 # weights: 103 initial value 109.215090 iter 10 value 94.114301 iter 20 value 89.783817 iter 30 value 85.995544 iter 40 value 83.932768 iter 50 value 83.136264 iter 60 value 82.964306 iter 70 value 82.901584 iter 80 value 82.792914 iter 90 value 82.339065 final value 82.339011 converged Fitting Repeat 4 # weights: 103 initial value 109.708068 iter 10 value 94.610538 iter 20 value 94.504587 iter 30 value 88.561995 iter 40 value 86.192221 iter 50 value 85.503581 iter 60 value 84.961171 iter 70 value 84.790432 final value 84.790239 converged Fitting Repeat 5 # weights: 103 initial value 98.212795 iter 10 value 87.185362 iter 20 value 85.166994 iter 30 value 84.693608 iter 40 value 83.680621 iter 50 value 83.119062 iter 60 value 82.673074 iter 70 value 82.339215 final value 82.339011 converged Fitting Repeat 1 # weights: 305 initial value 113.309838 iter 10 value 93.869275 iter 20 value 86.054069 iter 30 value 83.515575 iter 40 value 82.905369 iter 50 value 82.748515 iter 60 value 82.546152 iter 70 value 82.229431 iter 80 value 82.197601 iter 90 value 81.867784 iter 100 value 81.208156 final value 81.208156 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.346246 iter 10 value 94.265562 iter 20 value 89.502141 iter 30 value 88.913423 iter 40 value 86.034494 iter 50 value 83.695863 iter 60 value 82.312730 iter 70 value 81.281059 iter 80 value 80.944174 iter 90 value 80.787132 iter 100 value 80.755992 final value 80.755992 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 118.138266 iter 10 value 94.600934 iter 20 value 87.421885 iter 30 value 85.189624 iter 40 value 84.082523 iter 50 value 82.734941 iter 60 value 82.113333 iter 70 value 81.879662 iter 80 value 81.582436 iter 90 value 81.432562 iter 100 value 81.295852 final value 81.295852 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.187878 iter 10 value 94.520700 iter 20 value 91.750698 iter 30 value 88.281606 iter 40 value 83.591744 iter 50 value 82.315532 iter 60 value 82.254700 iter 70 value 82.050074 iter 80 value 81.578047 iter 90 value 81.364477 iter 100 value 81.338600 final value 81.338600 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.576574 iter 10 value 94.591803 iter 20 value 94.508672 iter 30 value 93.784525 iter 40 value 91.304250 iter 50 value 85.953945 iter 60 value 85.243688 iter 70 value 85.071871 iter 80 value 84.660181 iter 90 value 83.800567 iter 100 value 83.112042 final value 83.112042 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.067729 iter 10 value 94.434038 iter 20 value 87.515742 iter 30 value 87.129722 iter 40 value 85.995674 iter 50 value 82.721832 iter 60 value 82.387759 iter 70 value 82.122176 iter 80 value 81.328906 iter 90 value 81.151727 iter 100 value 81.029747 final value 81.029747 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.069981 iter 10 value 94.611456 iter 20 value 87.108177 iter 30 value 86.789132 iter 40 value 86.318035 iter 50 value 83.776843 iter 60 value 82.089288 iter 70 value 81.468587 iter 80 value 81.388171 iter 90 value 81.331172 iter 100 value 81.189039 final value 81.189039 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.541171 iter 10 value 93.437730 iter 20 value 87.399460 iter 30 value 83.243330 iter 40 value 83.005371 iter 50 value 82.820091 iter 60 value 82.630554 iter 70 value 82.090783 iter 80 value 81.905602 iter 90 value 81.758881 iter 100 value 81.586753 final value 81.586753 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.616725 iter 10 value 95.318427 iter 20 value 93.995558 iter 30 value 91.038977 iter 40 value 88.425544 iter 50 value 85.335764 iter 60 value 83.874108 iter 70 value 83.484043 iter 80 value 82.703052 iter 90 value 82.353274 iter 100 value 81.985920 final value 81.985920 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.187113 iter 10 value 94.462694 iter 20 value 90.287755 iter 30 value 85.257010 iter 40 value 84.845451 iter 50 value 84.053175 iter 60 value 83.626147 iter 70 value 82.563660 iter 80 value 81.815442 iter 90 value 81.492764 iter 100 value 81.459184 final value 81.459184 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.739073 final value 94.485724 converged Fitting Repeat 2 # weights: 103 initial value 97.194979 final value 94.486019 converged Fitting Repeat 3 # weights: 103 initial value 95.672664 iter 10 value 94.486091 iter 20 value 94.409328 iter 30 value 90.710338 iter 40 value 87.811986 iter 50 value 87.164660 iter 60 value 86.638297 iter 70 value 85.475833 final value 85.390397 converged Fitting Repeat 4 # weights: 103 initial value 100.558496 final value 94.485814 converged Fitting Repeat 5 # weights: 103 initial value 100.427395 final value 94.486012 converged Fitting Repeat 1 # weights: 305 initial value 100.440312 iter 10 value 94.489599 