Back to Multiple platform build/check report for BioC 3.18:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2024-04-17 11:36:36 -0400 (Wed, 17 Apr 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 22.04.3 LTS)x86_644.3.3 (2024-02-29) -- "Angel Food Cake" 4676
palomino4Windows Server 2022 Datacenterx644.3.3 (2024-02-29 ucrt) -- "Angel Food Cake" 4414
merida1macOS 12.7.1 Montereyx86_644.3.3 (2024-02-29) -- "Angel Food Cake" 4437
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 246/2266HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.66.0  (landing page)
Ben Bolstad
Snapshot Date: 2024-04-15 14:05:01 -0400 (Mon, 15 Apr 2024)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_18
git_last_commit: 1feca44
git_last_commit_date: 2023-10-24 09:37:50 -0400 (Tue, 24 Oct 2023)
nebbiolo2Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino4Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.1 Ventura / arm64see weekly results here

CHECK results for BufferedMatrix on palomino4


To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.66.0
Command: F:\biocbuild\bbs-3.18-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:BufferedMatrix.install-out.txt --library=F:\biocbuild\bbs-3.18-bioc\R\library --no-vignettes --timings BufferedMatrix_1.66.0.tar.gz
StartedAt: 2024-04-15 22:54:39 -0400 (Mon, 15 Apr 2024)
EndedAt: 2024-04-15 22:55:42 -0400 (Mon, 15 Apr 2024)
EllapsedTime: 63.3 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.18-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:BufferedMatrix.install-out.txt --library=F:\biocbuild\bbs-3.18-bioc\R\library --no-vignettes --timings BufferedMatrix_1.66.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck'
* using R version 4.3.3 (2024-02-29 ucrt)
* using platform: x86_64-w64-mingw32 (64-bit)
* R was compiled by
    gcc.exe (GCC) 12.3.0
    GNU Fortran (GCC) 12.3.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'BufferedMatrix/DESCRIPTION' ... OK
* this is package 'BufferedMatrix' version '1.66.0'
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'BufferedMatrix' can be installed ... OK
* used C compiler: 'gcc.exe (GCC) 12.3.0'
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files for x64 is not available
File 'F:/biocbuild/bbs-3.18-bioc/R/library/BufferedMatrix/libs/x64/BufferedMatrix.dll':
  Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran)

Compiled code should not call entry points which might terminate R nor
write to stdout/stderr instead of to the console, nor use Fortran I/O
nor system RNGs nor [v]sprintf. The detected symbols are linked into
the code but might come from libraries and not actually be called.

See 'Writing portable packages' in the 'Writing R Extensions' manual.
* checking sizes of PDF files under 'inst/doc' ... OK
* checking files in 'vignettes' ... OK
* checking examples ... NONE
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'Rcodetesting.R'
  Running 'c_code_level_tests.R'
  Running 'objectTesting.R'
  Running 'rawCalltesting.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  'F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/00check.log'
for details.



Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.18-bioc\R\bin\R.exe CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.18-bioc/R/library'
* installing *source* package 'BufferedMatrix' ...
** using staged installation
** libs
using C compiler: 'gcc.exe (GCC) 12.3.0'
gcc  -I"F:/biocbuild/bbs-3.18-bioc/R/include" -DNDEBUG     -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include"     -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign  -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc  -I"F:/biocbuild/bbs-3.18-bioc/R/include" -DNDEBUG     -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include"     -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function 'dbm_ReadOnlyMode':
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '~' [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: 'sort_double' defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc  -I"F:/biocbuild/bbs-3.18-bioc/R/include" -DNDEBUG     -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include"     -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc  -I"F:/biocbuild/bbs-3.18-bioc/R/include" -DNDEBUG     -I"C:/rtools43/x86_64-w64-mingw32.static.posix/include"     -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign  -c init_package.c -o init_package.o
gcc -shared -s -static-libgcc -o BufferedMatrix.dll tmp.def RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -LC:/rtools43/x86_64-w64-mingw32.static.posix/lib/x64 -LC:/rtools43/x86_64-w64-mingw32.static.posix/lib -LF:/biocbuild/bbs-3.18-bioc/R/bin/x64 -lR
installing to F:/biocbuild/bbs-3.18-bioc/R/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs/x64
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for 'rowMeans' in package 'BufferedMatrix'
Creating a new generic function for 'rowSums' in package 'BufferedMatrix'
Creating a new generic function for 'colMeans' in package 'BufferedMatrix'
Creating a new generic function for 'colSums' in package 'BufferedMatrix'
Creating a generic function for 'ncol' from package 'base' in package 'BufferedMatrix'
Creating a generic function for 'nrow' from package 'base' in package 'BufferedMatrix'
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.3.3 (2024-02-29 ucrt) -- "Angel Food Cake"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
   0.34    0.15    0.57 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.3.3 (2024-02-29 ucrt) -- "Angel Food Cake"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 454760 24.3     979027 52.3   640574 34.3
Vcells 825530  6.3    8388608 64.0  1998750 15.3
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Mon Apr 15 22:55:03 2024"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Mon Apr 15 22:55:04 2024"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x000001e8361272a0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Mon Apr 15 22:55:10 2024"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Mon Apr 15 22:55:13 2024"
> 
> ColMode(tmp2)
<pointer: 0x000001e8361272a0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
             [,1]       [,2]       [,3]       [,4]
[1,] 100.33679124  0.9949167  0.8017680 -1.1972761
[2,]  -0.82254539 -0.1601507 -0.5195544  0.7878911
