Back to Multiple platform build/check report for BioC 3.16: simplified long |
|
This page was generated on 2023-04-12 11:06:17 -0400 (Wed, 12 Apr 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4502 |
palomino4 | Windows Server 2022 Datacenter | x64 | 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" | 4282 |
lconway | macOS 12.5.1 Monterey | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4310 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the netZooR package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/netZooR.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 1350/2183 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
netZooR 1.2.0 (landing page) Marouen Ben Guebila
| nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) / x86_64 | OK | OK | ERROR | |||||||||
palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.5.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
Package: netZooR |
Version: 1.2.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:netZooR.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings netZooR_1.2.0.tar.gz |
StartedAt: 2023-04-10 21:32:27 -0400 (Mon, 10 Apr 2023) |
EndedAt: 2023-04-10 21:47:09 -0400 (Mon, 10 Apr 2023) |
EllapsedTime: 881.8 seconds |
RetCode: 0 |
Status: OK |
CheckDir: netZooR.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:netZooR.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings netZooR_1.2.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.16-bioc/meat/netZooR.Rcheck’ * using R version 4.2.3 (2023-03-15) * using platform: x86_64-apple-darwin17.0 (64-bit) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘netZooR/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘netZooR’ version ‘1.2.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘netZooR’ can be installed ... OK * checking installed package size ... NOTE installed size is 5.1Mb sub-directories of 1Mb or more: data 1.5Mb extdata 2.8Mb * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE runEgret: no visible binding for global variable ‘NA12878’ Undefined global functions or variables: NA12878 * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed monsterPrintMonsterAnalysis 28.247 2.972 31.325 monsterPlotMonsterAnalysis 28.138 2.699 30.938 monster 5.616 0.471 6.126 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘testthat.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.16-bioc/meat/netZooR.Rcheck/00check.log’ for details.
netZooR.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL netZooR ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.2/Resources/library’ * installing *source* package ‘netZooR’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (netZooR)
netZooR.Rcheck/tests/testthat.Rout
R version 4.2.3 (2023-03-15) -- "Shortstop Beagle" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > library(netZooR) Loading required package: igraph Attaching package: 'igraph' The following object is masked from 'package:testthat': compare The following objects are masked from 'package:stats': decompose, spectrum The following object is masked from 'package:base': union Loading required package: reticulate Loading required package: pandaR Loading required package: Biobase Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:igraph': normalize, path, union The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Loading required package: yarn Setting options('download.file.method.GEOquery'='auto') Setting options('GEOquery.inmemory.gpl'=FALSE) > > #download test data > download.file('https://netzoo.s3.us-east-2.amazonaws.com/netZooR/example_datasets/ppi_medium.txt','testthat/ppi_medium.txt') trying URL 'https://netzoo.s3.us-east-2.amazonaws.com/netZooR/example_datasets/ppi_medium.txt' Content type 'text/plain' length 3674311 bytes (3.5 MB) ================================================== downloaded 3.5 MB > download.file('https://netzoo.s3.us-east-2.amazonaws.com/netZooR/unittest_datasets/testDataset.RData','testthat/testDataset.RData') trying URL 'https://netzoo.s3.us-east-2.amazonaws.com/netZooR/unittest_datasets/testDataset.RData' Content type 'binary/octet-stream' length 15200389 bytes (14.5 MB) ================================================== downloaded 14.5 MB > > test_check("netZooR") [1] "Detecting communities in control network..." [1] "modularity of projected graph 0.0223684210526322" [1] "Q = 0.0263157894736842" [1] "Q = 0.0263157894736842" [1] "Computing differential modularity matrix..." [1] "Computing differential modules..." [1] "Merging 100 communities" [1] 1 [1] 2 [1] 3 [1] "Merging 2 communities" [1] 1 [1] "Computing node scores..." [1] 1 [1] 2 [1] "modularity of projected graph 0.144628099173554" [1] "Q = 0.198347107438017" [1] "Q = 0.231404958677686" [1] "Q = 0.231404958677686" [1] "modularity of projected graph 0" [1] "Q = 0" [1] "Q = 0.15702479338843" [1] "Q = 0.231404958677686" [1] "Q = 0.231404958677686" [1] 0.1983471 0.2314050 0.2314050 [1] "Q = 0.198347107438017" [1] "Q = 0.231404958677686" [1] "Q = 0.231404958677686" [1] "Q = 0.140495867768595" [1] "Q = 0.140495867768595" [1] "modularity of projected graph 0.227272727272727" [1] "Q = 0.231404958677686" [1] "Q = 0.231404958677686" [1] "modularity of projected graph 0.525346928655047" [1] "Q = 0.52666696475026" [1] "Q = 0.52666696475026" % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 355 100 355 0 0 1703 0 --:--:-- --:--:-- --:--:-- 1811 % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 569 100 569 0 0 3116 0 --:--:-- --:--:-- --:--:-- 3308 % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 840 100 840 0 0 3210 0 --:--:-- --:--:-- --:--:-- 3346 % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 3242 100 3242 0 0 21757 0 --:--:-- --:--:-- --:--:-- 23323 % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 410 100 410 0 0 2101 0 --:--:-- --:--:-- --:--:-- 2228 % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 222 100 222 0 0 1263 0 --:--:-- --:--:-- --:--:-- 1361 % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 14 1438k 14 203k 0 0 350k 0 0:00:04 --:--:-- 0:00:04 356k 96 1438k 96 1392k 0 0 873k 0 0:00:01 0:00:01 --:--:-- 878k 100 1438k 100 1438k 0 0 888k 0 0:00:01 0:00:01 --:--:-- 893k % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 578 100 578 0 0 2478 0 --:--:-- --:--:-- --:--:-- 2603 [1] "Initializing and validating" [1] "Verified sufficient samples" [1] "Normalizing networks..." [1] "Learning Network..." [1] "Using tanimoto similarity" [1] "Initializing and validating" [1] "Verified sufficient samples" [1] "Normalizing networks..." [1] "Learning Network..." [1] "Using tanimoto similarity" % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 27822 100 27822 0 0 114k 0 --:--:-- --:--:-- --:--:-- 120k Loading expression data ... Elapsed time: 0.02 sec. No PPI data given: ppi matrix will be an identity matrix of size 0 Calculating coexpression network ... Elapsed time: 0.00 sec. Returning the correlation matrix of expression data in <Panda_obj>.correlation_matrix ['Rv0001' 'Rv0002' 'Rv0003' ... 'Rv0193c' 'Rv0194' 'Rv0195'] ['Rv0001' 'Rv0001' 'Rv0001' ... 'Rv0195' 'Rv0195' 'Rv0195'] (40000,) /Library/Frameworks/R.framework/Versions/4.2/Resources/library/netZooR/extdata/lioness.py:346: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead. indDF = indDF.append( Loading input data ... Elapsed time: 0.00 sec. Number of total samples: 11 Number of computed samples: 1 Number of parallel cores: 1 Running LIONESS for sample 1: Computing coexpression network: Elapsed time: 0.00 sec. Normalizing networks: Elapsed time: 0.01 sec. Inferring LIONESS network: Elapsed time: 0.00 sec. Saving LIONESS network 1 to lioness_output using no format: Unknown format no! File will not be saved. Elapsed time: 0.00 sec. /usr/local/lib/python3.9/site-packages/numpy/lib/function_base.py:2829: RuntimeWarning: invalid value encountered in true_divide c /= stddev[:, None] /usr/local/lib/python3.9/site-packages/numpy/lib/function_base.py:2830: RuntimeWarning: invalid value encountered in true_divide c /= stddev[None, :] Loading motif data ... Elapsed time: 0.00 sec. Loading expression data ... Elapsed time: 0.00 sec. No PPI data given: ppi matrix will be an identity matrix of size 5 Calculating coexpression network ... Elapsed time: 0.01 sec. Creating motif network ... Elapsed time: 0.00 sec. Normalizing networks ... Elapsed time: 0.02 sec. Saving expression matrix and normalized networks ... Elapsed time: 0.00 sec. Running PANDA algorithm ... step: 0, hamming: 0.3008717441926667 step: 1, hamming: 0.32577840239393496 step: 2, hamming: 0.36046547993298544 step: 3, hamming: 0.36058526850894806 step: 4, hamming: 0.3466240823512555 step: 5, hamming: 0.32456269443005165 step: 6, hamming: 0.29894345984218645 step: 7, hamming: 0.27060190935086686 step: 8, hamming: 0.24146225569326282 step: 9, hamming: 0.21301541796450388 step: 10, hamming: 0.1861874742812892 step: 11, hamming: 0.16147381450104845 step: 12, hamming: 0.1391332489588238 step: 13, hamming: 0.11926159237252484 step: 14, hamming: 0.10185246481285452 step: 15, hamming: 0.08669455519421998 step: 16, hamming: 0.07353017763220182 step: 17, hamming: 0.06215000422873348 step: 18, hamming: 0.052396181784803826 step: 19, hamming: 0.04409487478206075 step: 20, hamming: 0.03701196105540119 step: 21, hamming: 0.03099423061137564 step: 22, hamming: 0.025900515663656483 step: 23, hamming: 0.021602975736465913 step: 24, hamming: 0.01798763913772466 step: 25, hamming: 0.014954147174028844 step: 26, hamming: 0.01241474935607606 step: 27, hamming: 0.010293476645032596 step: 28, hamming: 0.008524772832534808 step: 29, hamming: 0.007052536065331863 step: 30, hamming: 0.005828962967548954 step: 31, hamming: 0.00481346925122789 step: 32, hamming: 0.003971733841541235 step: 33, hamming: 0.0032748237354783805 step: 34, hamming: 0.00269842184221958 step: 35, hamming: 0.0022221411979144803 step: 36, hamming: 0.0018289290757053124 step: 37, hamming: 0.001504551789099312 step: 38, hamming: 0.0012371486338297601 step: 39, hamming: 0.0010168547681782068 step: 40, hamming: 0.0008354772054775502 Running panda took: 0.81 seconds! /usr/local/lib/python3.9/site-packages/numpy/lib/function_base.py:2829: RuntimeWarning: invalid value encountered in true_divide c /= stddev[:, None] /usr/local/lib/python3.9/site-packages/numpy/lib/function_base.py:2830: RuntimeWarning: invalid value encountered in true_divide c /= stddev[None, :] /Library/Frameworks/R.framework/Versions/4.2/Resources/library/netZooR/extdata/lioness.py:337: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead. indDF = indDF.append( Loading input data ... Elapsed time: 0.00 sec. Number of total samples: 11 Number of computed samples: 1 Number of parallel cores: 1 Running LIONESS for sample 1: Computing coexpression network: Elapsed time: 0.01 sec. Normalizing networks: Elapsed time: 0.02 sec. Inferring LIONESS network: step: 0, hamming: 0.30159324227999135 step: 1, hamming: 0.326744782398401 step: 2, hamming: 0.36109248186970094 step: 3, hamming: 0.3608089428450733 step: 4, hamming: 0.34665241776678835 step: 5, hamming: 0.3245939713292128 step: 6, hamming: 0.2989655066138042 step: 7, hamming: 0.27062058204102235 step: 8, hamming: 0.241483272798797 step: 9, hamming: 0.21304028351555637 step: 10, hamming: 0.18620484129483533 step: 11, hamming: 0.16148366668824993 step: 12, hamming: 0.13913925776650846 step: 13, hamming: 0.11927055262102387 step: 14, hamming: 0.10186083999388643 step: 15, hamming: 0.08670615581741928 step: 16, hamming: 0.07353988598228602 step: 17, hamming: 0.06215811356512138 step: 18, hamming: 0.05241372809810218 step: 19, hamming: 0.04410977556767987 step: 20, hamming: 0.03702457033326206 step: 21, hamming: 