iter 20 value 94.425318 iter 30 value 93.258801 iter 40 value 93.212051 iter 50 value 92.664748 iter 60 value 92.605844 iter 70 value 92.598088 iter 80 value 87.732350 iter 90 value 87.261130 iter 100 value 87.259441 final value 87.259441 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 123.460119 iter 10 value 94.489461 iter 20 value 94.484745 iter 30 value 94.282428 iter 40 value 91.693926 iter 50 value 91.573531 iter 60 value 91.573250 iter 70 value 91.572576 final value 91.572558 converged Fitting Repeat 3 # weights: 305 initial value 103.710995 iter 10 value 93.646370 iter 20 value 93.640557 iter 30 value 88.791322 iter 40 value 86.741110 iter 50 value 86.233607 iter 60 value 86.182652 final value 86.182296 converged Fitting Repeat 4 # weights: 305 initial value 102.518571 iter 10 value 94.489706 iter 20 value 93.783507 iter 30 value 86.834408 iter 40 value 86.546294 iter 50 value 86.545858 iter 60 value 86.545248 iter 70 value 86.544777 iter 80 value 86.544583 final value 86.544580 converged Fitting Repeat 5 # weights: 305 initial value 114.134972 iter 10 value 94.484523 iter 20 value 89.339930 iter 30 value 89.076268 iter 40 value 88.186736 final value 87.952614 converged Fitting Repeat 1 # weights: 507 initial value 118.332864 iter 10 value 94.283428 iter 20 value 93.697557 final value 93.637993 converged Fitting Repeat 2 # weights: 507 initial value 100.623969 iter 10 value 92.769973 iter 20 value 92.029557 iter 30 value 91.958297 iter 40 value 91.932931 iter 50 value 91.291304 iter 60 value 91.238696 iter 70 value 91.236127 iter 80 value 91.233533 iter 90 value 91.157074 iter 100 value 83.812090 final value 83.812090 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 98.694357 iter 10 value 94.491995 iter 20 value 94.464764 iter 30 value 92.655620 final value 92.613027 converged Fitting Repeat 4 # weights: 507 initial value 107.173169 iter 10 value 94.283242 iter 20 value 94.276790 iter 30 value 93.652994 iter 40 value 93.638100 final value 93.637899 converged Fitting Repeat 5 # weights: 507 initial value 97.679408 iter 10 value 94.492581 iter 20 value 93.628973 iter 30 value 86.328571 iter 40 value 81.903733 iter 50 value 80.845615 iter 60 value 80.259502 iter 70 value 79.741051 iter 80 value 79.675124 iter 90 value 79.538613 iter 100 value 79.488637 final value 79.488637 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.467348 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.510565 iter 10 value 94.484213 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.299330 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.182242 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 104.591786 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.750591 final value 93.860350 converged Fitting Repeat 2 # weights: 305 initial value 101.717130 final value 94.484210 converged Fitting Repeat 3 # weights: 305 initial value 98.496346 final value 94.354396 converged Fitting Repeat 4 # weights: 305 initial value 104.234102 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 94.700365 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.335465 final value 94.354396 converged Fitting Repeat 2 # weights: 507 initial value 132.666500 iter 10 value 89.662809 iter 20 value 81.298014 final value 81.298004 converged Fitting Repeat 3 # weights: 507 initial value 110.832724 final value 94.354396 converged Fitting Repeat 4 # weights: 507 initial value 102.448229 iter 10 value 94.484653 iter 20 value 94.484212 iter 20 value 94.484211 iter 20 value 94.484211 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 104.298194 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.629265 iter 10 value 94.659332 iter 20 value 94.205234 iter 30 value 94.195287 iter 40 value 90.966632 iter 50 value 89.331202 iter 60 value 87.101237 iter 70 value 86.494917 iter 80 value 86.334891 iter 90 value 82.573196 iter 100 value 82.549834 final value 82.549834 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.715062 iter 10 value 94.488479 iter 20 value 92.524027 iter 30 value 84.856251 iter 40 value 82.792186 iter 50 value 82.693506 iter 60 value 82.643488 iter 70 value 82.572834 iter 80 value 82.544102 final value 82.544030 converged Fitting Repeat 3 # weights: 103 initial value 96.214525 iter 10 value 94.482471 iter 20 value 92.861385 iter 30 value 92.405282 iter 40 value 85.275969 iter 50 value 85.018918 iter 60 value 84.931439 iter 70 value 83.048369 iter 80 value 82.751089 iter 90 value 82.675518 iter 100 value 82.670987 final value 82.670987 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.526050 iter 10 value 94.479570 iter 20 value 92.641498 iter 30 value 92.491127 iter 40 value 85.408974 iter 50 value 82.978581 iter 60 value 82.772335 iter 70 value 