[3,]   0.45361948 -0.3518993  1.0585338  0.7036988
[4,]   0.02933768  0.1802266  0.2811446  0.7505447
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
             [,1]      [,2]      [,3]      [,4]
[1,] 100.33679124 0.9949167 0.8017680 1.1972761
[2,]   0.82254539 0.1601507 0.5195544 0.7878911
[3,]   0.45361948 0.3518993 1.0585338 0.7036988
[4,]   0.02933768 0.1802266 0.2811446 0.7505447
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0168254 0.9974551 0.8954150 1.0942011
[2,]  0.9069429 0.4001883 0.7208012 0.8876323
[3,]  0.6735128 0.5932110 1.0288507 0.8388675
[4,]  0.1712824 0.4245311 0.5302307 0.8663398
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.50505 35.96947 34.75592 37.13929
[2,]  34.89197 29.16203 32.72757 34.66421
[3,]  32.18875 31.28401 36.34704 34.09237
[4,]  26.74216 29.42554 30.58345 34.41394
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x000001e8361273f0>
> exp(tmp5)
<pointer: 0x000001e8361273f0>
> log(tmp5,2)
<pointer: 0x000001e8361273f0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 469.3592
> Min(tmp5)
[1] 53.45106
> mean(tmp5)
[1] 72.79597
> Sum(tmp5)
[1] 14559.19
> Var(tmp5)
[1] 878.3546
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 91.64494 70.01176 72.92760 69.50236 71.65167 72.20176 68.01563 73.26145
 [9] 68.84589 69.89659
> rowSums(tmp5)
 [1] 1832.899 1400.235 1458.552 1390.047 1433.033 1444.035 1360.313 1465.229
 [9] 1376.918 1397.932
> rowVars(tmp5)
 [1] 7982.92046  104.17059   97.25920   90.61456   98.28859   84.31354
 [7]   84.95529   74.99123   59.97591   77.23363
> rowSd(tmp5)
 [1] 89.347191 10.206399  9.862008  9.519168  9.914060  9.182240  9.217119
 [8]  8.659748  7.744411  8.788266
> rowMax(tmp5)
 [1] 469.35921  87.76291  91.54442  90.22537  88.66960  89.37086  91.65110
 [8]  86.18076  83.74694  81.09533
> rowMin(tmp5)
 [1] 53.45106 55.06465 60.58719 55.66031 58.34940 54.93287 57.53123 57.09440
 [9] 54.20900 55.15909
> 
> colMeans(tmp5)
 [1] 106.87593  68.46688  70.04661  70.04426  73.32744  70.92068  68.62094
 [8]  76.77236  73.34589  72.91161  72.61152  69.74073  71.97788  71.94151
[15]  71.52842  71.84420  68.75103  68.27086  70.64060  67.27995
> colSums(tmp5)
 [1] 1068.7593  684.6688  700.4661  700.4426  733.2744  709.2068  686.2094
 [8]  767.7236  733.4589  729.1161  726.1152  697.4073  719.7788  719.4151
[15]  715.2842  718.4420  687.5103  682.7086  706.4060  672.7995
> colVars(tmp5)
 [1] 16292.43984    75.77558    80.27089    63.54997    44.63262   123.73561
 [7]    85.34487   130.10009    96.28611    69.52240   106.13023    56.65293
[13]   102.19405    93.43411   107.69935    77.07223    56.61919    97.49592
[19]   112.38184    85.76423
> colSd(tmp5)
 [1] 127.641842   8.704917   8.959402   7.971823   6.680765  11.123651
 [7]   9.238229  11.406143   9.812549   8.338010  10.301953   7.526814
[13]  10.109107   9.666132  10.377830   8.779079   7.524572   9.874002
[19]  10.601030   9.260898
> colMax(tmp5)
 [1] 469.35921  89.37086  81.81922  78.64955  82.80119  89.28395  83.74694
 [8]  91.65110  88.50533  86.49179  90.92814  79.81729  88.66960  90.21128
[15]  90.22537  86.73892  85.69225  86.18076  85.56293  86.87253
> colMin(tmp5)
 [1] 54.20900 59.57720 55.15909 57.53123 60.58719 55.17220 57.69188 60.50714
 [9] 60.81224 62.65011 62.73370 60.21093 58.52316 60.35137 53.45106 55.06465
[17] 60.65104 55.77857 57.16874 54.93287
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 91.64494 70.01176 72.92760       NA 71.65167 72.20176 68.01563 73.26145
 [9] 68.84589 69.89659
> rowSums(tmp5)
 [1] 1832.899 1400.235 1458.552       NA 1433.033 1444.035 1360.313 1465.229
 [9] 1376.918 1397.932
> rowVars(tmp5)
 [1] 7982.92046  104.17059   97.25920   83.41655   98.28859   84.31354
 [7]   84.95529   74.99123   59.97591   77.23363
> rowSd(tmp5)
 [1] 89.347191 10.206399  9.862008  9.133266  9.914060  9.182240  9.217119
 [8]  8.659748  7.744411  8.788266
> rowMax(tmp5)
 [1] 469.35921  87.76291  91.54442        NA  88.66960  89.37086  91.65110
 [8]  86.18076  83.74694  81.09533
> rowMin(tmp5)
 [1] 53.45106 55.06465 60.58719       NA 58.34940 54.93287 57.53123 57.09440
 [9] 54.20900 55.15909
> 
> colMeans(tmp5)
 [1] 106.87593  68.46688  70.04661  70.04426  73.32744  70.92068  68.62094
 [8]  76.77236        NA  72.91161  72.61152  69.74073  71.97788  71.94151
[15]  71.52842  71.84420  68.75103  68.27086  70.64060  67.27995
> colSums(tmp5)
 [1] 1068.7593  684.6688  700.4661  700.4426  733.2744  709.2068  686.2094
 [8]  767.7236        NA  729.1161  726.1152  697.4073  719.7788  719.4151
[15]  715.2842  718.4420  687.5103  682.7086  706.4060  672.7995
> colVars(tmp5)
 [1] 16292.43984    75.77558    80.27089    63.54997    44.63262   123.73561
 [7]    85.34487   130.10009          NA    69.52240   106.13023    56.65293
[13]   102.19405    93.43411   107.69935    77.07223    56.61919    97.49592
[19]   112.38184    85.76423
> colSd(tmp5)
 [1] 127.641842   8.704917   8.959402   7.971823   6.680765  11.123651
 [7]   9.238229  11.406143         NA   8.338010  10.301953   7.526814
[13]  10.109107   9.666132  10.377830   8.779079   7.524572   9.874002
[19]  10.601030   9.260898
> colMax(tmp5)
 [1] 469.35921  89.37086  81.81922  78.64955  82.80119  89.28395  83.74694
 [8]  91.65110        NA  86.49179  90.92814  79.81729  88.66960  90.21128
[15]  90.22537  86.73892  85.69225  86.18076  85.56293  86.87253
> colMin(tmp5)
 [1] 54.20900 59.57720 55.15909 57.53123 60.58719 55.17220 57.69188 60.50714
 [9]       NA 62.65011 62.73370 60.21093 58.52316 60.35137 53.45106 55.06465
[17] 60.65104 55.77857 57.16874 54.93287
> 
> Max(tmp5,na.rm=TRUE)
[1] 469.3592
> Min(tmp5,na.rm=TRUE)
[1] 53.45106
> mean(tmp5,na.rm=TRUE)
[1] 72.73984
> Sum(tmp5,na.rm=TRUE)
[1] 14475.23
> Var(tmp5,na.rm=TRUE)
[1] 882.1575
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.64494 70.01176 72.92760 68.74117 71.65167 72.20176 68.01563 73.26145
 [9] 68.84589 69.89659
> rowSums(tmp5,na.rm=TRUE)
 [1] 1832.899 1400.235 1458.552 1306.082 1433.033 1444.035 1360.313 1465.229
 [9] 1376.918 1397.932
> rowVars(tmp5,na.rm=TRUE)
 [1] 7982.92046  104.17059   97.25920   83.41655   98.28859   84.31354
 [7]   84.95529   74.99123   59.97591   77.23363
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.347191 10.206399  9.862008  9.133266  9.914060  9.182240  9.217119
 [8]  8.659748  7.744411  8.788266
