Back to Multiple platform build/check report for BioC 3.18:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2024-03-04 11:37:11 -0500 (Mon, 04 Mar 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 22.04.3 LTS)x86_644.3.2 Patched (2023-11-13 r85521) -- "Eye Holes" 4692
palomino4Windows Server 2022 Datacenterx644.3.2 (2023-10-31 ucrt) -- "Eye Holes" 4445
lconwaymacOS 12.7.1 Montereyx86_644.3.2 Patched (2023-11-01 r85457) -- "Eye Holes" 4466
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 246/2266HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.66.0  (landing page)
Ben Bolstad
Snapshot Date: 2024-03-03 14:05:05 -0500 (Sun, 03 Mar 2024)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_18
git_last_commit: 1feca44
git_last_commit_date: 2023-10-24 09:37:50 -0500 (Tue, 24 Oct 2023)
nebbiolo2Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino4Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.1 Ventura / arm64see weekly results here

CHECK results for BufferedMatrix on lconway


To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.66.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.66.0.tar.gz
StartedAt: 2024-03-03 19:21:32 -0500 (Sun, 03 Mar 2024)
EndedAt: 2024-03-03 19:22:28 -0500 (Sun, 03 Mar 2024)
EllapsedTime: 56.1 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.66.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.3.2 Patched (2023-11-01 r85457)
* using platform: x86_64-apple-darwin20 (64-bit)
* R was compiled by
    Apple clang version 14.0.3 (clang-1403.0.22.14.1)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.66.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.



Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation
installing to /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.3.2 Patched (2023-11-01 r85457) -- "Eye Holes"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.346   0.150   0.491 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.3.2 Patched (2023-11-01 r85457) -- "Eye Holes"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 460322 24.6     992415 53.1         NA   645580 34.5
Vcells 848859  6.5    8388608 64.0      98304  2021539 15.5
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Sun Mar  3 19:22:00 2024"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Sun Mar  3 19:22:00 2024"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600000dcc120>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Sun Mar  3 19:22:06 2024"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Sun Mar  3 19:22:07 2024"
> 
> ColMode(tmp2)
<pointer: 0x600000dcc120>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]       [,3]       [,4]
[1,] 98.9198562  1.5050780 -0.3905777 -0.9086419
[2,]  0.2658472 -0.7472815  1.4761230  0.1721249
[3,]  0.4191780  1.0399457 -0.3320704 -1.1919995
[4,]  0.1254771 -0.3152536  1.2408638 -0.3419612
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 98.9198562 1.5050780 0.3905777 0.9086419
[2,]  0.2658472 0.7472815 1.4761230 0.1721249
[3,]  0.4191780 1.0399457 0.3320704 1.1919995
[4,]  0.1254771 0.3152536 1.2408638 0.3419612
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9458462 1.2268162 0.6249622 0.9532271
[2,] 0.5156037 0.8644544 1.2149580 0.4148794
[3,] 0.6474396 1.0197773 0.5762555 1.0917873
[4,] 0.3542275 0.5614745 1.1139407 0.5847745
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 223.37832 38.77324 31.64020 35.44091
[2,]  30.42188 34.39183 38.62570 29.32092
[3,]  31.89357 36.23772 31.09463 37.10987
[4,]  28.66775 30.93000 37.38027 31.18971
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600000d84000>
> exp(tmp5)
<pointer: 0x600000d84000>
> log(tmp5,2)
<pointer: 0x600000d84000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 464.9327
> Min(tmp5)
[1] 54.3137
> mean(tmp5)
[1] 73.29156
> Sum(tmp5)
[1] 14658.31
> Var(tmp5)
[1] 847.4708
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 92.11125 71.61254 74.06666 71.08379 71.14275 72.04945 65.98070 72.60483
 [9] 71.34808 70.91559
> rowSums(tmp5)
 [1] 1842.225 1432.251 1481.333 1421.676 1422.855 1440.989 1319.614 1452.097
 [9] 1426.962 1418.312
> rowVars(tmp5)
 [1] 7744.19511   77.66494   68.69858   89.99506   83.11809   86.76781
 [7]   67.97715   54.60080   80.69329   67.71785
> rowSd(tmp5)
 [1] 88.001109  8.812771  8.288461  9.486573  9.116912  9.314924  8.244826
 [8]  7.389236  8.982944  8.229086
> rowMax(tmp5)
 [1] 464.93270  86.99694  86.16402  86.95331  89.35379  85.09631  82.44291
 [8]  82.31403  90.41840  92.35553
> rowMin(tmp5)
 [1] 62.67851 54.31370 56.14629 55.83932 57.27969 56.23444 56.32346 56.25384
 [9] 58.01182 59.42388
> 
> colMeans(tmp5)
 [1] 110.31298  68.58306  70.47600  69.41968  70.69835  70.02935  64.34092
 [8]  71.45672  73.29500  72.68400  74.15704  74.29736  75.02369  68.68504
[15]  67.66835  76.64210  74.22871  71.05654  74.85575  67.92064
> colSums(tmp5)
 [1] 1103.1298  685.8306  704.7600  694.1968  706.9835  700.2935  643.4092
 [8]  714.5672  732.9500  726.8400  741.5704  742.9736  750.2369  686.8504
[15]  676.6835  766.4210  742.2871  710.5654  748.5575  679.2064
> colVars(tmp5)
 [1] 15613.35573    53.08285    42.97672    64.06517    61.95994    77.39153
 [7]    19.10575    89.69426    70.68670   106.63015    56.62370   130.18263
[13]    85.02061    75.20689    63.84178    91.22416    62.66956    51.58404
[19]    78.73084    41.28247
> colSd(tmp5)
 [1] 124.953414   7.285798   6.555664   8.004072   7.871464   8.797245
 [7]   4.371013   9.470706   8.407538  10.326187   7.524872  11.409760
[13]   9.220662   8.672190   7.990105   9.551134   7.916411   7.182203
[19]   8.873040   6.425144
> colMax(tmp5)
 [1] 464.93270  80.70142  80.39434  77.85024  82.36250  84.45286  71.56819
 [8]  85.88343  81.63952  90.41840  85.30568  86.99694  89.35379  81.70323