82.710167 iter 80 value 82.680660 iter 90 value 82.563931 iter 100 value 82.544205 final value 82.544205 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 102.159657 iter 10 value 94.459712 iter 20 value 86.519760 iter 30 value 85.113820 iter 40 value 84.866284 iter 50 value 82.780600 iter 60 value 82.260740 iter 70 value 82.213959 iter 80 value 82.114863 iter 90 value 82.089260 final value 82.088782 converged Fitting Repeat 1 # weights: 305 initial value 100.036947 iter 10 value 94.302369 iter 20 value 87.221570 iter 30 value 86.650638 iter 40 value 86.535593 iter 50 value 83.692998 iter 60 value 82.208787 iter 70 value 81.573572 iter 80 value 80.796483 iter 90 value 80.524915 iter 100 value 80.184607 final value 80.184607 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.338236 iter 10 value 95.124644 iter 20 value 85.431927 iter 30 value 84.708467 iter 40 value 83.038029 iter 50 value 81.252871 iter 60 value 80.669062 iter 70 value 80.289916 iter 80 value 80.245469 iter 90 value 80.235239 iter 100 value 80.208408 final value 80.208408 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.033380 iter 10 value 94.456576 iter 20 value 89.197057 iter 30 value 86.207050 iter 40 value 85.330609 iter 50 value 85.074978 iter 60 value 84.902537 iter 70 value 84.701632 iter 80 value 82.722601 iter 90 value 82.434141 iter 100 value 82.348106 final value 82.348106 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 116.604069 iter 10 value 92.030870 iter 20 value 86.346274 iter 30 value 81.862595 iter 40 value 81.313688 iter 50 value 80.722904 iter 60 value 80.470845 iter 70 value 79.998055 iter 80 value 79.952658 iter 90 value 79.781222 iter 100 value 79.677194 final value 79.677194 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.464940 iter 10 value 86.675312 iter 20 value 84.754239 iter 30 value 82.750106 iter 40 value 82.236315 iter 50 value 81.372489 iter 60 value 80.944854 iter 70 value 80.637981 iter 80 value 80.589261 iter 90 value 80.549307 iter 100 value 80.480602 final value 80.480602 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.771764 iter 10 value 94.378627 iter 20 value 92.634711 iter 30 value 92.424061 iter 40 value 86.017271 iter 50 value 85.411888 iter 60 value 85.181087 iter 70 value 82.979533 iter 80 value 80.943684 iter 90 value 80.381978 iter 100 value 79.623433 final value 79.623433 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.137541 iter 10 value 95.520778 iter 20 value 94.914626 iter 30 value 92.503963 iter 40 value 85.131282 iter 50 value 83.148640 iter 60 value 80.896742 iter 70 value 80.251707 iter 80 value 80.150694 iter 90 value 79.649491 iter 100 value 79.452037 final value 79.452037 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.309553 iter 10 value 95.829069 iter 20 value 87.949828 iter 30 value 85.128295 iter 40 value 83.963967 iter 50 value 81.469361 iter 60 value 81.211243 iter 70 value 80.904446 iter 80 value 80.684625 iter 90 value 80.161807 iter 100 value 79.629314 final value 79.629314 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 132.215750 iter 10 value 94.684679 iter 20 value 94.083682 iter 30 value 87.096707 iter 40 value 84.107772 iter 50 value 83.227366 iter 60 value 82.581200 iter 70 value 82.427393 iter 80 value 82.315278 iter 90 value 82.257420 iter 100 value 82.198717 final value 82.198717 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.463797 iter 10 value 94.760708 iter 20 value 90.933738 iter 30 value 83.358653 iter 40 value 82.238236 iter 50 value 81.729207 iter 60 value 81.664860 iter 70 value 81.150664 iter 80 value 81.019990 iter 90 value 80.796052 iter 100 value 80.692072 final value 80.692072 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.255266 final value 94.486042 converged Fitting Repeat 2 # weights: 103 initial value 101.113125 final value 94.355945 converged Fitting Repeat 3 # weights: 103 initial value 95.395904 final value 94.485875 converged Fitting Repeat 4 # weights: 103 initial value 99.054362 final value 94.486088 converged Fitting Repeat 5 # weights: 103 initial value 98.321657 iter 10 value 94.485853 iter 20 value 93.747148 iter 30 value 92.226276 iter 30 value 92.226276 iter 30 value 92.226276 final value 92.226276 converged Fitting Repeat 1 # weights: 305 initial value 95.707828 iter 10 value 94.489539 iter 20 value 94.471953 iter 30 value 91.653932 iter 40 value 91.653160 iter 40 value 91.653159 final value 91.653155 converged Fitting Repeat 2 # weights: 305 initial value 96.049187 iter 10 value 94.486424 iter 20 value 94.477912 iter 30 value 90.391288 iter 40 value 90.151981 iter 50 value 83.194493 iter 60 value 83.190926 iter 70 value 83.188953 final value 83.188926 converged Fitting Repeat 3 # weights: 305 initial value 