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.35921  87.76291  91.54442  90.22537  88.66960  89.37086  91.65110
 [8]  86.18076  83.74694  81.09533
> rowMin(tmp5,na.rm=TRUE)
 [1] 53.45106 55.06465 60.58719 55.66031 58.34940 54.93287 57.53123 57.09440
 [9] 54.20900 55.15909
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 106.87593  68.46688  70.04661  70.04426  73.32744  70.92068  68.62094
 [8]  76.77236  72.16598  72.91161  72.61152  69.74073  71.97788  71.94151
[15]  71.52842  71.84420  68.75103  68.27086  70.64060  67.27995
> colSums(tmp5,na.rm=TRUE)
 [1] 1068.7593  684.6688  700.4661  700.4426  733.2744  709.2068  686.2094
 [8]  767.7236  649.4938  729.1161  726.1152  697.4073  719.7788  719.4151
[15]  715.2842  718.4420  687.5103  682.7086  706.4060  672.7995
> colVars(tmp5,na.rm=TRUE)
 [1] 16292.43984    75.77558    80.27089    63.54997    44.63262   123.73561
 [7]    85.34487   130.10009    92.65979    69.52240   106.13023    56.65293
[13]   102.19405    93.43411   107.69935    77.07223    56.61919    97.49592
[19]   112.38184    85.76423
> colSd(tmp5,na.rm=TRUE)
 [1] 127.641842   8.704917   8.959402   7.971823   6.680765  11.123651
 [7]   9.238229  11.406143   9.625995   8.338010  10.301953   7.526814
[13]  10.109107   9.666132  10.377830   8.779079   7.524572   9.874002
[19]  10.601030   9.260898
> colMax(tmp5,na.rm=TRUE)
 [1] 469.35921  89.37086  81.81922  78.64955  82.80119  89.28395  83.74694
 [8]  91.65110  88.50533  86.49179  90.92814  79.81729  88.66960  90.21128
[15]  90.22537  86.73892  85.69225  86.18076  85.56293  86.87253
> colMin(tmp5,na.rm=TRUE)
 [1] 54.20900 59.57720 55.15909 57.53123 60.58719 55.17220 57.69188 60.50714
 [9] 60.81224 62.65011 62.73370 60.21093 58.52316 60.35137 53.45106 55.06465
[17] 60.65104 55.77857 57.16874 54.93287
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.64494 70.01176 72.92760      NaN 71.65167 72.20176 68.01563 73.26145
 [9] 68.84589 69.89659
> rowSums(tmp5,na.rm=TRUE)
 [1] 1832.899 1400.235 1458.552    0.000 1433.033 1444.035 1360.313 1465.229
 [9] 1376.918 1397.932
> rowVars(tmp5,na.rm=TRUE)
 [1] 7982.92046  104.17059   97.25920         NA   98.28859   84.31354
 [7]   84.95529   74.99123   59.97591   77.23363
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.347191 10.206399  9.862008        NA  9.914060  9.182240  9.217119
 [8]  8.659748  7.744411  8.788266
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.35921  87.76291  91.54442        NA  88.66960  89.37086  91.65110
 [8]  86.18076  83.74694  81.09533
> rowMin(tmp5,na.rm=TRUE)
 [1] 53.45106 55.06465 60.58719       NA 58.34940 54.93287 57.53123 57.09440
 [9] 54.20900 55.15909
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.56656  69.26926  70.75674  69.86828  73.56111  71.59295  69.18587
 [8]  76.18345       NaN  73.37551  72.45713  68.62111  72.57705  71.85363
[15]  69.45099  71.13406  69.65103  69.51820  71.54184  67.90769
> colSums(tmp5,na.rm=TRUE)
 [1] 1013.0990  623.4234  636.8107  628.8145  662.0500  644.3365  622.6728
 [8]  685.6511    0.0000  660.3796  652.1142  617.5900  653.1934  646.6827
[15]  625.0589  640.2065  626.8592  625.6638  643.8765  611.1692
> colVars(tmp5,na.rm=TRUE)
 [1] 17964.68366    78.00451    84.63155    71.14530    49.59742   134.11817
 [7]    92.42266   142.46103          NA    75.79166   119.12835    49.63219
[13]   110.92961   105.02650    72.60957    81.03282    54.58411    92.17976
[19]   117.29197    92.05155
> colSd(tmp5,na.rm=TRUE)
 [1] 134.032398   8.832016   9.199541   8.434767   7.042543  11.580940
 [7]   9.613670  11.935704         NA   8.705841  10.914593   7.045012
[13]  10.532313  10.248244   8.521125   9.001823   7.388106   9.601029
[19]  10.830142   9.594350
> colMax(tmp5,na.rm=TRUE)
 [1] 469.35921  89.37086  81.81922  78.64955  82.80119  89.28395  83.74694
 [8]  91.65110      -Inf  86.49179  90.92814  79.64716  88.66960  90.21128
[15]  84.49536  86.73892  85.69225  86.18076  85.56293  86.87253
> colMin(tmp5,na.rm=TRUE)
 [1] 54.20900 59.57720 55.15909 57.53123 60.58719 55.17220 57.69188 60.50714
 [9]      Inf 62.65011 62.73370 60.21093 58.52316 60.35137 53.45106 55.06465
[17] 61.98159 55.77857 57.16874 54.93287
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 225.0835 122.7968 242.6389 200.9363 184.9891 276.1147 323.6804 139.8968
 [9] 285.0996 146.0327
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 225.0835 122.7968 242.6389 200.9363 184.9891 276.1147 323.6804 139.8968
 [9] 285.0996 146.0327
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  0.000000e+00 -5.684342e-14  5.684342e-14  8.526513e-14  0.000000e+00
 [6]  2.842171e-14 -2.131628e-13  5.684342e-14  1.989520e-13 -1.989520e-13
[11] -5.684342e-14 -1.136868e-13  1.136868e-13  2.842171e-14 -5.684342e-14
[16]  8.526513e-14 -2.842171e-14  0.000000e+00  0.000000e+00  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
9   7 
10   2 
2   7 
5   20 
8   2 
5   7 
7   10 
3   7 
1   8 
2   18 
1   11 
3   13 
3   12 
8   3 
1   7 
8   5 
1   16 
1   2 
8   1 
5   13 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.091307
> Min(tmp)
[1] -2.335145
> mean(tmp)
[1] 0.08556812
> Sum(tmp)
[1] 8.556812
> Var(tmp)
[1] 0.9711151
> 
> rowMeans(tmp)
[1] 0.08556812
> rowSums(tmp)
[1] 8.556812
> rowVars(tmp)
[1] 0.9711151
> rowSd(tmp)
[1] 0.9854517
> rowMax(tmp)
[1] 2.091307
> rowMin(tmp)
[1] -2.335145
> 
> colMeans(tmp)
  [1] -0.372614956 -1.263690643 -0.136334601 -0.096549893 -0.805254742
  [6] -0.146097243 -0.977095741 -0.976668724  1.099880819  0.481083516
 [11]  0.494760416 -0.191335032  0.894446476 -0.983412384 -2.242338792
 [16] -0.205630169 -2.079047725  1.159936117  0.245688711 -1.455523074
 [21]  1.777420197 -0.298557734  1.285180862  1.166086903  0.629510478
 [26] -1.343806847 -0.855297216 -0.498445635  0.165738662  0.946565882
 [31]  0.496137405 -0.962627892 -0.877231634 -0.279234096  0.939244860
 [36]  2.091307474 -1.720495484 -0.338692141 -0.707409729  0.717166409
 [41] -0.219605025  0.663781872 -0.424447414 -0.503895673  1.865769317
 [46]  1.210828221  1.513390576  0.242345603  1.051134567 -0.147107984
 [51] -0.351384863 -1.776469989  0.744461981 -0.112652357 -0.688326091
 [56]  0.330399326  0.071859175  0.768431795  0.885767530 -0.599902842
 [61]  0.041905808 -0.940079792  0.851762435  0.228014405  0.856681596