0.031005003311005128 step: 22, hamming: 0.025909572963571176 step: 23, hamming: 0.021610559908641705 step: 24, hamming: 0.017993951127132018 step: 25, hamming: 0.014959350583484184 step: 26, hamming: 0.012419036091497044 step: 27, hamming: 0.010296989659985933 step: 28, hamming: 0.008527684145048432 step: 29, hamming: 0.007054962882501581 step: 30, hamming: 0.005830983737417126 step: 31, hamming: 0.0048151512025851 step: 32, hamming: 0.003973130484198018 step: 33, hamming: 0.0032759823203924406 step: 34, hamming: 0.002699382028610703 step: 35, hamming: 0.002222936231546537 step: 36, hamming: 0.0018295867892866126 step: 37, hamming: 0.0015050947585650975 step: 38, hamming: 0.0012375965038721236 step: 39, hamming: 0.0010172239699258487 step: 40, hamming: 0.0008357813833839833 Elapsed time: 0.74 sec. Saving LIONESS network 1 to lioness_output using no format: Unknown format no! File will not be saved. Elapsed time: 0.00 sec. /usr/local/lib/python3.9/site-packages/numpy/lib/function_base.py:2829: RuntimeWarning: invalid value encountered in true_divide c /= stddev[:, None] /usr/local/lib/python3.9/site-packages/numpy/lib/function_base.py:2830: RuntimeWarning: invalid value encountered in true_divide c /= stddev[None, :] Loading motif data ... Elapsed time: 0.00 sec. Loading expression data ... Elapsed time: 0.00 sec. Loading PPI data ... Number of PPIs: 100019 Elapsed time: 0.06 sec. Calculating coexpression network ... Elapsed time: 0.01 sec. Creating motif network ... Elapsed time: 0.00 sec. Creating PPI network ... Elapsed time: 0.11 sec. Normalizing networks ... Elapsed time: 0.97 sec. Saving expression matrix and normalized networks ... Elapsed time: 0.19 sec. Running PANDA algorithm ... step: 0, hamming: 0.08748661874955622 step: 1, hamming: 0.06888714365861337 step: 2, hamming: 0.062114312778413824 step: 3, hamming: 0.057133530904466975 step: 4, hamming: 0.05304016922455829 step: 5, hamming: 0.049101138022894876 step: 6, hamming: 0.045074438192725504 step: 7, hamming: 0.04095526634659025 step: 8, hamming: 0.036830333937534133 step: 9, hamming: 0.03280131999197774 step: 10, hamming: 0.02895800229188848 step: 11, hamming: 0.025365652761878358 step: 12, hamming: 0.022066636023677574 step: 13, hamming: 0.01907883671127774 step: 14, hamming: 0.01640531302887969 step: 15, hamming: 0.014037779400693125 step: 16, hamming: 0.01195982841838061 step: 17, hamming: 0.010150090707741312 step: 18, hamming: 0.008584499851559678 step: 19, hamming: 0.0072380075895177075 step: 20, hamming: 0.0060858622486750545 step: 21, hamming: 0.005104411138700387 step: 22, hamming: 0.004271661591718607 step: 23, hamming: 0.003567561174685129 step: 24, hamming: 0.002974084885079093 step: 25, hamming: 0.0024752438901140686 step: 26, hamming: 0.0020569891001135433 step: 27, hamming: 0.0017070859535523305 step: 28, hamming: 0.0014149533300699603 step: 29, hamming: 0.0011714963862094997 step: 30, hamming: 0.0009689369122934191 Running panda took: 28.22 seconds! /usr/local/lib/python3.9/site-packages/numpy/lib/function_base.py:2829: RuntimeWarning: invalid value encountered in true_divide c /= stddev[:, None] /usr/local/lib/python3.9/site-packages/numpy/lib/function_base.py:2830: RuntimeWarning: invalid value encountered in true_divide c /= stddev[None, :] /Library/Frameworks/R.framework/Versions/4.2/Resources/library/netZooR/extdata/lioness.py:337: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead. indDF = indDF.append( Loading input data ... Elapsed time: 0.00 sec. Number of total samples: 11 Number of computed samples: 1 Number of parallel cores: 1 Running LIONESS for sample 1: Computing coexpression network: Elapsed time: 0.01 sec. Normalizing networks: Elapsed time: 0.02 sec. Inferring LIONESS network: step: 0, hamming: 0.0874818573175637 step: 1, hamming: 0.06891282897076391 step: 2, hamming: 0.062130587348151134 step: 3, hamming: 0.05714118386838519 step: 4, hamming: 0.05304529446377499 step: 5, hamming: 0.04910525549313265 step: 6, hamming: 0.045077507937550505 step: 7, hamming: 0.04095716825335454 step: 8, hamming: 0.036831755781812706 step: 9, hamming: 0.032802826977823545 step: 10, hamming: 0.02895992049443768 step: 11, hamming: 0.025367894743653203 step: 12, hamming: 0.022069009727623188 step: 13, hamming: 0.01908131820381921 step: 14, hamming: 0.01640778820189424 step: 15, hamming: 0.014040090736288887 step: 16, hamming: 0.011961875397219704 step: 17, hamming: 0.010151865216875243 step: 18, hamming: 0.008586011382256616 step: 19, hamming: 0.007239278751699699 step: 20, hamming: 0.006086920160262563 step: 21, hamming: 0.0051052834701504814 step: 22, hamming: 0.004272377006570677 step: 23, hamming: 0.0035681447767932518 step: 24, hamming: 0.002974559350795158 step: 25, hamming: 0.0024756282596510126 step: 26, hamming: 0.002057299996352307 step: 27, hamming: 0.0017073373347909885 step: 28, hamming: 0.00141515656139143 step: 29, hamming: 0.0011716607762849135 step: 30, hamming: 0.0009690701447933819 Elapsed time: 29.32 sec. Saving LIONESS network 1 to lioness_output using no format: Unknown format no! File will not be saved. Elapsed time: 0.00 sec. Loading motif data ... Elapsed time: 0.00 sec. Loading expression data ... Elapsed time: 0.00 sec. Loading PPI data ... Number of PPIs: 100019 Elapsed time: 0.06 sec. Calculating coexpression network ... Elapsed time: 0.00 sec. Creating motif network ... Elapsed time: 0.00 sec. Creating PPI network ... Elapsed time: 0.06 sec. Normalizing networks ... Elapsed time: 0.00 sec. Running PANDA algorithm ... step: 0, hamming: 0.6788049340248108 step: 1, hamming: 0.4237635135650635 step: 2, hamming: 0.37942326068878174 step: 3, hamming: 0.3818596303462982 step: 4, hamming: 0.38526612520217896 step: 5, hamming: 0.3832989037036896 step: 6, hamming: 0.36915773153305054 step: 7, hamming: 0.34574776887893677 step: 8, hamming: 0.3152081370353699 