[15]  85.09631  92.35553  86.02000  80.60224  86.95331  75.46504
> colMin(tmp5)
 [1] 57.27969 56.25384 59.92055 56.32346 59.34897 56.23444 58.70001 56.14629
 [9] 58.16468 59.42388 61.07511 58.01182 57.02540 54.31370 58.31716 58.96556
[17] 62.76971 56.57453 59.84735 55.83932
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 92.11125 71.61254 74.06666 71.08379 71.14275 72.04945 65.98070       NA
 [9] 71.34808 70.91559
> rowSums(tmp5)
 [1] 1842.225 1432.251 1481.333 1421.676 1422.855 1440.989 1319.614       NA
 [9] 1426.962 1418.312
> rowVars(tmp5)
 [1] 7744.19511   77.66494   68.69858   89.99506   83.11809   86.76781
 [7]   67.97715   57.27567   80.69329   67.71785
> rowSd(tmp5)
 [1] 88.001109  8.812771  8.288461  9.486573  9.116912  9.314924  8.244826
 [8]  7.568069  8.982944  8.229086
> rowMax(tmp5)
 [1] 464.93270  86.99694  86.16402  86.95331  89.35379  85.09631  82.44291
 [8]        NA  90.41840  92.35553
> rowMin(tmp5)
 [1] 62.67851 54.31370 56.14629 55.83932 57.27969 56.23444 56.32346       NA
 [9] 58.01182 59.42388
> 
> colMeans(tmp5)
 [1] 110.31298  68.58306  70.47600  69.41968  70.69835        NA  64.34092
 [8]  71.45672  73.29500  72.68400  74.15704  74.29736  75.02369  68.68504
[15]  67.66835  76.64210  74.22871  71.05654  74.85575  67.92064
> colSums(tmp5)
 [1] 1103.1298  685.8306  704.7600  694.1968  706.9835        NA  643.4092
 [8]  714.5672  732.9500  726.8400  741.5704  742.9736  750.2369  686.8504
[15]  676.6835  766.4210  742.2871  710.5654  748.5575  679.2064
> colVars(tmp5)
 [1] 15613.35573    53.08285    42.97672    64.06517    61.95994          NA
 [7]    19.10575    89.69426    70.68670   106.63015    56.62370   130.18263
[13]    85.02061    75.20689    63.84178    91.22416    62.66956    51.58404
[19]    78.73084    41.28247
> colSd(tmp5)
 [1] 124.953414   7.285798   6.555664   8.004072   7.871464         NA
 [7]   4.371013   9.470706   8.407538  10.326187   7.524872  11.409760
[13]   9.220662   8.672190   7.990105   9.551134   7.916411   7.182203
[19]   8.873040   6.425144
> colMax(tmp5)
 [1] 464.93270  80.70142  80.39434  77.85024  82.36250        NA  71.56819
 [8]  85.88343  81.63952  90.41840  85.30568  86.99694  89.35379  81.70323
[15]  85.09631  92.35553  86.02000  80.60224  86.95331  75.46504
> colMin(tmp5)
 [1] 57.27969 56.25384 59.92055 56.32346 59.34897       NA 58.70001 56.14629
 [9] 58.16468 59.42388 61.07511 58.01182 57.02540 54.31370 58.31716 58.96556
[17] 62.76971 56.57453 59.84735 55.83932
> 
> Max(tmp5,na.rm=TRUE)
[1] 464.9327
> Min(tmp5,na.rm=TRUE)
[1] 54.3137
> mean(tmp5,na.rm=TRUE)
[1] 73.28257
> Sum(tmp5,na.rm=TRUE)
[1] 14583.23
> Var(tmp5,na.rm=TRUE)
[1] 851.7347
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.11125 71.61254 74.06666 71.08379 71.14275 72.04945 65.98070 72.47451
 [9] 71.34808 70.91559
> rowSums(tmp5,na.rm=TRUE)
 [1] 1842.225 1432.251 1481.333 1421.676 1422.855 1440.989 1319.614 1377.016
 [9] 1426.962 1418.312
> rowVars(tmp5,na.rm=TRUE)
 [1] 7744.19511   77.66494   68.69858   89.99506   83.11809   86.76781
 [7]   67.97715   57.27567   80.69329   67.71785
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.001109  8.812771  8.288461  9.486573  9.116912  9.314924  8.244826
 [8]  7.568069  8.982944  8.229086
> rowMax(tmp5,na.rm=TRUE)
 [1] 464.93270  86.99694  86.16402  86.95331  89.35379  85.09631  82.44291
 [8]  82.31403  90.41840  92.35553
> rowMin(tmp5,na.rm=TRUE)
 [1] 62.67851 54.31370 56.14629 55.83932 57.27969 56.23444 56.32346 56.25384
 [9] 58.01182 59.42388
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 110.31298  68.58306  70.47600  69.41968  70.69835  69.46808  64.34092
 [8]  71.45672  73.29500  72.68400  74.15704  74.29736  75.02369  68.68504
[15]  67.66835  76.64210  74.22871  71.05654  74.85575  67.92064
> colSums(tmp5,na.rm=TRUE)
 [1] 1103.1298  685.8306  704.7600  694.1968  706.9835  625.2127  643.4092
 [8]  714.5672  732.9500  726.8400  741.5704  742.9736  750.2369  686.8504
[15]  676.6835  766.4210  742.2871  710.5654  748.5575  679.2064
> colVars(tmp5,na.rm=TRUE)
 [1] 15613.35573    53.08285    42.97672    64.06517    61.95994    83.52142
 [7]    19.10575    89.69426    70.68670   106.63015    56.62370   130.18263
[13]    85.02061    75.20689    63.84178    91.22416    62.66956    51.58404
[19]    78.73084    41.28247
> colSd(tmp5,na.rm=TRUE)
 [1] 124.953414   7.285798   6.555664   8.004072   7.871464   9.139006
 [7]   4.371013   9.470706   8.407538  10.326187   7.524872  11.409760
[13]   9.220662   8.672190   7.990105   9.551134   7.916411   7.182203
[19]   8.873040   6.425144
> colMax(tmp5,na.rm=TRUE)
 [1] 464.93270  80.70142  80.39434  77.85024  82.36250  84.45286  71.56819
 [8]  85.88343  81.63952  90.41840  85.30568  86.99694  89.35379  81.70323
[15]  85.09631  92.35553  86.02000  80.60224  86.95331  75.46504
> colMin(tmp5,na.rm=TRUE)
 [1] 57.27969 56.25384 59.92055 56.32346 59.34897 56.23444 58.70001 56.14629
 [9] 58.16468 59.42388 61.07511 58.01182 57.02540 54.31370 58.31716 58.96556
[17] 62.76971 56.57453 59.84735 55.83932
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 92.11125 71.61254 74.06666 71.08379 71.14275 72.04945 65.98070      NaN
 [9] 71.34808 70.91559
> rowSums(tmp5,na.rm=TRUE)
 [1] 1842.225 1432.251 1481.333 1421.676 1422.855 1440.989 1319.614    0.000
 [9] 1426.962 1418.312
> rowVars(tmp5,na.rm=TRUE)
 [1] 7744.19511   77.66494   68.69858   89.99506   83.11809   86.76781
 [7]   67.97715         NA   80.69329   67.71785
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.001109  8.812771  8.288461  9.486573  9.116912  9.314924  8.244826
 [8]        NA  8.982944  8.229086
> rowMax(tmp5,na.rm=TRUE)
 [1] 464.93270  86.99694  86.16402  86.95331  89.35379  85.09631  82.44291
 [8]        NA  90.41840  92.35553
> rowMin(tmp5,na.rm=TRUE)
 [1] 62.67851 54.31370 56.14629 55.83932 57.27969 56.23444 56.32346       NA