 [66]  0.926175150  1.448468179  0.881932660  1.316251649  0.814347194
 [71]  0.837240306  1.602944200  0.759161482 -1.010343695 -1.004554937
 [76] -1.409613957  0.078906946 -0.486120179  0.713632711  0.645612970
 [81] -0.077043289  0.437972115  0.003460542 -0.620705452 -0.578087547
 [86]  1.560682295 -2.335145333  0.574875276 -1.029921357  0.531251409
 [91]  1.539276478 -0.149647838 -0.892842447  1.382733613  1.624592198
 [96]  0.061622616  0.202181130  1.369200442 -0.914255636 -0.586852687
> colSums(tmp)
  [1] -0.372614956 -1.263690643 -0.136334601 -0.096549893 -0.805254742
  [6] -0.146097243 -0.977095741 -0.976668724  1.099880819  0.481083516
 [11]  0.494760416 -0.191335032  0.894446476 -0.983412384 -2.242338792
 [16] -0.205630169 -2.079047725  1.159936117  0.245688711 -1.455523074
 [21]  1.777420197 -0.298557734  1.285180862  1.166086903  0.629510478
 [26] -1.343806847 -0.855297216 -0.498445635  0.165738662  0.946565882
 [31]  0.496137405 -0.962627892 -0.877231634 -0.279234096  0.939244860
 [36]  2.091307474 -1.720495484 -0.338692141 -0.707409729  0.717166409
 [41] -0.219605025  0.663781872 -0.424447414 -0.503895673  1.865769317
 [46]  1.210828221  1.513390576  0.242345603  1.051134567 -0.147107984
 [51] -0.351384863 -1.776469989  0.744461981 -0.112652357 -0.688326091
 [56]  0.330399326  0.071859175  0.768431795  0.885767530 -0.599902842
 [61]  0.041905808 -0.940079792  0.851762435  0.228014405  0.856681596
 [66]  0.926175150  1.448468179  0.881932660  1.316251649  0.814347194
 [71]  0.837240306  1.602944200  0.759161482 -1.010343695 -1.004554937
 [76] -1.409613957  0.078906946 -0.486120179  0.713632711  0.645612970
 [81] -0.077043289  0.437972115  0.003460542 -0.620705452 -0.578087547
 [86]  1.560682295 -2.335145333  0.574875276 -1.029921357  0.531251409
 [91]  1.539276478 -0.149647838 -0.892842447  1.382733613  1.624592198
 [96]  0.061622616  0.202181130  1.369200442 -0.914255636 -0.586852687
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.372614956 -1.263690643 -0.136334601 -0.096549893 -0.805254742
  [6] -0.146097243 -0.977095741 -0.976668724  1.099880819  0.481083516
 [11]  0.494760416 -0.191335032  0.894446476 -0.983412384 -2.242338792
 [16] -0.205630169 -2.079047725  1.159936117  0.245688711 -1.455523074
 [21]  1.777420197 -0.298557734  1.285180862  1.166086903  0.629510478
 [26] -1.343806847 -0.855297216 -0.498445635  0.165738662  0.946565882
 [31]  0.496137405 -0.962627892 -0.877231634 -0.279234096  0.939244860
 [36]  2.091307474 -1.720495484 -0.338692141 -0.707409729  0.717166409
 [41] -0.219605025  0.663781872 -0.424447414 -0.503895673  1.865769317
 [46]  1.210828221  1.513390576  0.242345603  1.051134567 -0.147107984
 [51] -0.351384863 -1.776469989  0.744461981 -0.112652357 -0.688326091
 [56]  0.330399326  0.071859175  0.768431795  0.885767530 -0.599902842
 [61]  0.041905808 -0.940079792  0.851762435  0.228014405  0.856681596
 [66]  0.926175150  1.448468179  0.881932660  1.316251649  0.814347194
 [71]  0.837240306  1.602944200  0.759161482 -1.010343695 -1.004554937
 [76] -1.409613957  0.078906946 -0.486120179  0.713632711  0.645612970
 [81] -0.077043289  0.437972115  0.003460542 -0.620705452 -0.578087547
 [86]  1.560682295 -2.335145333  0.574875276 -1.029921357  0.531251409
 [91]  1.539276478 -0.149647838 -0.892842447  1.382733613  1.624592198
 [96]  0.061622616  0.202181130  1.369200442 -0.914255636 -0.586852687
> colMin(tmp)
  [1] -0.372614956 -1.263690643 -0.136334601 -0.096549893 -0.805254742
  [6] -0.146097243 -0.977095741 -0.976668724  1.099880819  0.481083516
 [11]  0.494760416 -0.191335032  0.894446476 -0.983412384 -2.242338792
 [16] -0.205630169 -2.079047725  1.159936117  0.245688711 -1.455523074
 [21]  1.777420197 -0.298557734  1.285180862  1.166086903  0.629510478
 [26] -1.343806847 -0.855297216 -0.498445635  0.165738662  0.946565882
 [31]  0.496137405 -0.962627892 -0.877231634 -0.279234096  0.939244860
 [36]  2.091307474 -1.720495484 -0.338692141 -0.707409729  0.717166409
 [41] -0.219605025  0.663781872 -0.424447414 -0.503895673  1.865769317
 [46]  1.210828221  1.513390576  0.242345603  1.051134567 -0.147107984
 [51] -0.351384863 -1.776469989  0.744461981 -0.112652357 -0.688326091
 [56]  0.330399326  0.071859175  0.768431795  0.885767530 -0.599902842
 [61]  0.041905808 -0.940079792  0.851762435  0.228014405  0.856681596
 [66]  0.926175150  1.448468179  0.881932660  1.316251649  0.814347194
 [71]  0.837240306  1.602944200  0.759161482 -1.010343695 -1.004554937
 [76] -1.409613957  0.078906946 -0.486120179  0.713632711  0.645612970
 [81] -0.077043289  0.437972115  0.003460542 -0.620705452 -0.578087547
 [86]  1.560682295 -2.335145333  0.574875276 -1.029921357  0.531251409
 [91]  1.539276478 -0.149647838 -0.892842447  1.382733613  1.624592198
 [96]  0.061622616  0.202181130  1.369200442 -0.914255636 -0.586852687
> colMedians(tmp)
  [1] -0.372614956 -1.263690643 -0.136334601 -0.096549893 -0.805254742
  [6] -0.146097243 -0.977095741 -0.976668724  1.099880819  0.481083516
 [11]  0.494760416 -0.191335032  0.894446476 -0.983412384 -2.242338792
 [16] -0.205630169 -2.079047725  1.159936117  0.245688711 -1.455523074
 [21]  1.777420197 -0.298557734  1.285180862  1.166086903  0.629510478
 [26] -1.343806847 -0.855297216 -0.498445635  0.165738662  0.946565882
 [31]  0.496137405 -0.962627892 -0.877231634 -0.279234096  0.939244860
 [36]  2.091307474 -1.720495484 -0.338692141 -0.707409729  0.717166409
 [41] -0.219605025  0.663781872 -0.424447414 -0.503895673  1.865769317
 [46]  1.210828221  1.513390576  0.242345603  1.051134567 -0.147107984
 [51] -0.351384863 -1.776469989  0.744461981 -0.112652357 -0.688326091
 [56]  0.330399326  0.071859175  0.768431795  0.885767530 -0.599902842
 [61]  0.041905808 -0.940079792  0.851762435  0.228014405  0.856681596
 [66]  0.926175150  1.448468179  0.881932660  1.316251649  0.814347194
 [71]  0.837240306  1.602944200  0.759161482 -1.010343695 -1.004554937
 [76] -1.409613957  0.078906946 -0.486120179  0.713632711  0.645612970
 [81] -0.077043289  0.437972115  0.003460542 -0.620705452 -0.578087547
 [86]  1.560682295 -2.335145333  0.574875276 -1.029921357  0.531251409
 [91]  1.539276478 -0.149647838 -0.892842447  1.382733613  1.624592198
 [96]  0.061622616  0.202181130  1.369200442 -0.914255636 -0.586852687
> colRanges(tmp)
          [,1]      [,2]       [,3]        [,4]       [,5]       [,6]