99.512893 iter 10 value 94.359150 iter 20 value 93.847585 iter 30 value 92.170070 final value 92.156658 converged Fitting Repeat 4 # weights: 305 initial value 96.633152 iter 10 value 94.488879 iter 20 value 94.484309 iter 30 value 85.392861 iter 40 value 84.146755 iter 50 value 84.014544 iter 60 value 82.288472 iter 70 value 81.190399 iter 80 value 81.005572 iter 90 value 80.310266 iter 100 value 80.270851 final value 80.270851 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.004443 iter 10 value 94.489282 iter 20 value 94.371476 iter 30 value 88.963993 iter 40 value 88.825797 iter 50 value 86.808339 iter 60 value 83.788130 iter 70 value 83.106736 iter 80 value 83.103455 iter 90 value 83.078407 iter 100 value 80.956244 final value 80.956244 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 115.503352 iter 10 value 94.492343 iter 20 value 94.483698 iter 30 value 94.363158 final value 94.354617 converged Fitting Repeat 2 # weights: 507 initial value 103.189926 iter 10 value 94.488172 iter 20 value 88.994416 iter 30 value 87.704891 iter 40 value 87.701462 iter 50 value 87.652474 iter 60 value 87.612371 iter 70 value 86.165717 iter 80 value 86.155402 iter 90 value 86.031727 iter 100 value 85.440560 final value 85.440560 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 132.120141 iter 10 value 94.492741 iter 20 value 94.461627 iter 30 value 86.353934 iter 40 value 85.711137 iter 50 value 83.164013 iter 60 value 83.100972 iter 70 value 83.099096 iter 80 value 83.061817 iter 90 value 82.621535 iter 100 value 82.010419 final value 82.010419 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.894626 iter 10 value 94.492247 iter 20 value 94.455744 iter 30 value 82.541687 iter 40 value 81.787177 iter 50 value 81.463877 iter 60 value 81.110127 iter 70 value 81.105120 final value 81.100240 converged Fitting Repeat 5 # weights: 507 initial value 130.699882 iter 10 value 94.493600 iter 20 value 94.485652 iter 30 value 85.627649 iter 40 value 84.188060 final value 84.187932 converged Fitting Repeat 1 # weights: 103 initial value 95.394859 iter 10 value 94.010903 iter 20 value 93.869755 iter 20 value 93.869755 iter 20 value 93.869755 final value 93.869755 converged Fitting Repeat 2 # weights: 103 initial value 103.322978 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 103.353526 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.577208 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 98.306655 iter 10 value 93.977641 iter 20 value 88.528563 iter 30 value 88.513778 final value 88.513753 converged Fitting Repeat 1 # weights: 305 initial value 97.946134 final value 93.244970 converged Fitting Repeat 2 # weights: 305 initial value 102.690655 final value 93.869755 converged Fitting Repeat 3 # weights: 305 initial value 94.433329 final value 93.915746 converged Fitting Repeat 4 # weights: 305 initial value 100.412124 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 103.806341 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 94.245355 iter 10 value 93.349101 iter 20 value 92.438981 iter 30 value 92.397830 final value 92.397465 converged Fitting Repeat 2 # weights: 507 initial value 120.755257 final value 93.714286 converged Fitting Repeat 3 # weights: 507 initial value 101.122465 final value 93.915746 converged Fitting Repeat 4 # weights: 507 initial value 95.512244 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 101.434728 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 96.245023 iter 10 value 94.300010 iter 20 value 94.036073 iter 30 value 93.982196 iter 40 value 93.946406 iter 50 value 92.825293 iter 60 value 87.362767 iter 70 value 86.801880 iter 80 value 86.498508 iter 90 value 85.628914 iter 100 value 84.914727 final value 84.914727 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 108.894932 iter 10 value 94.060949 iter 20 value 93.670500 iter 30 value 93.454354 iter 40 value 93.445292 iter 50 value 91.841871 iter 60 value 85.199830 iter 70 value 84.682937 iter 80 value 83.731917 iter 90 value 81.941183 iter 100 value 81.788872 final value 81.788872 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.057227 iter 10 value 93.490254 iter 20 value 93.266661 iter 30 value 91.019530 iter 40 value 89.618555 iter 50 value 86.340399 iter 60 value 85.022964 iter 70 value 82.832801 iter 80 value 82.288210 iter 90 value 81.960473 iter 100 value 81.828424 final value 81.828424 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.075923 iter 10 value 94.064593 iter 20 value 94.053227 iter 30 value 93.493521 iter 40 value 93.466963 iter 50 value 93.446901 iter 60 value 93.446377 iter 60 value 93.446376 iter 70 value 89.972869 iter 80 value 88.400600 iter 90 value 86.485450 iter 100 value 83.763267 final value 83.763267 