 [9] 58.01182 59.42388
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 114.05062  69.95297  70.69040  68.65198  71.95939       NaN  64.24218
 [8]  71.79582  72.64821  71.61400  73.72849  73.49728  75.38023  67.32174
[15]  67.12422  77.82053  74.55128  69.99591  75.78166  67.08237
> colSums(tmp5,na.rm=TRUE)
 [1] 1026.4556  629.5767  636.2136  617.8678  647.6345    0.0000  578.1796
 [8]  646.1624  653.8339  644.5260  663.5564  661.4755  678.4221  605.8957
[15]  604.1180  700.3848  670.9615  629.9632  682.0350  603.7413
> colVars(tmp5,na.rm=TRUE)
 [1] 17407.86319    38.60577    47.83166    65.44302    51.81488          NA
 [7]    21.38428    99.61242    74.81630   107.07872    61.63552   139.25384
[13]    94.21808    63.69881    68.49113    87.00434    69.33266    45.37645
[19]    78.92746    38.53749
> colSd(tmp5,na.rm=TRUE)
 [1] 131.938862   6.213355   6.916044   8.089686   7.198255         NA
 [7]   4.624315   9.980602   8.649641  10.347885   7.850829  11.800586
[13]   9.706600   7.981153   8.275937   9.327612   8.326623   6.736204
[19]   8.884113   6.207857
> colMax(tmp5,na.rm=TRUE)
 [1] 464.93270  80.70142  80.39434  77.85024  82.36250      -Inf  71.56819
 [8]  85.88343  81.63952  90.41840  85.30568  86.99694  89.35379  81.70323
[15]  85.09631  92.35553  86.02000  77.30471  86.95331  74.62790
> colMin(tmp5,na.rm=TRUE)
 [1] 57.27969 62.49680 59.92055 56.32346 60.41046      Inf 58.70001 56.14629
 [9] 58.16468 59.42388 61.07511 58.01182 57.02540 54.31370 58.31716 58.96556
[17] 62.76971 56.57453 59.84735 55.83932
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 235.7822 200.2793 163.8211 180.9475 223.9681 212.7814 311.7571 119.8043
 [9] 183.3898 167.7308
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 235.7822 200.2793 163.8211 180.9475 223.9681 212.7814 311.7571 119.8043
 [9] 183.3898 167.7308
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -1.705303e-13  0.000000e+00 -8.526513e-14  2.842171e-14  0.000000e+00
 [6] -1.136868e-13  1.705303e-13  5.684342e-14  2.842171e-14  1.136868e-13
[11]  4.263256e-14 -5.684342e-14 -2.273737e-13  5.684342e-14 -1.705303e-13
[16] -5.684342e-14 -2.842171e-14  2.842171e-14 -4.263256e-14  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
10   2 
2   9 
5   17 
5   15 
10   11 
4   7 
3   7 
4   13 
7   9 
5   16 
5   14 
7   1 
6   11 
1   9 
4   1 
2   6 
9   16 
9   3 
9   2 
3   1 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.221144
> Min(tmp)
[1] -2.180508
> mean(tmp)
[1] 0.0204974
> Sum(tmp)
[1] 2.04974
> Var(tmp)
[1] 0.8277729
> 
> rowMeans(tmp)
[1] 0.0204974
> rowSums(tmp)
[1] 2.04974
> rowVars(tmp)
[1] 0.8277729
> rowSd(tmp)
[1] 0.9098203
> rowMax(tmp)
[1] 2.221144
> rowMin(tmp)
[1] -2.180508
> 
> colMeans(tmp)
  [1]  1.673743512 -0.951851067 -0.500220683  1.058677935 -1.278827298
  [6]  0.895264256  0.689671119  0.327980333  0.405188227 -0.558249085
 [11] -0.420010374  0.672242576 -0.853947611  0.707862169 -0.352786143
 [16]  0.204548121 -0.578403910  0.204292292  0.101651676  0.457494414
 [21]  0.233087884 -0.936709621 -2.180508368  1.109345962  0.470532805
 [26] -0.847013115 -0.709657491 -1.254139167 -0.991851196  0.296392316
 [31] -0.951744660  0.217052959  0.974411578 -0.471069281 -0.389483087
 [36]  0.209997503  0.797576159  0.823403717 -0.095285634 -0.908819790
 [41]  0.408382392  1.113854852  0.885868714 -0.117767525 -0.391292575
 [46] -0.575999914 -0.395607957  0.639736353 -0.109728567  1.713275716
 [51] -0.053442352 -2.156317511 -1.550916931  0.690421389  0.994570538
 [56] -1.492447937  0.163845094  0.730283166  0.006595385  0.031628895
 [61]  2.060832500 -0.108736293 -0.030042207  1.319517228  1.152083198
 [66] -0.379443168  0.464218197  0.449645645  0.876498338  0.684638054
 [71] -0.330892962  0.479625687  1.347062288 -1.870904215 -0.904069651
 [76] -1.852481762 -1.993828975 -1.071649801  2.221143766  0.663953078
 [81]  1.049574675 -0.564015626  0.459411403 -0.311428858 -0.100028377
 [86] -0.200832148 -0.364443176 -0.602908569 -0.475078040 -0.201805698
 [91] -1.075467603  0.460008586  0.527370284  0.501971460  0.869089437
 [96]  1.057867243  0.420215903 -1.029156766  0.827549991 -0.210104341
> colSums(tmp)
  [1]  1.673743512 -0.951851067 -0.500220683  1.058677935 -1.278827298
  [6]  0.895264256  0.689671119  0.327980333  0.405188227 -0.558249085
 [11] -0.420010374  0.672242576 -0.853947611  0.707862169 -0.352786143
 [16]  0.204548121 -0.578403910  0.204292292  0.101651676  0.457494414
 [21]  0.233087884 -0.936709621 -2.180508368  1.109345962  0.470532805
 [26] -0.847013115 -0.709657491 -1.254139167 -0.991851196  0.296392316
 [31] -0.951744660  0.217052959  0.974411578 -0.471069281 -0.389483087
 [36]  0.209997503  0.797576159  0.823403717 -0.095285634 -0.908819790
 [41]  0.408382392  1.113854852  0.885868714 -0.117767525 -0.391292575
 [46] -0.575999914 -0.395607957  0.639736353 -0.109728567  1.713275716
 [51] -0.053442352 -2.156317511 -1.550916931  0.690421389  0.994570538
 [56] -1.492447937  0.163845094  0.730283166  0.006595385  0.031628895
 [61]  2.060832500 -0.108736293 -0.030042207  1.319517228  1.152083198
 [66] -0.379443168  0.464218197  0.449645645  0.876498338  0.684638054
 [71] -0.330892962  0.479625687  1.347062288 -1.870904215 -0.904069651
 [76] -1.852481762 -1.993828975 -1.071649801  2.221143766  0.663953078
 [81]  1.049574675 -0.564015626  0.459411403 -0.311428858 -0.100028377
 [86] -0.200832148 -0.364443176 -0.602908569 -0.475078040 -0.201805698
 [91] -1.075467603  0.460008586  0.527370284  0.501971460  0.869089437
 [96]  1.057867243  0.420215903 -1.029156766  0.827549991 -0.210104341
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  1.673743512 -0.951851067 -0.500220683  1.058677935 -1.278827298
  [6]  0.895264256  0.689671119  0.327980333  0.405188227 -0.558249085