[1,] -0.372615 -1.263691 -0.1363346 -0.09654989 -0.8052547 -0.1460972
[2,] -0.372615 -1.263691 -0.1363346 -0.09654989 -0.8052547 -0.1460972
           [,7]       [,8]     [,9]     [,10]     [,11]     [,12]     [,13]
[1,] -0.9770957 -0.9766687 1.099881 0.4810835 0.4947604 -0.191335 0.8944465
[2,] -0.9770957 -0.9766687 1.099881 0.4810835 0.4947604 -0.191335 0.8944465
          [,14]     [,15]      [,16]     [,17]    [,18]     [,19]     [,20]
[1,] -0.9834124 -2.242339 -0.2056302 -2.079048 1.159936 0.2456887 -1.455523
[2,] -0.9834124 -2.242339 -0.2056302 -2.079048 1.159936 0.2456887 -1.455523
       [,21]      [,22]    [,23]    [,24]     [,25]     [,26]      [,27]
[1,] 1.77742 -0.2985577 1.285181 1.166087 0.6295105 -1.343807 -0.8552972
[2,] 1.77742 -0.2985577 1.285181 1.166087 0.6295105 -1.343807 -0.8552972
          [,28]     [,29]     [,30]     [,31]      [,32]      [,33]      [,34]
[1,] -0.4984456 0.1657387 0.9465659 0.4961374 -0.9626279 -0.8772316 -0.2792341
[2,] -0.4984456 0.1657387 0.9465659 0.4961374 -0.9626279 -0.8772316 -0.2792341
         [,35]    [,36]     [,37]      [,38]      [,39]     [,40]     [,41]
[1,] 0.9392449 2.091307 -1.720495 -0.3386921 -0.7074097 0.7171664 -0.219605
[2,] 0.9392449 2.091307 -1.720495 -0.3386921 -0.7074097 0.7171664 -0.219605
         [,42]      [,43]      [,44]    [,45]    [,46]    [,47]     [,48]
[1,] 0.6637819 -0.4244474 -0.5038957 1.865769 1.210828 1.513391 0.2423456
[2,] 0.6637819 -0.4244474 -0.5038957 1.865769 1.210828 1.513391 0.2423456
        [,49]     [,50]      [,51]    [,52]    [,53]      [,54]      [,55]
[1,] 1.051135 -0.147108 -0.3513849 -1.77647 0.744462 -0.1126524 -0.6883261
[2,] 1.051135 -0.147108 -0.3513849 -1.77647 0.744462 -0.1126524 -0.6883261
         [,56]      [,57]     [,58]     [,59]      [,60]      [,61]      [,62]
[1,] 0.3303993 0.07185918 0.7684318 0.8857675 -0.5999028 0.04190581 -0.9400798
[2,] 0.3303993 0.07185918 0.7684318 0.8857675 -0.5999028 0.04190581 -0.9400798
         [,63]     [,64]     [,65]     [,66]    [,67]     [,68]    [,69]
[1,] 0.8517624 0.2280144 0.8566816 0.9261751 1.448468 0.8819327 1.316252
[2,] 0.8517624 0.2280144 0.8566816 0.9261751 1.448468 0.8819327 1.316252
         [,70]     [,71]    [,72]     [,73]     [,74]     [,75]     [,76]
[1,] 0.8143472 0.8372403 1.602944 0.7591615 -1.010344 -1.004555 -1.409614
[2,] 0.8143472 0.8372403 1.602944 0.7591615 -1.010344 -1.004555 -1.409614
          [,77]      [,78]     [,79]    [,80]       [,81]     [,82]       [,83]
[1,] 0.07890695 -0.4861202 0.7136327 0.645613 -0.07704329 0.4379721 0.003460542
[2,] 0.07890695 -0.4861202 0.7136327 0.645613 -0.07704329 0.4379721 0.003460542
          [,84]      [,85]    [,86]     [,87]     [,88]     [,89]     [,90]
[1,] -0.6207055 -0.5780875 1.560682 -2.335145 0.5748753 -1.029921 0.5312514
[2,] -0.6207055 -0.5780875 1.560682 -2.335145 0.5748753 -1.029921 0.5312514
        [,91]      [,92]      [,93]    [,94]    [,95]      [,96]     [,97]
[1,] 1.539276 -0.1496478 -0.8928424 1.382734 1.624592 0.06162262 0.2021811
[2,] 1.539276 -0.1496478 -0.8928424 1.382734 1.624592 0.06162262 0.2021811
      [,98]      [,99]     [,100]
[1,] 1.3692 -0.9142556 -0.5868527
[2,] 1.3692 -0.9142556 -0.5868527
> 
> 
> Max(tmp2)
[1] 1.864887
> Min(tmp2)
[1] -2.15836
> mean(tmp2)
[1] -0.06543583
> Sum(tmp2)
[1] -6.543583
> Var(tmp2)
[1] 0.8927122
> 
> rowMeans(tmp2)
  [1]  0.12618406  0.09759166 -1.02833570 -2.15835952 -0.79774145  1.51399777
  [7] -0.66397046  0.46283384 -0.04423217 -1.12566733 -0.65571064  1.25504535
 [13]  1.49130031  0.82432191 -1.61251166 -0.94265932  1.27827211 -0.29565510
 [19]  0.68280915 -1.75617201 -0.16444868 -0.11256474  1.60475169  1.15975064
 [25]  0.09842415 -0.69377700  0.73314124  0.17158040  0.35542465 -0.90774437
 [31]  0.13534643 -0.49991189  0.93891529  0.07982266 -0.31470993  1.38274420
 [37]  0.76380614 -0.55645015  0.67556704  1.37966055  1.37871911 -0.42893012
 [43]  0.93031422 -0.95939299 -0.53394710  1.10943382 -1.30072495 -0.97555010
 [49] -1.45480157 -0.88274070 -0.34528206  0.10583674  0.94421649  0.01166735
 [55] -1.06423301  0.63939023 -0.92688125 -0.50818987  0.80474040 -1.62359267
 [61]  0.28938794  0.46897313  1.08087921 -0.03262487 -1.13397458 -1.83170703
 [67] -1.39067347 -0.37372157  0.46375065 -0.06059442 -0.98330224 -0.70304459
 [73]  1.01382985 -1.02343533 -0.05039762  0.11698888 -0.81107032 -1.18612296
 [79]  0.29585822 -0.83552944 -0.24520912 -1.01959253  1.68249383  0.87969413
 [85]  1.32315547 -1.00271797 -0.16568016  0.03434027 -0.58136566  1.86488673
 [91] -1.40890233  0.77909007 -0.63066380 -0.98779443 -0.46992134 -0.08027829
 [97]  0.06293268  1.22414871  1.50818380 -0.42457334
> rowSums(tmp2)
  [1]  0.12618406  0.09759166 -1.02833570 -2.15835952 -0.79774145  1.51399777
  [7] -0.66397046  0.46283384 -0.04423217 -1.12566733 -0.65571064  1.25504535
 [13]  1.49130031  0.82432191 -1.61251166 -0.94265932  1.27827211 -0.29565510
 [19]  0.68280915 -1.75617201 -0.16444868 -0.11256474  1.60475169  1.15975064
 [25]  0.09842415 -0.69377700  0.73314124  0.17158040  0.35542465 -0.90774437
 [31]  0.13534643 -0.49991189  0.93891529  0.07982266 -0.31470993  1.38274420
 [37]  0.76380614 -0.55645015  0.67556704  1.37966055  1.37871911 -0.42893012
 [43]  0.93031422 -0.95939299 -0.53394710  1.10943382 -1.30072495 -0.97555010
 [49] -1.45480157 -0.88274070 -0.34528206  0.10583674  0.94421649  0.01166735
 [55] -1.06423301  0.63939023 -0.92688125 -0.50818987  0.80474040 -1.62359267
 [61]  0.28938794  0.46897313  1.08087921 -0.03262487 -1.13397458 -1.83170703
 [67] -1.39067347 -0.37372157  0.46375065 -0.06059442 -0.98330224 -0.70304459
 [73]  1.01382985 -1.02343533 -0.05039762  0.11698888 -0.81107032 -1.18612296
 [79]  0.29585822 -0.83552944 -0.24520912 -1.01959253  1.68249383  0.87969413
 [85]  1.32315547 -1.00271797 -0.16568016  0.03434027 -0.58136566  1.86488673
 [91] -1.40890233  0.77909007 -0.63066380 -0.98779443 -0.46992134 -0.08027829
 [97]  0.06293268  1.22414871  1.50818380 -0.42457334
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.12618406  0.09759166 -1.02833570 -2.15835952 -0.79774145  1.51399777
  [7] -0.66397046  0.46283384 -0.04423217 -1.12566733 -0.65571064  1.25504535
 [13]  1.49130031  0.82432191 -1.61251166 -0.94265932  1.27827211 -0.29565510
 [19]  0.68280915 -1.75617201 -0.16444868 -0.11256474  1.60475169  1.15975064