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 108.308338 iter 10 value 94.054884 iter 20 value 93.591369 iter 30 value 93.456293 iter 40 value 93.284102 iter 50 value 87.343704 iter 60 value 86.761681 iter 70 value 85.405918 iter 80 value 84.622118 iter 90 value 84.508002 iter 100 value 83.601897 final value 83.601897 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 121.602031 iter 10 value 94.059829 iter 20 value 93.481979 iter 30 value 85.983994 iter 40 value 85.494657 iter 50 value 84.736196 iter 60 value 84.484188 iter 70 value 83.329335 iter 80 value 82.539601 iter 90 value 81.535168 iter 100 value 81.500129 final value 81.500129 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.482046 iter 10 value 93.797604 iter 20 value 92.913816 iter 30 value 89.965138 iter 40 value 89.151525 iter 50 value 88.216399 iter 60 value 87.517196 iter 70 value 83.121627 iter 80 value 81.840277 iter 90 value 81.552638 iter 100 value 81.112517 final value 81.112517 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.097755 iter 10 value 93.928826 iter 20 value 87.308419 iter 30 value 84.684252 iter 40 value 83.111673 iter 50 value 82.311716 iter 60 value 81.965699 iter 70 value 81.271923 iter 80 value 81.121547 iter 90 value 80.886977 iter 100 value 80.802048 final value 80.802048 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.907623 iter 10 value 94.029258 iter 20 value 93.744739 iter 30 value 93.635748 iter 40 value 93.548598 iter 50 value 93.505866 iter 60 value 92.659372 iter 70 value 88.184269 iter 80 value 83.858528 iter 90 value 82.940508 iter 100 value 82.697445 final value 82.697445 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.852562 iter 10 value 94.452117 iter 20 value 94.060905 iter 30 value 93.579472 iter 40 value 93.422649 iter 50 value 87.498803 iter 60 value 86.299561 iter 70 value 86.092556 iter 80 value 85.927899 iter 90 value 85.488826 iter 100 value 83.729552 final value 83.729552 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 128.587100 iter 10 value 96.695074 iter 20 value 91.874622 iter 30 value 90.165699 iter 40 value 84.966408 iter 50 value 82.421091 iter 60 value 81.787725 iter 70 value 81.540319 iter 80 value 81.177623 iter 90 value 80.777954 iter 100 value 80.607430 final value 80.607430 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.242426 iter 10 value 94.055639 iter 20 value 86.230886 iter 30 value 85.611697 iter 40 value 84.441284 iter 50 value 81.350970 iter 60 value 80.805351 iter 70 value 80.675323 iter 80 value 80.573141 iter 90 value 80.486753 iter 100 value 80.353760 final value 80.353760 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.068797 iter 10 value 93.788041 iter 20 value 89.625021 iter 30 value 87.122988 iter 40 value 82.623364 iter 50 value 81.266807 iter 60 value 80.840631 iter 70 value 80.442181 iter 80 value 80.191943 iter 90 value 80.091027 iter 100 value 80.024162 final value 80.024162 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.665674 iter 10 value 93.766491 iter 20 value 93.022705 iter 30 value 85.232192 iter 40 value 83.463669 iter 50 value 83.071770 iter 60 value 82.592395 iter 70 value 82.168795 iter 80 value 81.728101 iter 90 value 81.262996 iter 100 value 80.614691 final value 80.614691 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.813752 iter 10 value 93.988689 iter 20 value 90.537898 iter 30 value 88.414523 iter 40 value 88.213726 iter 50 value 86.737096 iter 60 value 84.854574 iter 70 value 84.350637 iter 80 value 83.992046 iter 90 value 82.785925 iter 100 value 82.416764 final value 82.416764 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 107.967654 final value 93.606027 converged Fitting Repeat 2 # weights: 103 initial value 101.991504 iter 10 value 93.951110 iter 20 value 93.715792 iter 30 value 93.714784 iter 40 value 93.713842 iter 50 value 93.422994 iter 60 value 93.377718 final value 93.377618 converged Fitting Repeat 3 # weights: 103 initial value 95.746974 final value 94.054700 converged Fitting Repeat 4 # weights: 103 initial value 96.260259 final value 94.054480 converged Fitting Repeat 5 # weights: 103 initial value 100.256115 iter 10 value 94.054449 iter 20 value 93.921431 iter 30 value 93.671981 iter 40 value 84.738586 final value 84.737204 converged Fitting Repeat 1 # weights: 305 initial value 99.251255 iter 10 value 93.415749 iter 20 value 93.380833 final value 93.378660 converged Fitting Repeat 2 # weights: 305 initial value 98.696199 iter 10 value 93.920661 iter 20 value 93.705108 iter 30 value 90.224302 iter 40 value 90.000481 iter 50 value 89.999502 iter 60 value 89.989281 iter 70 value 89.988906 iter 80 value 84.414870 iter 90 value 84.388546 final value 84.388254 converged Fitting Repeat 3 # weights: 305 