 [11] -0.420010374  0.672242576 -0.853947611  0.707862169 -0.352786143
 [16]  0.204548121 -0.578403910  0.204292292  0.101651676  0.457494414
 [21]  0.233087884 -0.936709621 -2.180508368  1.109345962  0.470532805
 [26] -0.847013115 -0.709657491 -1.254139167 -0.991851196  0.296392316
 [31] -0.951744660  0.217052959  0.974411578 -0.471069281 -0.389483087
 [36]  0.209997503  0.797576159  0.823403717 -0.095285634 -0.908819790
 [41]  0.408382392  1.113854852  0.885868714 -0.117767525 -0.391292575
 [46] -0.575999914 -0.395607957  0.639736353 -0.109728567  1.713275716
 [51] -0.053442352 -2.156317511 -1.550916931  0.690421389  0.994570538
 [56] -1.492447937  0.163845094  0.730283166  0.006595385  0.031628895
 [61]  2.060832500 -0.108736293 -0.030042207  1.319517228  1.152083198
 [66] -0.379443168  0.464218197  0.449645645  0.876498338  0.684638054
 [71] -0.330892962  0.479625687  1.347062288 -1.870904215 -0.904069651
 [76] -1.852481762 -1.993828975 -1.071649801  2.221143766  0.663953078
 [81]  1.049574675 -0.564015626  0.459411403 -0.311428858 -0.100028377
 [86] -0.200832148 -0.364443176 -0.602908569 -0.475078040 -0.201805698
 [91] -1.075467603  0.460008586  0.527370284  0.501971460  0.869089437
 [96]  1.057867243  0.420215903 -1.029156766  0.827549991 -0.210104341
> colMin(tmp)
  [1]  1.673743512 -0.951851067 -0.500220683  1.058677935 -1.278827298
  [6]  0.895264256  0.689671119  0.327980333  0.405188227 -0.558249085
 [11] -0.420010374  0.672242576 -0.853947611  0.707862169 -0.352786143
 [16]  0.204548121 -0.578403910  0.204292292  0.101651676  0.457494414
 [21]  0.233087884 -0.936709621 -2.180508368  1.109345962  0.470532805
 [26] -0.847013115 -0.709657491 -1.254139167 -0.991851196  0.296392316
 [31] -0.951744660  0.217052959  0.974411578 -0.471069281 -0.389483087
 [36]  0.209997503  0.797576159  0.823403717 -0.095285634 -0.908819790
 [41]  0.408382392  1.113854852  0.885868714 -0.117767525 -0.391292575
 [46] -0.575999914 -0.395607957  0.639736353 -0.109728567  1.713275716
 [51] -0.053442352 -2.156317511 -1.550916931  0.690421389  0.994570538
 [56] -1.492447937  0.163845094  0.730283166  0.006595385  0.031628895
 [61]  2.060832500 -0.108736293 -0.030042207  1.319517228  1.152083198
 [66] -0.379443168  0.464218197  0.449645645  0.876498338  0.684638054
 [71] -0.330892962  0.479625687  1.347062288 -1.870904215 -0.904069651
 [76] -1.852481762 -1.993828975 -1.071649801  2.221143766  0.663953078
 [81]  1.049574675 -0.564015626  0.459411403 -0.311428858 -0.100028377
 [86] -0.200832148 -0.364443176 -0.602908569 -0.475078040 -0.201805698
 [91] -1.075467603  0.460008586  0.527370284  0.501971460  0.869089437
 [96]  1.057867243  0.420215903 -1.029156766  0.827549991 -0.210104341
> colMedians(tmp)
  [1]  1.673743512 -0.951851067 -0.500220683  1.058677935 -1.278827298
  [6]  0.895264256  0.689671119  0.327980333  0.405188227 -0.558249085
 [11] -0.420010374  0.672242576 -0.853947611  0.707862169 -0.352786143
 [16]  0.204548121 -0.578403910  0.204292292  0.101651676  0.457494414
 [21]  0.233087884 -0.936709621 -2.180508368  1.109345962  0.470532805
 [26] -0.847013115 -0.709657491 -1.254139167 -0.991851196  0.296392316
 [31] -0.951744660  0.217052959  0.974411578 -0.471069281 -0.389483087
 [36]  0.209997503  0.797576159  0.823403717 -0.095285634 -0.908819790
 [41]  0.408382392  1.113854852  0.885868714 -0.117767525 -0.391292575
 [46] -0.575999914 -0.395607957  0.639736353 -0.109728567  1.713275716
 [51] -0.053442352 -2.156317511 -1.550916931  0.690421389  0.994570538
 [56] -1.492447937  0.163845094  0.730283166  0.006595385  0.031628895
 [61]  2.060832500 -0.108736293 -0.030042207  1.319517228  1.152083198
 [66] -0.379443168  0.464218197  0.449645645  0.876498338  0.684638054
 [71] -0.330892962  0.479625687  1.347062288 -1.870904215 -0.904069651
 [76] -1.852481762 -1.993828975 -1.071649801  2.221143766  0.663953078
 [81]  1.049574675 -0.564015626  0.459411403 -0.311428858 -0.100028377
 [86] -0.200832148 -0.364443176 -0.602908569 -0.475078040 -0.201805698
 [91] -1.075467603  0.460008586  0.527370284  0.501971460  0.869089437
 [96]  1.057867243  0.420215903 -1.029156766  0.827549991 -0.210104341
> colRanges(tmp)
         [,1]       [,2]       [,3]     [,4]      [,5]      [,6]      [,7]
[1,] 1.673744 -0.9518511 -0.5002207 1.058678 -1.278827 0.8952643 0.6896711
[2,] 1.673744 -0.9518511 -0.5002207 1.058678 -1.278827 0.8952643 0.6896711
          [,8]      [,9]      [,10]      [,11]     [,12]      [,13]     [,14]
[1,] 0.3279803 0.4051882 -0.5582491 -0.4200104 0.6722426 -0.8539476 0.7078622
[2,] 0.3279803 0.4051882 -0.5582491 -0.4200104 0.6722426 -0.8539476 0.7078622
          [,15]     [,16]      [,17]     [,18]     [,19]     [,20]     [,21]
[1,] -0.3527861 0.2045481 -0.5784039 0.2042923 0.1016517 0.4574944 0.2330879
[2,] -0.3527861 0.2045481 -0.5784039 0.2042923 0.1016517 0.4574944 0.2330879
          [,22]     [,23]    [,24]     [,25]      [,26]      [,27]     [,28]
[1,] -0.9367096 -2.180508 1.109346 0.4705328 -0.8470131 -0.7096575 -1.254139
[2,] -0.9367096 -2.180508 1.109346 0.4705328 -0.8470131 -0.7096575 -1.254139
          [,29]     [,30]      [,31]    [,32]     [,33]      [,34]      [,35]
[1,] -0.9918512 0.2963923 -0.9517447 0.217053 0.9744116 -0.4710693 -0.3894831
[2,] -0.9918512 0.2963923 -0.9517447 0.217053 0.9744116 -0.4710693 -0.3894831
         [,36]     [,37]     [,38]       [,39]      [,40]     [,41]    [,42]
[1,] 0.2099975 0.7975762 0.8234037 -0.09528563 -0.9088198 0.4083824 1.113855
[2,] 0.2099975 0.7975762 0.8234037 -0.09528563 -0.9088198 0.4083824 1.113855
         [,43]      [,44]      [,45]      [,46]     [,47]     [,48]      [,49]
[1,] 0.8858687 -0.1177675 -0.3912926 -0.5759999 -0.395608 0.6397364 -0.1097286
[2,] 0.8858687 -0.1177675 -0.3912926 -0.5759999 -0.395608 0.6397364 -0.1097286
        [,50]       [,51]     [,52]     [,53]     [,54]     [,55]     [,56]