 [25]  0.09842415 -0.69377700  0.73314124  0.17158040  0.35542465 -0.90774437
 [31]  0.13534643 -0.49991189  0.93891529  0.07982266 -0.31470993  1.38274420
 [37]  0.76380614 -0.55645015  0.67556704  1.37966055  1.37871911 -0.42893012
 [43]  0.93031422 -0.95939299 -0.53394710  1.10943382 -1.30072495 -0.97555010
 [49] -1.45480157 -0.88274070 -0.34528206  0.10583674  0.94421649  0.01166735
 [55] -1.06423301  0.63939023 -0.92688125 -0.50818987  0.80474040 -1.62359267
 [61]  0.28938794  0.46897313  1.08087921 -0.03262487 -1.13397458 -1.83170703
 [67] -1.39067347 -0.37372157  0.46375065 -0.06059442 -0.98330224 -0.70304459
 [73]  1.01382985 -1.02343533 -0.05039762  0.11698888 -0.81107032 -1.18612296
 [79]  0.29585822 -0.83552944 -0.24520912 -1.01959253  1.68249383  0.87969413
 [85]  1.32315547 -1.00271797 -0.16568016  0.03434027 -0.58136566  1.86488673
 [91] -1.40890233  0.77909007 -0.63066380 -0.98779443 -0.46992134 -0.08027829
 [97]  0.06293268  1.22414871  1.50818380 -0.42457334
> rowMin(tmp2)
  [1]  0.12618406  0.09759166 -1.02833570 -2.15835952 -0.79774145  1.51399777
  [7] -0.66397046  0.46283384 -0.04423217 -1.12566733 -0.65571064  1.25504535
 [13]  1.49130031  0.82432191 -1.61251166 -0.94265932  1.27827211 -0.29565510
 [19]  0.68280915 -1.75617201 -0.16444868 -0.11256474  1.60475169  1.15975064
 [25]  0.09842415 -0.69377700  0.73314124  0.17158040  0.35542465 -0.90774437
 [31]  0.13534643 -0.49991189  0.93891529  0.07982266 -0.31470993  1.38274420
 [37]  0.76380614 -0.55645015  0.67556704  1.37966055  1.37871911 -0.42893012
 [43]  0.93031422 -0.95939299 -0.53394710  1.10943382 -1.30072495 -0.97555010
 [49] -1.45480157 -0.88274070 -0.34528206  0.10583674  0.94421649  0.01166735
 [55] -1.06423301  0.63939023 -0.92688125 -0.50818987  0.80474040 -1.62359267
 [61]  0.28938794  0.46897313  1.08087921 -0.03262487 -1.13397458 -1.83170703
 [67] -1.39067347 -0.37372157  0.46375065 -0.06059442 -0.98330224 -0.70304459
 [73]  1.01382985 -1.02343533 -0.05039762  0.11698888 -0.81107032 -1.18612296
 [79]  0.29585822 -0.83552944 -0.24520912 -1.01959253  1.68249383  0.87969413
 [85]  1.32315547 -1.00271797 -0.16568016  0.03434027 -0.58136566  1.86488673
 [91] -1.40890233  0.77909007 -0.63066380 -0.98779443 -0.46992134 -0.08027829
 [97]  0.06293268  1.22414871  1.50818380 -0.42457334
> 
> colMeans(tmp2)
[1] -0.06543583
> colSums(tmp2)
[1] -6.543583
> colVars(tmp2)
[1] 0.8927122
> colSd(tmp2)
[1] 0.9448345
> colMax(tmp2)
[1] 1.864887
> colMin(tmp2)
[1] -2.15836
> colMedians(tmp2)
[1] -0.07043636
> colRanges(tmp2)
          [,1]
[1,] -2.158360
[2,]  1.864887
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  4.22684202  3.20085599 -2.04245023  1.44269796  3.88340354 -3.78046807
 [7] -0.97272646 -0.06692953  3.19109630  4.26476981
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.2827050
[2,]  0.1177915
[3,]  0.6049236
[4,]  0.7958543
[5,]  2.1561294
> 
> rowApply(tmp,sum)
 [1]  2.1357487 -0.1111360  1.0959753 -0.5183692 -5.7146576  2.0011124
 [7]  4.3611699  0.2697871  3.8261534  6.0013073
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    5    4    9    9    2    9   10    7    3     6
 [2,]   10    6    6   10    8   10    4    5    2     2
 [3,]    1   10    8    3    6    1    7    1    8     5
 [4,]    8    3    1    8   10    8    9    2    7     3
 [5,]    2    2    5    5    7    3    6   10   10     8
 [6,]    9    8    2    1    3    2    2    9    1     1
 [7,]    6    1    4    7    9    4    3    4    5     4
 [8,]    4    5    7    2    1    5    5    3    6     9
 [9,]    3    7    3    6    4    6    8    8    4     7
[10,]    7    9   10    4    5    7    1    6    9    10
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -5.151765839 -2.175265557  0.280513133 -0.117099215  4.359231649
 [6] -1.767344304  1.992808919 -0.593646656 -0.844061527  0.002532662
[11] -0.468605750  1.073669906  5.748200621 -0.152485542  1.730512159
[16]  1.474178421 -1.041666933 -4.283252995  2.003687352 -0.053799552
> colApply(tmp,quantile)[,1]
             [,1]
[1,] -2.166272699
[2,] -1.803237841
[3,] -0.817621347
[4,] -0.369287398
[5,]  0.004653445
> 
> rowApply(tmp,sum)
[1]  3.970802 -2.841393  2.242293  2.607968 -3.963330
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    7    4    1   13
[2,]    2   16    5    2   15
[3,]   17   13    9   14    3
[4,]    3    5   17   11    9
[5,]   15   15   20   16   12
> 
> 
> as.matrix(tmp)
             [,1]       [,2]        [,3]       [,4]       [,5]         [,6]
[1,] -2.166272699 -0.9510848  1.21450900 -0.9119010  0.9926890  0.005444666
[2,] -0.369287398  0.2285347  0.04938387 -0.4556557  0.1605626 -0.443006486
[3,] -0.817621347 -0.7935709 -0.39960359  1.4225880  2.2597056 -0.326561032
[4,] -1.803237841 -1.2056429  0.72044824  0.2826340  1.1661845 -1.027367821
[5,]  0.004653445  0.5464984 -1.30422439 -0.4547645 -0.2199100  0.024146369
            [,7]         [,8]       [,9]       [,10]      [,11]      [,12]
[1,]  1.03273271  0.002715843 -0.8189918  1.53723071 -0.0163792 -0.8253778
[2,] -0.15364392 -1.310424455  0.3595578  0.01062805  0.6580887  1.6773693
[3,] -0.09497384 -0.559635037 -1.2114480 -1.69748969  0.6535537 -0.4364252
[4,] -0.56262634  1.820343769  0.1907870  0.49140718 -0.2806709  1.5092429
[5,]  1.77132031 -0.546646776  0.6360335 -0.33924359 -1.4831980 -0.8511393
          [,13]      [,14]       [,15]      [,16]      [,17]      [,18]
[1,]  1.6186575 -0.7678666  0.50888811  0.5795722  0.4944237  0.1832979
[2,]  0.7881316 -1.3579967 -0.08735475 -0.2535637 -0.7050770 -1.4755404
[3,] -0.5262897  2.0675283  0.25371081  1.2636116  1.2309823 -1.7389389
[4,]  1.9338610 -0.6610974 -0.51921303  0.8196962 -0.8831204 -0.9563243
[5,]  1.9338402  0.5669469  1.57448101 -0.9351379 -1.1788755 -0.2957474
           [,19]      [,20]
[1,]  1.43246414  0.8260508
[2,]  0.09097599 -0.2530747
[3,]  1.58970396  0.1034661
[4,]  1.21110218  0.3615620
[5,] -2.32055893 -1.0918039
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.8  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  625  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  541  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.8  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
        col1    col2       col3      col4       col5     col6     col7