initial value 102.279710 iter 10 value 94.057267 iter 20 value 93.967887 iter 30 value 85.721224 final value 85.720020 converged Fitting Repeat 4 # weights: 305 initial value 111.789841 iter 10 value 94.057658 iter 20 value 93.949797 iter 30 value 91.594916 iter 40 value 89.744629 iter 50 value 86.164046 iter 60 value 83.528477 iter 70 value 83.434266 iter 80 value 83.431294 iter 90 value 83.267493 iter 100 value 83.262478 final value 83.262478 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.303790 iter 10 value 93.920966 iter 20 value 93.917468 final value 93.917395 converged Fitting Repeat 1 # weights: 507 initial value 117.059561 iter 10 value 93.923975 iter 20 value 93.916527 final value 93.916509 converged Fitting Repeat 2 # weights: 507 initial value 97.031948 iter 10 value 94.060467 iter 20 value 94.041801 iter 30 value 86.554183 iter 40 value 84.016597 iter 50 value 83.692359 final value 83.692083 converged Fitting Repeat 3 # weights: 507 initial value 104.585742 iter 10 value 93.417910 iter 20 value 93.414027 iter 30 value 93.403377 iter 40 value 93.378076 iter 50 value 88.017764 iter 60 value 83.046735 iter 70 value 82.138231 iter 80 value 81.927782 iter 90 value 80.906727 iter 100 value 80.838067 final value 80.838067 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.423163 iter 10 value 94.060943 iter 20 value 92.134765 iter 30 value 85.991420 iter 40 value 84.907086 iter 50 value 84.674758 iter 60 value 84.488401 iter 70 value 84.316725 final value 84.313667 converged Fitting Repeat 5 # weights: 507 initial value 98.956351 iter 10 value 94.000267 iter 20 value 93.721911 iter 30 value 93.653139 iter 40 value 93.412776 iter 50 value 93.410683 iter 60 value 93.376411 iter 70 value 85.694807 iter 80 value 85.416654 iter 90 value 85.415214 iter 100 value 83.818173 final value 83.818173 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.088112 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.732302 final value 93.988095 converged Fitting Repeat 3 # weights: 103 initial value 98.949985 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.011555 iter 10 value 94.052117 iter 20 value 94.049101 iter 30 value 94.041464 iter 40 value 94.039658 iter 50 value 94.039337 iter 60 value 94.039264 final value 94.039236 converged Fitting Repeat 5 # weights: 103 initial value 114.641573 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 102.124837 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 99.706109 iter 10 value 93.817712 final value 93.813458 converged Fitting Repeat 3 # weights: 305 initial value 109.928152 iter 10 value 89.503358 iter 20 value 87.563267 final value 87.548526 converged Fitting Repeat 4 # weights: 305 initial value 100.217002 final value 94.032967 converged Fitting Repeat 5 # weights: 305 initial value 96.101155 final value 94.032967 converged Fitting Repeat 1 # weights: 507 initial value 103.839699 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 102.332012 iter 10 value 93.839508 final value 93.839506 converged Fitting Repeat 3 # weights: 507 initial value 101.269051 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 111.684432 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 98.259188 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 98.209988 iter 10 value 94.066303 iter 20 value 94.023698 iter 30 value 87.477822 iter 40 value 84.740062 iter 50 value 83.969528 iter 60 value 83.198244 iter 70 value 81.973657 iter 80 value 81.569421 iter 90 value 81.520766 final value 81.520540 converged Fitting Repeat 2 # weights: 103 initial value 95.915969 iter 10 value 94.067458 iter 20 value 92.452093 iter 30 value 91.049382 iter 40 value 84.198937 iter 50 value 81.761151 iter 60 value 81.303632 iter 70 value 81.228874 iter 80 value 81.175388 final value 81.175304 converged Fitting Repeat 3 # weights: 103 initial value 97.614284 iter 10 value 94.055080 iter 20 value 88.981470 iter 30 value 84.403409 iter 40 value 84.166982 iter 50 value 83.864189 iter 60 value 82.428410 iter 70 value 81.799109 iter 80 value 81.716219 iter 90 value 81.665775 iter 100 value 81.551188 final value 81.551188 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 104.529822 iter 10 value 94.024150 iter 20 value 88.010257 iter 30 value 87.798778 iter 40 value 86.956153 iter 50 value 86.797792 iter 60 value 83.983825 iter 70 value 83.147836 iter 80 value 81.909692 iter 90 value 81.537840 iter 100 value 81.520556 final value 81.520556 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 115.401372 iter 10 value 93.919918 iter 20 value 87.051466 iter 30 value 84.166532 iter 40 value 83.993514 iter 50 value 83.854139 final value 83.854033 converged Fitting Repeat 1 # weights: 305 initial value 100.540116 iter 10 value 94.074349 iter 