[1,] 1.713276 -0.05344235 -2.156318 -1.550917 0.6904214 0.9945705 -1.492448
[2,] 1.713276 -0.05344235 -2.156318 -1.550917 0.6904214 0.9945705 -1.492448
         [,57]     [,58]       [,59]     [,60]    [,61]      [,62]       [,63]
[1,] 0.1638451 0.7302832 0.006595385 0.0316289 2.060833 -0.1087363 -0.03004221
[2,] 0.1638451 0.7302832 0.006595385 0.0316289 2.060833 -0.1087363 -0.03004221
        [,64]    [,65]      [,66]     [,67]     [,68]     [,69]     [,70]
[1,] 1.319517 1.152083 -0.3794432 0.4642182 0.4496456 0.8764983 0.6846381
[2,] 1.319517 1.152083 -0.3794432 0.4642182 0.4496456 0.8764983 0.6846381
         [,71]     [,72]    [,73]     [,74]      [,75]     [,76]     [,77]
[1,] -0.330893 0.4796257 1.347062 -1.870904 -0.9040697 -1.852482 -1.993829
[2,] -0.330893 0.4796257 1.347062 -1.870904 -0.9040697 -1.852482 -1.993829
        [,78]    [,79]     [,80]    [,81]      [,82]     [,83]      [,84]
[1,] -1.07165 2.221144 0.6639531 1.049575 -0.5640156 0.4594114 -0.3114289
[2,] -1.07165 2.221144 0.6639531 1.049575 -0.5640156 0.4594114 -0.3114289
          [,85]      [,86]      [,87]      [,88]     [,89]      [,90]     [,91]
[1,] -0.1000284 -0.2008321 -0.3644432 -0.6029086 -0.475078 -0.2018057 -1.075468
[2,] -0.1000284 -0.2008321 -0.3644432 -0.6029086 -0.475078 -0.2018057 -1.075468
         [,92]     [,93]     [,94]     [,95]    [,96]     [,97]     [,98]
[1,] 0.4600086 0.5273703 0.5019715 0.8690894 1.057867 0.4202159 -1.029157
[2,] 0.4600086 0.5273703 0.5019715 0.8690894 1.057867 0.4202159 -1.029157
       [,99]     [,100]
[1,] 0.82755 -0.2101043
[2,] 0.82755 -0.2101043
> 
> 
> Max(tmp2)
[1] 1.929578
> Min(tmp2)
[1] -2.6865
> mean(tmp2)
[1] -0.1423118
> Sum(tmp2)
[1] -14.23118
> Var(tmp2)
[1] 0.9815502
> 
> rowMeans(tmp2)
  [1] -0.59761580 -0.18028322  0.57735761 -0.37867568  0.18408781 -1.38297335
  [7]  1.29997362 -0.30967331 -0.57565505 -1.58343402  0.10229502  0.25064253
 [13] -0.88783755  0.88227202  1.05285837 -0.45000735 -1.17817779  0.71978547
 [19]  0.15553964 -0.24152086  0.37446576 -1.13417828  1.89721687 -0.20962179
 [25]  0.45142815  0.36479767 -1.52818514  1.05280915 -2.68650044  0.22015606
 [31]  0.10253944 -0.28158537 -1.51613614  1.57438149 -1.32780513  1.04439943
 [37] -1.81089650  0.01955781  0.34372138 -0.33672827 -2.05588347 -1.50103306
 [43]  1.59022724 -0.11029119  0.06023960  0.21584462 -0.93638254 -1.12897490
 [49] -1.68386426 -1.21371343  0.06267968  0.29478523  1.59016523  1.60125818
 [55] -0.61737474 -0.33892767 -0.72436930 -1.57035862 -2.31226566  0.73485379
 [61]  0.32917872 -0.48529204 -1.29449033 -0.69073130 -0.70392553 -0.31898020
 [67] -1.91198258 -0.29793110  1.12044512  1.22944805  0.51354726 -0.52247707
 [73] -0.32742670  0.76982671 -0.05726353 -0.11743106 -0.70524981  0.85808084
 [79]  0.24742858 -0.36441707 -0.54644500  0.61407178  0.26205755  0.55242956
 [85]  1.09870852 -0.18318148 -0.28937597  1.46821851 -1.69091524  0.05020974
 [91] -0.70500168 -0.37186198  1.92957829  0.30775481 -0.18876755  0.19293858
 [97] -1.03901531 -0.91487565  0.11963596  1.80288766
> rowSums(tmp2)
  [1] -0.59761580 -0.18028322  0.57735761 -0.37867568  0.18408781 -1.38297335
  [7]  1.29997362 -0.30967331 -0.57565505 -1.58343402  0.10229502  0.25064253
 [13] -0.88783755  0.88227202  1.05285837 -0.45000735 -1.17817779  0.71978547
 [19]  0.15553964 -0.24152086  0.37446576 -1.13417828  1.89721687 -0.20962179
 [25]  0.45142815  0.36479767 -1.52818514  1.05280915 -2.68650044  0.22015606
 [31]  0.10253944 -0.28158537 -1.51613614  1.57438149 -1.32780513  1.04439943
 [37] -1.81089650  0.01955781  0.34372138 -0.33672827 -2.05588347 -1.50103306
 [43]  1.59022724 -0.11029119  0.06023960  0.21584462 -0.93638254 -1.12897490
 [49] -1.68386426 -1.21371343  0.06267968  0.29478523  1.59016523  1.60125818
 [55] -0.61737474 -0.33892767 -0.72436930 -1.57035862 -2.31226566  0.73485379
 [61]  0.32917872 -0.48529204 -1.29449033 -0.69073130 -0.70392553 -0.31898020
 [67] -1.91198258 -0.29793110  1.12044512  1.22944805  0.51354726 -0.52247707
 [73] -0.32742670  0.76982671 -0.05726353 -0.11743106 -0.70524981  0.85808084
 [79]  0.24742858 -0.36441707 -0.54644500  0.61407178  0.26205755  0.55242956
 [85]  1.09870852 -0.18318148 -0.28937597  1.46821851 -1.69091524  0.05020974
 [91] -0.70500168 -0.37186198  1.92957829  0.30775481 -0.18876755  0.19293858
 [97] -1.03901531 -0.91487565  0.11963596  1.80288766
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.59761580 -0.18028322  0.57735761 -0.37867568  0.18408781 -1.38297335
  [7]  1.29997362 -0.30967331 -0.57565505 -1.58343402  0.10229502  0.25064253
 [13] -0.88783755  0.88227202  1.05285837 -0.45000735 -1.17817779  0.71978547
 [19]  0.15553964 -0.24152086  0.37446576 -1.13417828  1.89721687 -0.20962179
 [25]  0.45142815  0.36479767 -1.52818514  1.05280915 -2.68650044  0.22015606
 [31]  0.10253944 -0.28158537 -1.51613614  1.57438149 -1.32780513  1.04439943
 [37] -1.81089650  0.01955781  0.34372138 -0.33672827 -2.05588347 -1.50103306
 [43]  1.59022724 -0.11029119  0.06023960  0.21584462 -0.93638254 -1.12897490
 [49] -1.68386426 -1.21371343  0.06267968  0.29478523  1.59016523  1.60125818
 [55] -0.61737474 -0.33892767 -0.72436930 -1.57035862 -2.31226566  0.73485379
 [61]  0.32917872 -0.48529204 -1.29449033 -0.69073130 -0.70392553 -0.31898020
 [67] -1.91198258 -0.29793110  1.12044512  1.22944805  0.51354726 -0.52247707
 [73] -0.32742670  0.76982671 -0.05726353 -0.11743106 -0.70524981  0.85808084
 [79]  0.24742858 -0.36441707 -0.54644500  0.61407178  0.26205755  0.55242956
 [85]  1.09870852 -0.18318148 -0.28937597  1.46821851 -1.69091524  0.05020974
 [91] -0.70500168 -0.37186198  1.92957829  0.30775481 -0.18876755  0.19293858
 [97] -1.03901531 -0.91487565  0.11963596  1.80288766
> rowMin(tmp2)