step: 9, hamming: 0.2818054258823395 step: 10, hamming: 0.24849660694599152 step: 11, hamming: 0.21666744351387024 step: 12, hamming: 0.18729539215564728 step: 13, hamming: 0.16079428791999817 step: 14, hamming: 0.13726867735385895 step: 15, hamming: 0.11666569113731384 step: 16, hamming: 0.09877122193574905 step: 17, hamming: 0.08336563408374786 step: 18, hamming: 0.07016084343194962 step: 19, hamming: 0.0588911771774292 step: 20, hamming: 0.04931585118174553 step: 21, hamming: 0.041211165487766266 step: 22, hamming: 0.03437765687704086 step: 23, hamming: 0.02863147482275963 step: 24, hamming: 0.023808928206562996 step: 25, hamming: 0.01977088674902916 step: 26, hamming: 0.016396764665842056 step: 27, hamming: 0.013582728803157806 step: 28, hamming: 0.011239760555326939 step: 29, hamming: 0.009291945025324821 step: 30, hamming: 0.00767497019842267 step: 31, hamming: 0.006334253121167421 step: 32, hamming: 0.005223960615694523 step: 33, hamming: 0.004305404145270586 step: 34, hamming: 0.003546181134879589 step: 35, hamming: 0.002919197781011462 step: 36, hamming: 0.002401866717264056 step: 37, hamming: 0.001975313061848283 step: 38, hamming: 0.0016238006064668298 step: 39, hamming: 0.001334363128989935 step: 40, hamming: 0.0010961104417219758 step: 41, hamming: 0.0009001354337669909 Running panda took: 0.03 seconds! /Library/Frameworks/R.framework/Versions/4.2/Resources/library/netZooR/extdata/lioness.py:337: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead. indDF = indDF.append( Loading input data ... Elapsed time: 0.00 sec. Number of total samples: 11 Number of computed samples: 1 Number of parallel cores: 1 Running LIONESS for sample 1: Computing coexpression network: Elapsed time: 0.00 sec. Normalizing networks: Elapsed time: 0.00 sec. Inferring LIONESS network: step: 0, hamming: 0.6829624252643024 step: 1, hamming: 0.43097386969737467 step: 2, hamming: 0.3855310332972826 step: 3, hamming: 0.38637191344546506 step: 4, hamming: 0.3900182026704469 step: 5, hamming: 0.38601884753426646 step: 6, hamming: 0.37083627595496715 step: 7, hamming: 0.3469023721010731 step: 8, hamming: 0.3159676756323738 step: 9, hamming: 0.2823677724041992 step: 10, hamming: 0.24886232875703243 step: 11, hamming: 0.21693733016217834 step: 12, hamming: 0.18751291931754166 step: 13, hamming: 0.16097018362231139 step: 14, hamming: 0.13743834351937564 step: 15, hamming: 0.11682177402185094 step: 16, hamming: 0.0989602327792078 step: 17, hamming: 0.08353838996370484 step: 18, hamming: 0.07031459662912222 step: 19, hamming: 0.05903107230891116 step: 20, hamming: 0.04944784893620859 step: 21, hamming: 0.04133266535809628 step: 22, hamming: 0.03448368388232095 step: 23, hamming: 0.028720375548938085 step: 24, hamming: 0.02388327219797364 step: 25, hamming: 0.01983295871646228 step: 26, hamming: 0.016448511057472175 step: 27, hamming: 0.013625773339477055 step: 28, hamming: 0.011275503429549744 step: 29, hamming: 0.009321615661804521 step: 30, hamming: 0.007699524683027153 step: 31, hamming: 0.006354585216875871 step: 32, hamming: 0.00524073243580051 step: 33, hamming: 0.004319230981273431 step: 34, hamming: 0.003557580755210523 step: 35, hamming: 0.0029286114077763654 step: 36, hamming: 0.002409612680693885 step: 37, hamming: 0.0019816823742853846 step: 38, hamming: 0.0016290920553380472 step: 39, hamming: 0.0013387284639915446 step: 40, hamming: 0.0010997294054595052 step: 41, hamming: 0.0009031298195247481 Elapsed time: 0.02 sec. Saving LIONESS network 1 to lioness_output using no format: Unknown format no! File will not be saved. Elapsed time: 0.00 sec. Loading motif data ... Elapsed time: 0.00 sec. Loading expression data ... Elapsed time: 0.00 sec. Loading PPI data ... Number of PPIs: 100019 Elapsed time: 0.06 sec. Calculating coexpression network ... Elapsed time: 0.00 sec. Creating motif network ... Elapsed time: 0.00 sec. Creating PPI network ... Elapsed time: 0.06 sec. Normalizing networks ... Elapsed time: 0.00 sec. Saving expression matrix and normalized networks ... Elapsed time: 0.00 sec. Running PANDA algorithm ... step: 0, hamming: 0.5867745269558597 step: 1, hamming: 0.47709480696171536 step: 2, hamming: 0.46956168666614617 step: 3, hamming: 0.45425003629838684 step: 4, hamming: 0.4187427725151872 step: 5, hamming: 0.36797241244238343 step: 6, hamming: 0.31337190961143313 step: 7, hamming: 0.2640386174641925 step: 8, hamming: 0.2239999232789824 step: 9, hamming: 0.19253176059893798 step: 10, hamming: 0.1676553667649102 step: 11, hamming: 0.14730006142326466 step: 12, hamming: 0.12982159089839332 step: 13, hamming: 0.11459157116297604 step: 14, hamming: 0.10108821391424125 step: 15, hamming: 0.08890364507467007 step: 16, hamming: 0.07787244456478047 step: 17, hamming: 0.06785464923123906 step: 18, hamming: 0.05878796471238135 step: 19, hamming: 0.05062155744809771 step: 20, hamming: 0.04333239380925903 step: 21, hamming: 0.036892574940160516 step: 22, hamming: 0.03126206012121671 step: 23, hamming: 0.026384280403921743 step: 24, hamming: 0.02219096174091557 step: 25, hamming: 0.01860922988517212 step: 26, hamming: 0.015566652188260116 step: 27, hamming: 0.012993283312056427 step: 28, hamming: 0.010824919177296213 step: 29, hamming: 0.009003507268894196 step: 30, hamming: 0.007477552910889816 step: 31, hamming: 0.006202062894110505 step: 32, hamming: 0.005138069423501655 step: 33, hamming: 0.004252085993537945 step: 34, hamming: 0.0035154788596479794 step: 35, hamming: 0.0029039267439058677 step: 36, hamming: 0.0023968521367998463 step: 37, hamming: 0.0019768786344578106 step: 38, hamming: 0.0016294013136896753 step: 39, hamming: 0.0013421799963357426 step: 40, hamming: 0.0011049738470584863 step: 41, hamming: 0.0009092279973180559 Running panda took: 0.06 seconds! /Library/Frameworks/R.framework/Versions/4.2/Resources/library/netZooR/extdata/lioness.py:337: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead. indDF = indDF.append( Loading input data ... Elapsed time: 0.00 sec. Number of total samples: 11 Number of computed samples: 1 Number of parallel cores: 1 Running LIONESS for sample 1: Computing coexpression network: Elapsed time: 0.00 sec. Normalizing networks: Elapsed time: 0.00 sec. Inferring LIONESS network: step: 0, hamming: 0.5875614098660666 step: 1, hamming: 0.4829466848764663 step: 2, hamming: 0.4810579089105837 step: 3, hamming: 0.46847113464020446 step: 4, hamming: 0.4337012115522554 step: 5, hamming: 0.38094873330102347 step: 6, hamming: 0.32310742082399213 step: 7, hamming: 0.27060297935454153 step: 8, hamming: 0.22871223602816745 step: 9, hamming: 0.19638081399100335 step: 10, hamming: 0.17127585718635555 step: 11, hamming: 0.15034152043301924 step: 12, hamming: 0.1323105478668466 step: 13, hamming: 0.11649711485539004 step: 14, hamming: 0.1023563092541029 step: 15, hamming: 0.08963435266941025 step: 16, hamming: 0.07811460526211583 step: 17, hamming: 0.06770343603846223 step: 18, hamming: 0.05834298311519195 step: 19, hamming: 0.04999398523930743 step: 20, hamming: 0.042616168208077454 step: 21, hamming: 0.03616034696677988 step: 22, hamming: 0.030559142027366405 step: 23, hamming: 0.025737009029274744 step: 24, hamming: 0.021610772222598038 step: 25, hamming: 0.018099099845240614 step: 26, hamming: 0.01512391162922806 step: 27, hamming: 0.01261301971521904 step: 28, hamming: 0.010500738712116991 step: 29, hamming: 0.008728774744404807 step: 30, hamming: 0.00724574630911598 step: 31, hamming: 0.006007158777935759 step: 32, hamming: 0.004974647163777016 step: 33, hamming: 0.004115358386599994 step: 34, hamming: 0.0034013063275367293 step: 35, hamming: 0.002808749172176152 step: 36, hamming: 0.0023176215646632894 step: 37, hamming: 0.00191101153272212 step: 38, hamming: 0.0015747162820157828 step: 39, hamming: 0.0012968334760169711 step: 40, hamming: 0.001067413379763626 step: 41, hamming: 0.0008781471581459417 Elapsed time: 0.07 sec. Saving LIONESS network 1 to lioness_output using no format: Unknown format no! File will not be saved. Elapsed time: 0.00 sec. Loading motif data ... Elapsed time: 0.00 sec. Loading expression data ... Elapsed time: 0.00 sec. Loading PPI data ... Number of PPIs: 100019 Elapsed time: 0.06 sec. Remove expression not in motif: 166 rows removed from the initial 200 Remove motif not in expression data: 467 rows removed from the initial 506 Remove ppi not in motif: 100017 rows removed from the initial 100019 Calculating coexpression network ... Elapsed time: 0.00 sec. Creating motif network ... Elapsed time: 0.00 sec. Creating PPI network ... Elapsed time: 0.00 sec. Normalizing networks ... Elapsed time: 0.00 sec. Saving expression matrix and normalized networks ... Elapsed time: 0.00 sec. Running PANDA algorithm ... step: 0, hamming: 0.6201117836163109 step: 1, hamming: 0.48938385169250487 step: 2, hamming: 0.49937220814370303 step: 3, hamming: 0.5234998024292964 step: 4, hamming: 0.5316279091580729 step: 5, hamming: 0.5196461826284898 step: 6, hamming: 0.49096615680840516 step: 7, hamming: 0.4513686776299505 step: 8, hamming: 0.4081852233215106 step: 9, hamming: 0.363060630725845 step: 10, hamming: 0.31891232474094794 step: 11, hamming: 0.27733895854371826 step: 12, hamming: 0.23925292481822666 step: 13, hamming: 0.20518316158337402 step: 14, hamming: 0.17501658473943318 step: 15, hamming: 0.14854288648840214 step: 16, hamming: 0.12553582999076407 step: 17, hamming: 0.10573284427875865 step: 18, hamming: 0.08878386418920353 step: 19, hamming: 0.0743688270511516 step: 20, hamming: 0.062172412390917475 step: 21, hamming: 0.05188071541370959 step: 22, hamming: 0.0432203223195204 step: 23, hamming: 0.03594946787636905 step: 24, hamming: 0.0298598954759094 step: 25, hamming: 0.024770938396293206 step: 26, hamming: 0.020525756048994263 step: 27, hamming: 0.016990787588434902 step: 28, hamming: 0.01405117127516721 step: 29, hamming: 0.011609873894851032 step: 30, hamming: 0.009584973156032739 step: 31, hamming: 0.007907374279360037 step: 32, hamming: 0.006518966440957099 step: 33, hamming: 0.005370999156869476 step: 34, hamming: 0.004422666090211268 step: 35, hamming: 0.0036398792478184367 step: 36, hamming: 0.0029942146499029876 step: 37, hamming: 0.002462010284380602 step: 38, hamming: 0.0020235978467206695 step: 39, hamming: 0.001662650998788413 step: 40, hamming: 0.00136563438767126 step: 41, hamming: 0.0011213392761822388 step: 42, hamming: 0.0009204932425645715 Running panda took: 0.02 seconds! /Library/Frameworks/R.framework/Versions/4.2/Resources/library/netZooR/extdata/lioness.py:337: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead. indDF = indDF.append( Loading input data ... Elapsed time: 0.00 sec. Number of total samples: 11 Number of computed samples: 1 Number of parallel cores: 1 Running LIONESS for sample 1: Computing coexpression network: Elapsed time: 0.00 sec. Normalizing networks: Elapsed time: 0.00 sec. Inferring LIONESS network: step: 0, hamming: 0.6267664063560152 step: 1, hamming: 0.49929052211545427 step: 2, hamming: 0.5091133020260827 step: 3, hamming: 0.5347173973757746 step: 4, hamming: 0.5397805120478006 step: 5, hamming: 0.5249527732389625 step: 6, hamming: 0.4945006816241803 step: 7, hamming: 0.4536157699252672 step: 8, hamming: 0.40948805442896147 step: 9, hamming: 0.3643147759446061 step: 10, hamming: 0.3202827156746967 step: 11, hamming: 0.2788957505583951 step: 12, hamming: 0.240869786159727 step: 13, hamming: 0.2065830558514754 step: 14, hamming: 0.17608500470506336 step: 15, hamming: 0.14929860299983969 step: 16, hamming: 0.1260432183021211 step: 17, hamming: 0.10605108373830613 step: 18, hamming: 0.08898835303868327 step: 19, hamming: 0.07448950012171324 step: 20, hamming: 0.06222491628833417 step: 21, hamming: 