20 value 93.622283 iter 30 value 88.884620 iter 40 value 83.754328 iter 50 value 82.872339 iter 60 value 82.263036 iter 70 value 82.089495 iter 80 value 81.504176 iter 90 value 81.334366 iter 100 value 81.266990 final value 81.266990 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.705613 iter 10 value 93.956077 iter 20 value 87.157801 iter 30 value 86.105660 iter 40 value 84.057607 iter 50 value 83.694204 iter 60 value 83.541945 iter 70 value 83.262195 iter 80 value 82.370040 iter 90 value 81.315537 iter 100 value 80.520040 final value 80.520040 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.882483 iter 10 value 93.809155 iter 20 value 86.935110 iter 30 value 86.288779 iter 40 value 85.963622 iter 50 value 85.349776 iter 60 value 84.558259 iter 70 value 82.549864 iter 80 value 81.704043 iter 90 value 81.649367 iter 100 value 81.491289 final value 81.491289 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.348240 iter 10 value 93.201823 iter 20 value 86.598045 iter 30 value 82.903231 iter 40 value 82.165082 iter 50 value 80.994965 iter 60 value 80.487347 iter 70 value 80.431497 iter 80 value 80.340283 iter 90 value 80.300332 iter 100 value 80.256671 final value 80.256671 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 132.305564 iter 10 value 93.988150 iter 20 value 88.970171 iter 30 value 88.752734 iter 40 value 87.718738 iter 50 value 84.255710 iter 60 value 82.152754 iter 70 value 81.810080 iter 80 value 81.510961 iter 90 value 81.097350 iter 100 value 80.798065 final value 80.798065 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.899165 iter 10 value 97.543385 iter 20 value 88.794763 iter 30 value 86.375507 iter 40 value 84.497821 iter 50 value 82.440155 iter 60 value 81.287511 iter 70 value 80.857112 iter 80 value 80.711731 iter 90 value 80.609704 iter 100 value 80.560923 final value 80.560923 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.025387 iter 10 value 97.166143 iter 20 value 91.116528 iter 30 value 87.100913 iter 40 value 85.689716 iter 50 value 84.039077 iter 60 value 82.651205 iter 70 value 82.413327 iter 80 value 81.997595 iter 90 value 81.227024 iter 100 value 80.783731 final value 80.783731 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.563139 iter 10 value 94.018303 iter 20 value 85.710749 iter 30 value 84.682242 iter 40 value 84.184018 iter 50 value 81.738332 iter 60 value 80.922666 iter 70 value 80.687177 iter 80 value 80.338081 iter 90 value 80.157440 iter 100 value 80.102062 final value 80.102062 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.843643 iter 10 value 94.074643 iter 20 value 89.358573 iter 30 value 86.663630 iter 40 value 84.025655 iter 50 value 82.206638 iter 60 value 81.384588 iter 70 value 81.047211 iter 80 value 80.846756 iter 90 value 80.759401 iter 100 value 80.484498 final value 80.484498 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.669506 iter 10 value 94.060704 iter 20 value 89.781050 iter 30 value 88.280500 iter 40 value 85.987893 iter 50 value 81.337774 iter 60 value 80.690107 iter 70 value 80.658992 iter 80 value 80.575908 iter 90 value 80.421651 iter 100 value 80.184436 final value 80.184436 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.023399 iter 10 value 93.816051 iter 20 value 93.815026 iter 30 value 93.813969 final value 93.813909 converged Fitting Repeat 2 # weights: 103 initial value 102.697929 final value 94.054497 converged Fitting Repeat 3 # weights: 103 initial value 99.575269 final value 94.054650 converged Fitting Repeat 4 # weights: 103 initial value 104.152606 final value 94.054749 converged Fitting Repeat 5 # weights: 103 initial value 97.688840 final value 94.054369 converged Fitting Repeat 1 # weights: 305 initial value 115.817169 iter 10 value 94.098324 iter 20 value 94.089895 iter 30 value 91.483639 iter 40 value 86.477000 iter 50 value 86.466032 iter 60 value 86.413545 iter 70 value 85.932766 iter 80 value 85.929317 iter 90 value 85.628287 iter 100 value 85.533400 final value 85.533400 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 116.215135 iter 10 value 93.816410 iter 20 value 93.785317 iter 30 value 93.755927 iter 40 value 93.755551 iter 50 value 92.372540 iter 60 value 91.461849 iter 70 value 91.007070 iter 80 value 90.948838 final value 90.945848 converged Fitting Repeat 3 # weights: 305 initial value 94.350929 iter 10 value 94.030396 iter 20 value 94.029733 iter 30 value 90.204508 iter 40 value 85.789240 iter 50 value 85.610211 iter 60 value 85.608731 iter 70 value 85.501796 iter 80 value 85.491381 iter 90 value 85.491311 final value 85.491305 converged Fitting Repeat 4 # weights: 305 initial value 100.509864 iter 10 value 94.057971 iter 20 value 94.001141 iter 30 value 89.433587 iter 40 value 85.445789 