row1 1.12053 -1.2301 -0.8759525 -0.555435 -0.1318003 1.781053 1.073629
            col8      col9     col10     col11     col12      col13     col14
row1 -0.08297473 -1.972833 0.3004121 -1.045837 0.1077384 -0.9886125 0.9401597
         col15     col16      col17    col18     col19    col20
row1 0.2296619 -1.531334 -0.4418692 1.305625 0.3509927 2.276753
> tmp[,"col10"]
          col10
row1  0.3004121
row2  1.8267917
row3 -1.3288140
row4 -0.5133104
row5 -0.5473917
> tmp[c("row1","row5"),]
          col1        col2        col3          col4       col5      col6
row1 1.1205305 -1.23010041 -0.87595254 -0.5554350093 -0.1318003 1.7810531
row5 0.3836909 -0.02421157  0.04957715  0.0001794647  1.8155829 0.8633408
           col7        col8      col9      col10      col11     col12
row1  1.0736289 -0.08297473 -1.972833  0.3004121 -1.0458369 0.1077384
row5 -0.3226717  0.28503959 -1.270119 -0.5473917 -0.1256589 0.5994882
          col13      col14     col15      col16      col17      col18
row1 -0.9886125  0.9401597 0.2296619 -1.5313342 -0.4418692  1.3056252
row5  0.5995026 -1.3276136 0.8627006 -0.8159397 -0.5265532 -0.2303145
          col19     col20
row1  0.3509927 2.2767533
row5 -0.3333570 0.2594818
> tmp[,c("col6","col20")]
            col6      col20
row1  1.78105305  2.2767533
row2 -0.04147763 -1.5279149
row3  0.49339955  2.1837633
row4  0.34962564  0.7662626
row5  0.86334083  0.2594818
> tmp[c("row1","row5"),c("col6","col20")]
          col6     col20
row1 1.7810531 2.2767533
row5 0.8633408 0.2594818
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.79357 50.02992 49.72777 50.03245 49.58473 104.7625 52.04399 49.85708
         col9   col10    col11    col12    col13    col14    col15    col16
row1 49.22997 48.8204 50.54433 49.45141 51.65068 50.29527 49.65622 50.49974
        col17    col18    col19    col20
row1 48.61034 49.65996 51.50357 104.9606
> tmp[,"col10"]
        col10
row1 48.82040
row2 29.62314
row3 30.42269
row4 29.93970
row5 49.23542
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.79357 50.02992 49.72777 50.03245 49.58473 104.7625 52.04399 49.85708
row5 51.10847 49.39664 51.53222 50.31795 51.51024 105.2397 48.91782 50.59863
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.22997 48.82040 50.54433 49.45141 51.65068 50.29527 49.65622 50.49974
row5 51.76289 49.23542 48.14328 50.66464 49.98205 47.82684 48.87379 48.44416
        col17    col18    col19    col20
row1 48.61034 49.65996 51.50357 104.9606
row5 49.01779 48.61142 51.18763 103.3963
> tmp[,c("col6","col20")]
          col6     col20
row1 104.76252 104.96058
row2  74.63768  75.90959
row3  75.13621  74.30032
row4  74.97392  75.47814
row5 105.23972 103.39629
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.7625 104.9606
row5 105.2397 103.3963
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.7625 104.9606
row5 105.2397 103.3963
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.2392956
[2,]  0.5622211
[3,] -0.7826683
[4,]  0.2536283
[5,]  2.1367684
> tmp[,c("col17","col7")]
           col17       col7
[1,] -0.09765184 -0.5442221
[2,] -0.58779798  0.4272225
[3,]  0.53024808  0.5545717
[4,] -0.96900778 -0.8032372
[5,] -0.81313905  0.1617045
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6       col20
[1,]  0.3690424  0.01514555
[2,] -0.8686497 -1.01911423
[3,]  1.0162172 -2.64907913
[4,]  0.6351600 -0.49319259
[5,] -0.9203794  0.03516365
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] 0.3690424
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,]  0.3690424
[2,] -0.8686497
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]      [,2]       [,3]       [,4]      [,5]       [,6]      [,7]
row3  1.0779812 0.8212732 -1.5833922 0.09301683 0.9853659  1.6575411 1.9556464
row1 -0.4179567 0.3084765 -0.1422393 0.46647407 0.9092384 -0.7632618 0.3032358
          [,8]       [,9]      [,10]       [,11]      [,12]     [,13]
row3 0.9148162 -0.2702862  0.9241481  0.61819196  0.5263186 -1.246730
row1 0.9294193 -0.9619903 -0.1022221 -0.01986313 -0.7743443 -1.411153
          [,14]      [,15]      [,16]      [,17]     [,18]      [,19]     [,20]
row3 -0.8076453 0.57090454 -0.4407484 -0.4526469 1.0660702 -0.1659485 2.5323731
row1 -0.4193521 0.04132855 -1.8735298 -1.1743892 0.3595386 -0.2963571 0.8103064
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]       [,2]        [,3]       [,4]      [,5]        [,6]
row2 0.03642976 -0.7725371 -0.09955897 -0.4049649 0.6437719 -0.09752315
          [,7]      [,8]       [,9]     [,10]
row2 -0.687506 0.6808094 -0.5203794 -1.286863
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]    [,2]      [,3]      [,4]       [,5]       [,6]      [,7]
row5 0.1598516 1.33836 -1.001513 0.7707389 -0.8051965 -0.6738883 0.2364171
           [,8]       [,9]      [,10]      [,11]     [,12]     [,13]    [,14]
row5 -0.9017691 0.01945573 -0.1007198 -0.8228244 0.3214478 -1.565686 -0.22377
        [,15]      [,16]      [,17]      [,18]     [,19]    [,20]
row5 -1.52991 -0.3904726 -0.3700511 -0.3186611 -0.681247 1.466641
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x000001e836126890>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc7ebb54ae"
 [2] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc772b29a6"
 [3] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc6f934425"
 [4] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc58121950"
 [5] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc8b8628a" 
 [6] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc58a2389f"
 [7] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc2b0a5112"
 [8] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc9d03707" 
 [9] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc61406467"
[10] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc4f2952c" 
[11] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc477d3df1"
[12] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc230c5846"
[13] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc1124a54" 
[14] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc6b177cca"
[15] "F:/biocbuild/bbs-3.18-bioc/meat/BufferedMatrix.Rcheck/tests\\BM4bcc20ee93a" 
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x000001e8375aeb60>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x000001e8375aeb60>
Warning message:
In dir.create(new.directory) :