  [1] -0.59761580 -0.18028322  0.57735761 -0.37867568  0.18408781 -1.38297335
  [7]  1.29997362 -0.30967331 -0.57565505 -1.58343402  0.10229502  0.25064253
 [13] -0.88783755  0.88227202  1.05285837 -0.45000735 -1.17817779  0.71978547
 [19]  0.15553964 -0.24152086  0.37446576 -1.13417828  1.89721687 -0.20962179
 [25]  0.45142815  0.36479767 -1.52818514  1.05280915 -2.68650044  0.22015606
 [31]  0.10253944 -0.28158537 -1.51613614  1.57438149 -1.32780513  1.04439943
 [37] -1.81089650  0.01955781  0.34372138 -0.33672827 -2.05588347 -1.50103306
 [43]  1.59022724 -0.11029119  0.06023960  0.21584462 -0.93638254 -1.12897490
 [49] -1.68386426 -1.21371343  0.06267968  0.29478523  1.59016523  1.60125818
 [55] -0.61737474 -0.33892767 -0.72436930 -1.57035862 -2.31226566  0.73485379
 [61]  0.32917872 -0.48529204 -1.29449033 -0.69073130 -0.70392553 -0.31898020
 [67] -1.91198258 -0.29793110  1.12044512  1.22944805  0.51354726 -0.52247707
 [73] -0.32742670  0.76982671 -0.05726353 -0.11743106 -0.70524981  0.85808084
 [79]  0.24742858 -0.36441707 -0.54644500  0.61407178  0.26205755  0.55242956
 [85]  1.09870852 -0.18318148 -0.28937597  1.46821851 -1.69091524  0.05020974
 [91] -0.70500168 -0.37186198  1.92957829  0.30775481 -0.18876755  0.19293858
 [97] -1.03901531 -0.91487565  0.11963596  1.80288766
> 
> colMeans(tmp2)
[1] -0.1423118
> colSums(tmp2)
[1] -14.23118
> colVars(tmp2)
[1] 0.9815502
> colSd(tmp2)
[1] 0.9907322
> colMax(tmp2)
[1] 1.929578
> colMin(tmp2)
[1] -2.6865
> colMedians(tmp2)
[1] -0.1817324
> colRanges(tmp2)
          [,1]
[1,] -2.686500
[2,]  1.929578
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  2.81556827  4.75106055  1.57366651  1.60043444  0.07710191  3.25222681
 [7] -0.78387828  6.21950431  1.17555820 -1.33316502
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.9061989
[2,] -0.1309054
[3,]  0.1313305
[4,]  0.5811109
[5,]  1.4606101
> 
> rowApply(tmp,sum)
 [1]  5.7402019  1.5419808  0.9718032  0.6658553  7.2103933 -2.6271951
 [7]  2.0176347  4.3022518 -5.1097589  4.6349108
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    5    6    7    5    8   10    5    2    7     4
 [2,]    7    2    1    3    9    9    7    9    9     5
 [3,]    9   10   10    6    3    3    1    1    4     6
 [4,]    6    7    2   10    4    2   10    8    8     1
 [5,]    3    5    6    8    5    4    8    3    6     3
 [6,]    4    3    4    9    2    6    3    7   10     7
 [7,]    8    1    3    7    6    8    6    4    3     2
 [8,]    2    9    8    2   10    5    9    6    5    10
 [9,]    1    4    9    4    7    7    2    5    1     8
[10,]   10    8    5    1    1    1    4   10    2     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.6493660  1.3139657 -0.7959237  0.9994752  4.1119687  1.9785033
 [7]  2.5777081 -2.1975290 -0.2219083  1.6882288  0.4596100  1.2655601
[13]  0.4768970 -1.2436270  4.4955233  2.7976822  1.0073687 -0.0239575
[19] -1.4667907 -1.5793998
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.0465387
[2,] -0.4961294
[3,] -0.4215224
[4,]  0.6562445
[5,]  0.6585801
> 
> rowApply(tmp,sum)
[1] 10.6606744 -3.8067173 -0.5944043  0.4940456  8.2403907
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   11   15    4    4    5
[2,]   15    4    8   17   17
[3,]   18    2   12    5    2
[4,]    8   12   13    6   14
[5,]   12    9   17   19   18
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]       [,5]         [,6]
[1,]  0.6585801  1.1429813  1.6279447  0.2113913  0.9418055  0.173074876
[2,]  0.6562445 -1.2216114 -1.4813863 -0.1436437 -0.2850241 -0.150075732
[3,] -1.0465387 -0.3486007  0.3150623  0.3532491  1.1140043  1.585193335
[4,] -0.4215224  0.4697027 -0.2308934 -0.1370510  0.6806865  0.002558167
[5,] -0.4961294  1.2714939 -1.0266509  0.7155295  1.6604964  0.367752620
          [,7]       [,8]       [,9]       [,10]      [,11]       [,12]
[1,] 0.2162782  2.8308168 -1.2240691 -0.06720387 -0.9750037  1.26856929
[2,] 0.6858193 -0.9868719 -0.5333496  0.86422942 -0.2682435  0.09728953
[3,] 0.7434256 -2.1278820 -0.2051399  1.82521234  0.4207837 -0.32813312
[4,] 0.3254396 -1.0119712  1.4731205  0.25024976  0.6767599 -1.66400507
[5,] 0.6067454 -0.9016208  0.2675298 -1.18425884  0.6053135  1.89183943
          [,13]      [,14]       [,15]      [,16]       [,17]       [,18]
[1,]  1.2300221 -1.1574546 2.563861688  1.1339017 -0.37393850  1.08991918
[2,] -1.2662162  1.4383642 1.397533766  0.8938549 -1.06257886 -1.56613901
[3,]  0.8551913 -1.5462217 0.063499458 -0.4696334  1.82604260 -0.78297996
[4,]  0.3060337  0.3461137 0.007878525 -0.7421614  0.02683503  0.07882329
[5,] -0.6481339 -0.3244285 0.462749825  1.9817205  0.59100841  1.15641900
           [,19]       [,20]
[1,]  0.34566486 -0.97646741
[2,]  0.09585081 -0.97076339
[3,] -2.07929943 -0.76163935
[4,]  0.10733359 -0.04988493
[5,]  0.06365945  1.17935530
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  650  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  563  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1      col2      col3       col4    col5      col6      col7
row1 -0.9386341 0.6476103 0.3787831 -0.3061057 1.43714 0.9924514 0.5280047
         col8     col9    col10     col11      col12      col13     col14
row1 2.434715 1.842677 1.264131 -1.017727 -0.1879584 -0.1466594 -1.380538
         col15      col16      col17    col18      col19   col20
row1 0.4837749 -0.5851805 -0.6823658 1.182185 -0.3498344 1.07931
> tmp[,"col10"]
          col10
row1  1.2641305
row2  0.7949525
row3 -0.3319325
row4 -0.7952281
row5 -1.3986496
> tmp[c("row1","row5"),]
           col1       col2       col3        col4      col5      col6
row1 -0.9386341 0.64761035  0.3787831 -0.30610567  1.437140 0.9924514
row5 -0.2434437 0.03126447 -0.3153760  0.04699508 -3.171436 0.4831072
           col7     col8       col9     col10     col11      col12      col13