0.05188708455543117 step: 22, hamming: 0.04319809393977558 step: 23, hamming: 0.035912550157300875 step: 24, hamming: 0.02981582036436827 step: 25, hamming: 0.02472412266649083 step: 26, hamming: 0.020479690684899503 step: 27, hamming: 0.016946966247749072 step: 28, hamming: 0.0140106453158808 step: 29, hamming: 0.011573255021910608 step: 30, hamming: 0.009552447322836872 step: 31, hamming: 0.007878861027854666 step: 32, hamming: 0.006494227871820683 step: 33, hamming: 0.005349713278823826 step: 34, hamming: 0.0044044751666175675 step: 35, hamming: 0.0036244207432898226 step: 36, hamming: 0.0029811401934302624 step: 37, hamming: 0.0024509964879006712 step: 38, hamming: 0.0020143516839460003 step: 39, hamming: 0.0016549116365250657 step: 40, hamming: 0.0013591727817255633 step: 41, hamming: 0.0011159564314784426 step: 42, hamming: 0.0009160177452470301 Elapsed time: 0.02 sec. Saving LIONESS network 1 to lioness_output using no format: Unknown format no! File will not be saved. Elapsed time: 0.00 sec. [1] "Computing network for sample 1" [1] "Computing network for sample 2" [1] "Computing network for sample 3" [1] "Computing network for sample 4" [1] "Computing network for sample 1" [1] "Computing network for sample 2" [1] "Computing network for sample 3" [1] "Computing network for sample 4" % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 45 1079k 45 492k 0 0 420k 0 0:00:02 0:00:01 0:00:01 440k 100 1079k 100 1079k 0 0 676k 0 0:00:01 0:00:01 --:--:-- 699k [1] "1 network transitions to be estimated" [1] "Running iteration 1" [1] "Initializing and validating" [1] "Verified adequate samples, calculating correlation matrix" Time difference of 0.0001540184 secs [1] "More data cleaning" [1] "Main calculation" .....................................................[1] "Initializing and validating" [1] "Verified adequate samples, calculating correlation matrix" Time difference of 0.0001299381 secs [1] "More data cleaning" [1] "Main calculation" .....................................................[1] "Using OLS method" [1] "Finished running iteration 1" Time difference of 3.052107 secs Time difference of 0.103281 secs Time difference of 0.08460402 secs Time difference of 0.1005139 secs Time difference of 0.08251309 secs [1] "Using OLS method" Time difference of 2.098083e-05 secs Time difference of 1.643885 secs Time difference of 0.6141 secs .123456 .12345 .12345 .12345 .12345 .123456 .12345 .12345 .12345 .123456 .12345 .12345 .12345 .12345 .12345 .123456 .1234 .12345 .12345 .12345 .1234 .12345 .123456 .12345 .12345 .1234 .1234 .12345 .12345 .12345 .12345 .12345 .123456 .12345 .12345 .123456 .12345 .12345 .12345 .12345 .12345 .12345 .1234 .12345 .12345 .12345 .12345 .12345 .12345 .12345 .1234 .12345 .12345 MONSTER object 2555 genes 20 baseline samples 20 final samples Transition driven by 53 transcription factors Run with 10 randomized permutations. % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 27822 100 27822 0 0 91930 0 --:--:-- --:--:-- --:--:-- 94955 Loading expression data ... Elapsed time: 0.01 sec. No PPI data given: ppi matrix will be an identity matrix of size 0 Calculating coexpression network ... Elapsed time: 0.00 sec. Returning the correlation matrix of expression data in <Panda_obj>.correlation_matrix ['Rv0001' 'Rv0002' 'Rv0003' ... 'Rv0193c' 'Rv0194' 'Rv0195'] ['Rv0001' 'Rv0001' 'Rv0001' ... 'Rv0195' 'Rv0195' 'Rv0195'] (40000,) /usr/local/lib/python3.9/site-packages/numpy/lib/function_base.py:2829: RuntimeWarning: invalid value encountered in true_divide c /= stddev[:, None] /usr/local/lib/python3.9/site-packages/numpy/lib/function_base.py:2830: RuntimeWarning: invalid value encountered in true_divide c /= stddev[None, :] Loading motif data ... Elapsed time: 0.00 sec. Loading expression data ... Elapsed time: 0.00 sec. No PPI data given: ppi matrix will be an identity matrix of size 5 Calculating coexpression network ... Elapsed time: 0.01 sec. Creating motif network ... Elapsed time: 0.00 sec. Normalizing networks ... Elapsed time: 0.02 sec. Saving expression matrix and normalized networks ... Elapsed time: 0.00 sec. Running PANDA algorithm ... step: 0, hamming: 0.3008717441926667 step: 1, hamming: 0.32577840239393496 step: 2, hamming: 0.36046547993298544 step: 3, hamming: 0.36058526850894806 step: 4, hamming: 0.3466240823512555 step: 5, hamming: 0.32456269443005165 step: 6, hamming: 0.29894345984218645 step: 7, hamming: 0.27060190935086686 step: 8, hamming: 0.24146225569326282 step: 9, hamming: 0.21301541796450388 step: 10, hamming: 0.1861874742812892 step: 11, hamming: 0.16147381450104845 step: 12, hamming: 0.1391332489588238 step: 13, hamming: 0.11926159237252484 step: 14, hamming: 0.10185246481285452 step: 15, hamming: 0.08669455519421998 step: 16, hamming: 0.07353017763220182 step: 17, hamming: 0.06215000422873348 step: 18, hamming: 0.052396181784803826 step: 19, hamming: 0.04409487478206075 step: 20, hamming: 0.03701196105540119 step: 21, hamming: 0.03099423061137564 step: 22, hamming: 0.025900515663656483 step: 23, hamming: 0.021602975736465913 step: 24, hamming: 0.01798763913772466 step: 25, hamming: 0.014954147174028844 step: 26, hamming: 0.01241474935607606 step: 27, hamming: 0.010293476645032596 step: 28, hamming: 0.008524772832534808 step: 29, hamming: 0.007052536065331863 step: 30, hamming: 0.005828962967548954 step: 31, hamming: 0.00481346925122789 step: 32, hamming: 0.003971733841541235 step: 33, hamming: 0.0032748237354783805 step: 34, hamming: 0.00269842184221958 step: 35, hamming: 0.0022221411979144803 step: 36, hamming: 0.0018289290757053124 step: 37, hamming: 0.001504551789099312 step: 38, hamming: 0.0012371486338297601 step: 39, hamming: 0.0010168547681782068 step: 40, hamming: 0.0008354772054775502 Running panda took: 0.82 seconds! /usr/local/lib/python3.9/site-packages/numpy/lib/function_base.py:2829: RuntimeWarning: invalid value encountered in true_divide c /= stddev[:, None] /usr/local/lib/python3.9/site-packages/numpy/lib/function_base.py:2830: RuntimeWarning: invalid value encountered in true_divide c /= stddev[None, :] Loading motif data ... Elapsed time: 0.01 sec. Loading expression data ... Elapsed time: 0.00 sec. Loading PPI data ... Number of PPIs: 100019 Elapsed time: 0.07 sec. Calculating coexpression network ... Elapsed time: 0.01 sec. Creating motif network ... Elapsed time: 0.01 sec. Creating PPI network ... Elapsed time: 0.11 sec. Normalizing networks ... Elapsed time: 0.99 sec. Saving expression matrix and normalized networks ... Elapsed time: 0.21 sec. Running PANDA algorithm ... step: 0, hamming: 0.08748661874955622 step: 1, hamming: 0.06888714365861337 step: 2, hamming: 0.062114312778413824 step: 3, hamming: 0.057133530904466975 step: 4, hamming: 0.05304016922455829 step: 5, hamming: 0.049101138022894876 step: 6, hamming: 0.045074438192725504 step: 7, hamming: 0.04095526634659025 step: 8, hamming: 0.036830333937534133 step: 9, hamming: 0.03280131999197774 step: 10, hamming: 0.02895800229188848 step: 11, hamming: 0.025365652761878358 step: 12, hamming: 0.022066636023677574 step: 13, hamming: 0.01907883671127774 step: 14, hamming: 0.01640531302887969 step: 15, hamming: 0.014037779400693125 step: 16, hamming: 0.01195982841838061 step: 17, hamming: 0.010150090707741312 step: 18, hamming: 0.008584499851559678 step: 19, hamming: 0.0072380075895177075 step: 20, hamming: 0.0060858622486750545 step: 21, hamming: 0.005104411138700387 step: 22, hamming: 0.004271661591718607 step: 23, hamming: 0.003567561174685129 step: 24, hamming: 0.002974084885079093 step: 25, hamming: 0.0024752438901140686 step: 26, hamming: 0.0020569891001135433 step: 27, hamming: 0.0017070859535523305 step: 28, hamming: 0.0014149533300699603 step: 29, hamming: 0.0011714963862094997 step: 30, hamming: 0.0009689369122934191 Running panda took: 42.30 seconds! Loading motif data ... Elapsed time: 0.02 sec. Loading expression data ... Elapsed time: 0.01 sec. Loading PPI data ... Number of PPIs: 100019 Elapsed time: 0.17 sec. Calculating coexpression network ... Elapsed time: 0.00 sec. Creating motif network ... Elapsed time: 0.00 sec. Creating PPI network ... Elapsed time: 0.18 sec. Normalizing networks ... Elapsed time: 0.00 sec. Clearing motif and ppi data, unique tfs, and gene names for speed Running PANDA algorithm ... step: 0, hamming: 0.6788049340248108 step: 1, hamming: 0.4237635135650635 step: 2, hamming: 0.37942326068878174 step: 3, hamming: 0.3818596303462982 step: 4, hamming: 0.38526612520217896 step: 5, hamming: 0.3832989037036896 step: 6, hamming: 0.36915773153305054 step: 7, hamming: 0.34574776887893677 step: 8, hamming: 0.3152081370353699 step: 9, hamming: 0.2818054258823395 step: 10, hamming: 0.24849660694599152 step: 11, hamming: 0.21666744351387024 step: 12, hamming: 0.18729539215564728 step: 13, hamming: 0.16079428791999817 step: 14, hamming: 0.13726867735385895 step: 15, hamming: 0.11666569113731384 step: 16, hamming: 0.09877122193574905 step: 17, hamming: 0.08336563408374786 step: 18, hamming: 0.07016084343194962 step: 19, hamming: 0.0588911771774292 step: 20, hamming: 0.04931585118174553 step: 21, hamming: 0.041211165487766266 step: 22, hamming: 0.03437765687704086 step: 23, hamming: 0.02863147482275963 step: 24, hamming: 0.023808928206562996 step: 25, hamming: 0.01977088674902916 step: 26, hamming: 0.016396764665842056 step: 27, hamming: 0.013582728803157806 step: 28, hamming: 0.011239760555326939 step: 29, hamming: 0.009291945025324821 step: 30, hamming: 0.00767497019842267 step: 31, hamming: 0.006334253121167421 step: 32, hamming: 0.005223960615694523 step: 33, hamming: 0.004305404145270586 step: 34, hamming: 0.003546181134879589 step: 35, hamming: 0.002919197781011462 step: 36, hamming: 0.002401866717264056 step: 37, hamming: 0.001975313061848283 step: 38, hamming: 0.0016238006064668298 step: 39, hamming: 0.001334363128989935 step: 40, hamming: 0.0010961104417219758 step: 41, hamming: 0.0009001354337669909 Running panda took: 0.06 seconds! Loading motif data ... Elapsed time: 0.01 sec. Loading expression data ... Elapsed time: 0.01 sec. Loading PPI data ... Number of PPIs: 100019 Elapsed time: 0.15 sec. Calculating coexpression network ... Elapsed time: 0.01 sec. Creating motif network ... Elapsed time: 0.00 sec. Creating PPI network ... Elapsed time: 0.18 sec. Normalizing networks ... Elapsed time: 0.01 sec. Saving expression matrix and normalized networks ... Elapsed time: 0.02 sec. Running PANDA algorithm ... step: 0, hamming: 0.5867745269558597 step: 1, hamming: 0.47709480696171536 step: 2, hamming: 0.46956168666614617 step: 3, hamming: 0.45425003629838684 step: 4, hamming: 0.4187427725151872 step: 5, hamming: 0.36797241244238343 step: 6, hamming: 0.31337190961143313 step: 7, hamming: 0.2640386174641925 step: 8, hamming: 0.2239999232789824 step: 9, hamming: 0.19253176059893798 step: 10, hamming: 0.1676553667649102 step: 11, hamming: 0.14730006142326466 step: 12, hamming: 0.12982159089839332 step: 13, hamming: 0.11459157116297604 step: 14, hamming: 0.10108821391424125 step: 15, hamming: 0.08890364507467007 step: 16, hamming: 0.07787244456478047 step: 17, hamming: 0.06785464923123906 step: 18, hamming: 0.05878796471238135 step: 19, hamming: 0.05062155744809771 step: 20, hamming: 0.04333239380925903 step: 21, hamming: 0.036892574940160516 step: 22, hamming: 0.03126206012121671 step: 23, hamming: 0.026384280403921743 step: 24, hamming: 0.02219096174091557 step: 25, hamming: 0.01860922988517212 step: 26, hamming: 0.015566652188260116 step: 27, hamming: 0.012993283312056427 step: 28, hamming: 0.010824919177296213 step: 29, hamming: 0.009003507268894196 step: 30, hamming: 0.007477552910889816 step: 31, hamming: 0.006202062894110505 step: 