  'F:\biocbuild\bbs-3.18-bioc\meat\BufferedMatrix.Rcheck\tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x000001e8375aeb60>
> rowMedians(tmp)
  [1]  0.229126412 -0.060385515  0.421819271  0.350744380 -0.140400732
  [6]  0.213033831 -0.267030993 -0.017410375 -0.229855750 -0.256622120
 [11] -0.302367920  0.502748480 -0.354376436  0.428442217 -0.486742072
 [16] -0.230199742  0.237968543 -0.198995579  0.400707140 -0.321638183
 [21]  0.087991591  0.048888943 -0.001905667 -0.487606964  0.321788012
 [26]  0.592070497 -0.114241485 -0.045020255  0.110956123 -0.238120412
 [31] -0.290349520 -0.172495760 -0.501280182  0.227971294 -0.251497988
 [36]  0.063811458  0.219057791 -0.270407430 -0.038877887  0.001554433
 [41]  0.401268135 -0.007896511  0.342878757 -0.157619210 -0.332639988
 [46]  0.354462632 -0.097868474  0.152120847 -0.193196289  0.118414777
 [51] -0.709150895  0.231887018  0.298146929  0.151654652  0.010871178
 [56]  0.682856151  0.383455216 -0.155728473 -0.669914028  0.392855601
 [61] -0.089693458 -0.489783980  0.582409449  0.786397363  0.247203686
 [66]  0.228259921 -0.105354420 -0.153412470  0.536875056 -0.098811968
 [71] -0.133902183 -0.386023775 -0.275441072 -0.138656565  0.620937781
 [76]  0.504071529 -0.452495936  0.122757795 -0.218740507 -0.464868604
 [81] -0.547893359 -0.103258280  0.694564715  0.886115283 -0.432905873
 [86] -0.329390578 -0.443765337  0.715105872  0.129923479  0.520565995
 [91] -0.127059650  0.189150151  0.098380543 -0.295714200  0.065708333
 [96] -0.042091445 -0.230638211  0.043465258  0.447088035 -0.585502263
[101] -0.241583092  0.361226477  0.112836987 -0.014505453 -0.312744277
[106]  0.183228798  0.079198462 -0.154680650 -0.671222813  0.257811349
[111] -0.023252627  0.015873463 -0.109633842  0.061305983  0.748600736
[116]  0.116715808  0.044095517  0.180667859 -0.670309421 -0.245599181
[121] -0.212347085 -0.245109516  0.228590931 -0.287615523 -0.646811413
[126]  0.399980166 -0.046057499 -0.370367966 -0.037749210 -0.070541706
[131]  0.525037796 -0.091832759  0.111809637 -0.419996531 -0.288581371
[136]  0.425446112 -0.526168357 -0.135935250  0.175599503  0.039957271
[141]  0.170126313 -0.125223439  0.051091275  0.195972040 -0.014375121
[146] -0.322532001  0.168296082  0.220064480 -0.228085803 -0.230580368
[151] -0.015209310  0.599927511 -0.470386676 -0.023139672  0.539877689
[156] -0.213213991  0.155770244  0.073512866  0.309143650  0.280808481
[161]  0.135835464 -0.378709585  0.511847497  0.022520078 -0.462699807
[166] -0.329791601  0.264185160 -0.249255365 -0.280846897 -0.215237410
[171]  0.345431218  0.033588170 -0.196612353  0.247033136  0.117276275
[176] -0.125503074  0.093503520 -0.240204340  0.449221670  0.364245643
[181]  0.496325383 -0.105091675  0.530993308  0.614981820 -0.304406483
[186] -0.484597965  0.263306262  0.345618030 -0.064418810 -0.517207091
[191]  0.156713958 -0.095287538  0.391564483 -0.231703398 -0.102985201
[196]  0.490148646  0.191031629 -0.480274143 -0.065314187  0.365774969
[201] -0.231040163  0.385800065  0.002204401 -0.358906580  0.229242373
[206]  0.454447262 -0.239422227 -0.295028544 -0.477480463 -0.015891754
[211]  0.254770561 -0.090771549  0.131589561 -0.048878118  0.123387919
[216] -0.511199511  0.124210810 -0.305420531  0.118838892  0.570072659
[221] -0.142536495 -0.257831370  0.055080607 -0.125833456 -0.451980509
[226]  0.188185222 -0.737998424 -0.241128252  0.432060283 -0.521376669
> 
> proc.time()
   user  system elapsed 
   3.54   17.57   32.23 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.3.3 (2024-02-29 ucrt) -- "Angel Food Cake"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x0000029fd6d47890>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x0000029fd6d47890>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x0000029fd6d47890>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x0000029fd6d47890>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x0000029fd6d48070>
> .Call("R_bm_AddColumn",P)
<pointer: 0x0000029fd6d48070>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x0000029fd6d48070>
> .Call("R_bm_AddColumn",P)
<pointer: 0x0000029fd6d48070>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x0000029fd6d48070>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x0000029fd6d47eb0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x0000029fd6d47eb0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x0000029fd6d47eb0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x0000029fd6d47eb0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x0000029fd6d47eb0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x0000029fd6d47eb0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x0000029fd6d47eb0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x0000029fd6d47eb0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x0000029fd6d47eb0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x0000029fd6d47c10>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x0000029fd6d47c10>
> .Call("R_bm_AddColumn",P)
<pointer: 0x0000029fd6d47c10>
> .Call("R_bm_AddColumn",P)
<pointer: 0x0000029fd6d47c10>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile46a041a361c"  "BufferedMatrixFile46a07cb132e0"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile46a041a361c"  "BufferedMatrixFile46a07cb132e0"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x0000029fd6d48150>
> .Call("R_bm_AddColumn",P)
<pointer: 0x0000029fd6d48150>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x0000029fd6d48150>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x0000029fd6d48150>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x0000029fd6d48150>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x0000029fd6d48150>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x0000029fd6d47970>
> .Call("R_bm_AddColumn",P)
<pointer: 0x0000029fd6d47970>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x0000029fd6d47970>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x0000029fd6d47970>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x0000029fd6d48460>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x0000029fd6d48460>
> rm(P)
> 
> proc.time()
   user  system elapsed 
   0.26    0.20    0.50 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.3.3 (2024-02-29 ucrt) -- "Angel Food Cake"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
   0.28    0.04    0.29 

Example timings