row1  0.5280047 2.434715  1.8426765  1.264131 -1.017727 -0.1879584 -0.1466594
row5 -0.5549300 1.504044 -0.2196149 -1.398650  1.667077 -1.1173566 -0.1129521
          col14     col15      col16      col17    col18      col19      col20
row1 -1.3805377 0.4837749 -0.5851805 -0.6823658 1.182185 -0.3498344  1.0793101
row5 -0.3805195 0.2795453  0.5056599 -0.9789125 2.514772  1.9276315 -0.2758253
> tmp[,c("col6","col20")]
            col6      col20
row1  0.99245139  1.0793101
row2 -0.02490355  0.0997432
row3  0.35580616  0.2857731
row4  0.50997122 -0.1609551
row5  0.48310717 -0.2758253
> tmp[c("row1","row5"),c("col6","col20")]
          col6      col20
row1 0.9924514  1.0793101
row5 0.4831072 -0.2758253
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.43567 50.22338 48.80384 50.34834 49.65717 104.7702 49.23374 50.28155
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.59909 48.85226 50.00279 49.72654 49.17188 50.42592 49.44395 49.67976
        col17    col18    col19    col20
row1 49.82744 50.14085 49.80152 104.1979
> tmp[,"col10"]
        col10
row1 48.85226
row2 31.43416
row3 29.07926
row4 29.03442
row5 50.61444
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.43567 50.22338 48.80384 50.34834 49.65717 104.7702 49.23374 50.28155
row5 50.40220 49.49415 50.49663 50.09661 50.93145 103.7894 49.63090 48.23326
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.59909 48.85226 50.00279 49.72654 49.17188 50.42592 49.44395 49.67976
row5 51.18990 50.61444 50.40009 49.84571 51.60041 49.69433 48.68732 50.68431
        col17    col18    col19    col20
row1 49.82744 50.14085 49.80152 104.1979
row5 49.66565 49.92070 49.76759 106.1642
> tmp[,c("col6","col20")]
          col6     col20
row1 104.77024 104.19787
row2  73.95829  74.45859
row3  75.22007  75.78281
row4  74.07732  76.13486
row5 103.78937 106.16419
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.7702 104.1979
row5 103.7894 106.1642
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.7702 104.1979
row5 103.7894 106.1642
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -2.0740580
[2,]  1.4296796
[3,]  0.1166088
[4,]  0.1988293
[5,]  0.3066490
> tmp[,c("col17","col7")]
          col17        col7
[1,] -0.2258293 -0.74641233
[2,]  0.8692408 -0.83341139
[3,]  0.4756011  1.73110450
[4,]  0.3699618  0.02536126
[5,]  0.6616113 -1.34626632
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,]  0.5768559  0.1510223
[2,] -1.5546095 -1.2613939
[3,] -0.2462655  0.7259643
[4,]  0.9585422  0.3251000
[5,] -0.4173086  0.8190136
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] 0.5768559
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,]  0.5768559
[2,] -1.5546095
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
             [,1]       [,2]      [,3]       [,4]       [,5]      [,6]
row3 0.0001515957 -0.1993463  1.045891 -1.8926385  0.4677985 1.9969596
row1 0.9925197547  0.5923191 -0.255580 -0.6961683 -1.2087213 0.8854088
           [,7]       [,8]       [,9]      [,10]      [,11]    [,12]      [,13]
row3 -0.4374981 -1.5831675 -0.3412399 -1.7229564 -0.4685733 1.501257 -1.0742956
row1 -0.7153105 -0.3833862 -0.9879983  0.1422535 -1.7102352 1.133020 -0.2717187
          [,14]     [,15]      [,16]      [,17]      [,18]       [,19]
row3  1.8858199 0.4710414 -1.2384746 -0.7438329 -0.7041771 -1.51129403
row1 -0.2041153 0.2394435 -0.4734131 -1.3317705 -0.5119637  0.05488833
         [,20]
row3 1.2398581
row1 0.5973418
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]      [,2]       [,3]        [,4]      [,5]       [,6]       [,7]
row2 0.1942892 -1.122233 -0.9047723 -0.08207641 0.7030371 0.08744085 0.08839903
           [,8]       [,9]      [,10]
row2 -0.7805117 -0.6052992 0.04199747
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
         [,1]      [,2]     [,3]     [,4]       [,5]      [,6]      [,7]
row5 1.554292 0.7429763 1.674406 1.818247 -0.9101996 0.4399395 0.1367062
           [,8]      [,9]     [,10]     [,11]     [,12]     [,13]    [,14]
row5 -0.1758373 0.3126734 0.2520969 0.1112737 0.5887917 0.5073066 1.957232
        [,15]     [,16]      [,17]      [,18]    [,19]      [,20]
row5 1.310935 -1.411308 -0.2631952 -0.4280855 1.451459 -0.7412423
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600000d840c0>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c6454a7168c"
 [2] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c6425b96cbf"
 [3] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c64309282f2"
 [4] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c6462d2f6c7"
 [5] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c64847b581" 
 [6] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c641bdd2c66"
 [7] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c64558dead4"
 [8] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c645834302d"
 [9] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c644a470798"
[10] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c647d43b240"
[11] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c64676bc7ff"
[12] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c6455176b64"
[13] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c64748b9de0"
[14] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c647a2a18e6"
[15] "/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests/BM6c6461c8e2b2"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x600000d5c000>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x600000d5c000>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x600000d5c000>
> rowMedians(tmp)
  [1] -0.018445577 -0.185186205 -0.505826879  0.930807492 -0.094236922
  [6] -0.256472645  0.322643262  0.593560061 -0.006058531 -0.314101889
 [11] -0.806730301  0.135867826 -0.415830246  0.068232008  0.022773568
 [16]  0.208964997 -0.041157287  0.131292597  0.411642512 -0.025970320