iter 50 value 85.443056 iter 60 value 85.441084 iter 70 value 85.439909 iter 80 value 85.439444 iter 90 value 85.439128 iter 100 value 85.438921 final value 85.438921 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.417063 iter 10 value 94.056947 iter 20 value 89.708079 iter 30 value 85.639558 iter 40 value 85.639440 iter 50 value 85.392472 iter 60 value 83.516193 iter 70 value 83.499883 iter 80 value 83.486058 iter 90 value 83.435145 iter 100 value 83.433741 final value 83.433741 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.697384 iter 10 value 94.055253 iter 20 value 94.051780 iter 30 value 92.226789 iter 40 value 89.938368 iter 50 value 89.862568 iter 60 value 89.856821 iter 70 value 89.856171 iter 80 value 89.344909 iter 90 value 89.259709 iter 100 value 87.381243 final value 87.381243 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 136.603299 iter 10 value 94.056734 iter 20 value 93.959685 iter 30 value 93.895090 iter 40 value 91.681635 iter 50 value 85.002084 iter 60 value 83.483830 iter 70 value 82.013684 iter 80 value 81.569737 iter 90 value 81.562642 final value 81.562132 converged Fitting Repeat 3 # weights: 507 initial value 102.049132 iter 10 value 86.701179 iter 20 value 86.491643 iter 30 value 86.490918 iter 40 value 86.487954 iter 50 value 84.965819 iter 60 value 83.189355 iter 70 value 82.923088 iter 80 value 82.918787 iter 90 value 82.916196 iter 100 value 81.992709 final value 81.992709 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.152830 iter 10 value 94.041013 iter 20 value 94.033389 final value 94.033332 converged Fitting Repeat 5 # weights: 507 initial value 95.406098 iter 10 value 94.041386 iter 20 value 91.473992 iter 30 value 87.706323 iter 40 value 83.123686 iter 50 value 83.039088 iter 60 value 83.038266 iter 70 value 82.522244 iter 80 value 82.127069 iter 90 value 82.096282 iter 100 value 82.077158 final value 82.077158 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 145.051814 iter 10 value 117.763995 iter 20 value 117.714740 iter 30 value 117.503948 iter 40 value 112.396768 iter 50 value 107.733588 iter 60 value 104.288780 iter 70 value 102.230785 iter 80 value 102.215411 iter 90 value 102.160342 iter 100 value 101.802812 final value 101.802812 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 128.809324 iter 10 value 117.894401 iter 20 value 117.813019 iter 30 value 111.698465 iter 40 value 111.659943 iter 50 value 111.658015 iter 60 value 110.867033 iter 70 value 110.422614 iter 80 value 110.422284 iter 90 value 107.823226 iter 100 value 107.049541 final value 107.049541 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 120.204188 iter 10 value 117.894871 iter 20 value 117.890432 iter 30 value 109.809358 iter 40 value 106.904788 final value 106.903908 converged Fitting Repeat 4 # weights: 305 initial value 140.722479 iter 10 value 112.723861 iter 20 value 112.653390 iter 30 value 111.034588 iter 40 value 109.197342 iter 50 value 108.244954 iter 60 value 108.174561 iter 70 value 108.174221 iter 70 value 108.174220 iter 70 value 108.174220 final value 108.174220 converged Fitting Repeat 5 # weights: 305 initial value 121.146968 iter 10 value 117.715012 iter 20 value 116.969294 iter 30 value 116.912749 iter 40 value 116.911549 iter 50 value 116.831462 iter 60 value 116.823955 iter 70 value 116.821193 iter 80 value 116.820305 iter 80 value 116.820304 iter 80 value 116.820304 final value 116.820304 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Oct 18 00:51:03 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 48.726 1.399 50.922
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 52.245 | 2.667 | 55.544 | |
FreqInteractors | 0.258 | 0.015 | 0.282 | |
calculateAAC | 0.047 | 0.008 | 0.060 | |
calculateAutocor | 0.438 | 0.094 | 0.542 | |
calculateCTDC | 0.094 | 0.007 | 0.102 | |
calculateCTDD | 0.607 | 0.032 | 0.645 | |
calculateCTDT | 0.256 | 0.008 | 0.264 | |
calculateCTriad | 0.452 | 0.031 | 0.483 | |
calculateDC | 0.101 | 0.013 | 0.117 | |
calculateF | 0.353 | 0.014 | 0.369 | |
calculateKSAAP | 0.101 | 0.009 | 0.111 | |
calculateQD_Sm | 2.013 | 0.135 | 2.160 | |
calculateTC | 1.766 | 0.169 | 1.951 | |
calculateTC_Sm | 0.321 | 0.019 | 0.341 | |
corr_plot | 52.090 | 2.866 | 55.804 | |
enrichfindP | 0.539 | 0.084 | 7.941 | |
enrichfind_hp | 0.072 | 0.015 | 0.992 | |
enrichplot | 0.389 | 0.010 | 0.402 | |
filter_missing_values | 0.002 | 0.001 | 0.002 | |
getFASTA | 0.092 | 0.014 | 1.277 | |
getHPI | 0.001 | 0.001 | 0.000 | |
get_negativePPI | 0.002 | 0.000 | 0.001 | |
get_positivePPI | 0.001 | 0.000 | 0.001 | |
impute_missing_data | 0.001 | 0.000 | 0.002 | |
plotPPI | 0.078 | 0.004 | 0.084 | |
pred_ensembel | 15.221 | 0.324 | 13.178 | |
var_imp | 51.562 | 2.542 | 54.752 | |