 [21]  0.081011544  0.147401069  0.224996645 -0.362058725  0.224610195
 [26]  0.283687131  0.192949608  0.220177771  0.593655738  0.376618917
 [31] -0.265553127  0.577518352  0.641862813 -0.343545362 -0.096194019
 [36]  0.273860248 -0.151872695  0.167344138 -0.252759596  0.170343841
 [41]  0.199750372 -0.204622077 -0.217077994 -0.087296003 -0.109894419
 [46]  0.054118513 -0.784074692  0.135509092  0.151466870  0.199861269
 [51] -0.563043339 -0.311736333  0.091786519 -0.129561836 -0.197869706
 [56] -0.113544244 -0.070513815  0.173226139 -0.276242288 -0.035605531
 [61]  0.067431426  0.312758176 -0.041270245 -0.110340585  0.354900106
 [66]  0.450375062 -0.205620051  0.034329367  0.392386572 -0.595953897
 [71] -0.024249263  0.208177212 -0.399285189 -0.438856552  0.372959821
 [76]  0.097276458 -0.348647333  0.276603028  0.144113062  0.918279625
 [81]  0.191498320 -0.224851608 -0.499270688 -0.121173482 -0.007117859
 [86]  0.226332855  0.122097761  0.062299112 -0.263041502  0.397492709
 [91]  0.037854595 -0.130131737  0.095853279  0.136182581  0.224011258
 [96]  0.146367482 -0.391832142 -0.489577532  0.033493671  0.523981671
[101]  0.200380203 -0.062888935 -0.194970874  0.214935379 -0.132222949
[106]  0.044261009 -0.279362928  0.292202465  0.354017258  0.479074825
[111] -0.104604825 -0.108555797  0.372024059  0.161427883 -0.655475761
[116] -0.041812727 -0.411702746 -0.458240304  0.462463882  0.796514342
[121]  0.439619684 -0.337479310  0.114775120 -0.420260826 -0.147947923
[126] -0.244771637 -0.167952255 -0.335857137 -0.693287413  0.198523663
[131]  0.205481946  0.087728815 -0.026339380  0.153187095  0.775427059
[136] -0.009487582  0.363044606  0.270480652  0.111139552  0.334283051
[141] -0.584940595 -0.482762296 -0.423075949 -0.042982767  0.103245943
[146] -0.128322151 -0.083288156  0.500740465 -0.342347435  0.100099653
[151]  0.282372509  0.517604754  0.055176291 -0.426561415  0.316969772
[156]  0.543175996 -0.005685916 -1.030467327  0.053782796  0.422644765
[161] -0.322921555 -0.373274465 -0.304146236  0.121005415  0.040180035
[166] -0.182601991  0.460829818 -0.375988627 -0.030539974 -0.049047509
[171] -0.078837607  0.160859601  0.061870181  0.030498328  0.139540241
[176]  0.087781606  0.131740567  0.189324220 -0.140996394 -0.136168452
[181] -0.357949823 -0.636435122  0.139286688  0.265746954 -0.543550924
[186] -0.115979225 -0.261659049  0.437735252  0.152484266 -0.215758450
[191] -0.149499423  0.323612716  0.168167496 -0.665613049  0.150938857
[196]  0.206058876  0.198990538  0.031187210  0.674956143  0.155966946
[201]  0.160078200 -0.490646449 -0.234872975 -0.147922275  0.330008111
[206]  0.098393678 -0.315763148 -0.054442204  0.057004876 -0.197281443
[211]  0.499143680 -0.118028406  0.169645022 -0.049702846 -0.507688241
[216]  0.111720844 -0.351329239 -0.281848387  0.700559915  0.169850906
[221]  0.189204378 -0.237638259  0.123904129 -0.073980764 -0.476972584
[226]  0.392597383 -0.068452485 -0.011020186  0.162890263 -0.061244513
> 
> proc.time()
   user  system elapsed 
  2.714  15.821  20.573 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.3.2 Patched (2023-11-01 r85457) -- "Eye Holes"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003ed82a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003ed82a0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003ed82a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600003ed82a0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600003e84000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003e84000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600003e84000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003e84000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003e84000>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003ed0060>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003ed0060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003ed0060>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600003ed0060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003ed0060>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600003ed0060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003ed0060>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600003ed0060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003ed0060>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003ed01e0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600003ed01e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003ed01e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003ed01e0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile7381211040ac" "BufferedMatrixFile73813e3f1b29"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile7381211040ac" "BufferedMatrixFile73813e3f1b29"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003e9c120>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003e9c120>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600003e9c120>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600003e9c120>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600003e9c120>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600003e9c120>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003e9c300>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003e9c300>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600003e9c300>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600003e9c300>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003efc240>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600003efc240>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.370   0.161   0.525 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.3.2 Patched (2023-11-01 r85457) -- "Eye Holes"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.333   0.090   0.422 

Example timings