32, hamming: 0.005138069423501655 step: 33, hamming: 0.004252085993537945 step: 34, hamming: 0.0035154788596479794 step: 35, hamming: 0.0029039267439058677 step: 36, hamming: 0.0023968521367998463 step: 37, hamming: 0.0019768786344578106 step: 38, hamming: 0.0016294013136896753 step: 39, hamming: 0.0013421799963357426 step: 40, hamming: 0.0011049738470584863 step: 41, hamming: 0.0009092279973180559 Running panda took: 0.50 seconds! Loading motif data ... Elapsed time: 0.01 sec. Loading expression data ... Elapsed time: 0.01 sec. Loading PPI data ... Number of PPIs: 100019 Elapsed time: 0.16 sec. Remove expression not in motif: 166 rows removed from the initial 200 Remove motif not in expression data: 467 rows removed from the initial 506 Remove ppi not in motif: 100017 rows removed from the initial 100019 Calculating coexpression network ... Elapsed time: 0.00 sec. Creating motif network ... Elapsed time: 0.00 sec. Creating PPI network ... Elapsed time: 0.00 sec. Normalizing networks ... Elapsed time: 0.00 sec. Saving expression matrix and normalized networks ... Elapsed time: 0.00 sec. Running PANDA algorithm ... step: 0, hamming: 0.6201117836163109 step: 1, hamming: 0.48938385169250487 step: 2, hamming: 0.49937220814370303 step: 3, hamming: 0.5234998024292964 step: 4, hamming: 0.5316279091580729 step: 5, hamming: 0.5196461826284898 step: 6, hamming: 0.49096615680840516 step: 7, hamming: 0.4513686776299505 step: 8, hamming: 0.4081852233215106 step: 9, hamming: 0.363060630725845 step: 10, hamming: 0.31891232474094794 step: 11, hamming: 0.27733895854371826 step: 12, hamming: 0.23925292481822666 step: 13, hamming: 0.20518316158337402 step: 14, hamming: 0.17501658473943318 step: 15, hamming: 0.14854288648840214 step: 16, hamming: 0.12553582999076407 step: 17, hamming: 0.10573284427875865 step: 18, hamming: 0.08878386418920353 step: 19, hamming: 0.0743688270511516 step: 20, hamming: 0.062172412390917475 step: 21, hamming: 0.05188071541370959 step: 22, hamming: 0.0432203223195204 step: 23, hamming: 0.03594946787636905 step: 24, hamming: 0.0298598954759094 step: 25, hamming: 0.024770938396293206 step: 26, hamming: 0.020525756048994263 step: 27, hamming: 0.016990787588434902 step: 28, hamming: 0.01405117127516721 step: 29, hamming: 0.011609873894851032 step: 30, hamming: 0.009584973156032739 step: 31, hamming: 0.007907374279360037 step: 32, hamming: 0.006518966440957099 step: 33, hamming: 0.005370999156869476 step: 34, hamming: 0.004422666090211268 step: 35, hamming: 0.0036398792478184367 step: 36, hamming: 0.0029942146499029876 step: 37, hamming: 0.002462010284380602 step: 38, hamming: 0.0020235978467206695 step: 39, hamming: 0.001662650998788413 step: 40, hamming: 0.00136563438767126 step: 41, hamming: 0.0011213392761822388 step: 42, hamming: 0.0009204932425645715 Running panda took: 0.07 seconds! [1] "Detecting communities in control network..." [1] "modularity of projected graph 0.471004488691679" [1] "Q = 0.471024100010188" [1] "Q = 0.471024100010188" [1] "Computing differential modularity matrix..." [1] "Computing differential modules..." [1] "Merging 386 communities" [1] 1 [1] 2 [1] "Merging 201 communities" [1] 1 [1] "Computing node scores..." [1] 1 [1] 2 [1] 3 [1] 4 [1] 5 [1] 6 [1] 7 [1] 8 [1] 9 [1] 10 [1] 11 [1] 12 [1] 13 [1] 14 [1] 15 [1] 16 [1] 17 [1] 18 [1] 19 [1] 20 [1] 21 [1] 22 [1] 23 [1] 24 [1] 25 [1] 26 [1] 27 [1] 28 [1] 29 [1] 30 [1] 31 [1] 32 [1] 33 [1] 34 [1] 35 [1] 36 [1] 37 [1] 38 [1] 39 [1] 40 [1] 41 [1] 42 [1] 43 [1] 44 [1] 45 [1] 46 [1] 47 [1] 48 [1] 49 [1] 50 [1] 51 [1] 52 [1] 53 [1] 54 [1] 55 [1] 56 [1] 57 [1] 58 [1] 59 [1] 60 [1] 61 [1] 62 [1] 63 [1] 64 [1] 65 [1] 66 [1] 67 [1] 68 [1] 69 [1] 70 [1] 71 [1] 72 [1] 73 [1] 74 [1] 75 [1] 76 [1] 77 [1] 78 [1] 79 [1] 80 [1] 81 [1] 82 [1] 83 [1] 84 [1] 85 [1] 86 [1] 87 [1] 88 [1] 89 [1] 90 [1] 91 [1] 92 [1] 93 [1] 94 [1] 95 [1] 96 [1] 97 [1] 98 [1] 99 [1] 100 [1] 101 [1] 102 [1] 103 [1] 104 [1] 105 [1] 106 [1] 107 [1] 108 [1] 109 [1] 110 [1] 111 [1] 112 [1] 113 [1] 114 [1] 115 [1] 116 [1] 117 [1] 118 [1] 119 [1] 120 [1] 121 [1] 122 [1] 123 [1] 124 [1] 125 [1] 126 [1] 127 [1] 128 [1] 129 [1] 130 [1] 131 [1] 132 [1] 133 [1] 134 [1] 135 [1] 136 [1] 137 [1] 138 [1] 139 [1] 140 [1] 141 [1] 142 [1] 143 [1] 144 [1] 145 [1] 146 [1] 147 [1] 148 [1] 149 [1] 150 [1] 151 [1] 152 [1] 153 [1] 154 [1] 155 [1] 156 [1] 157 [1] 158 [1] 159 [1] 160 [1] 161 [1] 162 [1] 163 [1] 164 [1] 165 [1] 166 [1] 167 [1] 168 [1] 169 [1] 170 [1] 171 [1] 172 [1] 173 [1] 174 [1] 175 [1] 176 [1] 177 [1] 178 [1] 179 [1] 180 [1] 181 [1] 182 [1] 183 [1] 184 [1] 185 [1] 186 [1] 187 [1] 188 [1] 189 [1] 190 [1] 191 [1] 192 [1] 193 [1] 194 [1] 195 [1] 196 [1] 197 [1] 198 [1] 199 [1] 200 [1] 201 Read 7424 items WARNING: Score threshold is not specified. We will be using medium stringency cut-off of 400. trying URL 'https://stringdb-static.org/download/protein.aliases.v11.0/83332.protein.aliases.v11.0.txt.gz' Content type 'application/octet-stream' length 614783 bytes (600 KB) ================================================== downloaded 600 KB trying URL 'https://stringdb-static.org/download/protein.info.v11.0/83332.protein.info.v11.0.txt.gz' Content type 'application/octet-stream' length 442274 bytes (431 KB) ================================================== downloaded 431 KB trying URL 'https://stringdb-static.org/download/protein.links.v11.0/83332.protein.links.v11.0.txt.gz' Content type 'application/octet-stream' length 7455726 bytes (7.1 MB) ================================================== downloaded 7.1 MB [ FAIL 0 | WARN 1 | SKIP 0 | PASS 61 ] [ FAIL 0 | WARN 1 | SKIP 0 | PASS 61 ] > > proc.time() user system elapsed 395.957 45.582 467.474
netZooR.Rcheck/netZooR-Ex.timings
name | user | system | elapsed | |
alpaca | 0.814 | 0.021 | 0.837 | |
alpacaCommunityStructureRotation | 0 | 0 | 0 | |
alpacaComputeDWBMmatmScale | 0 | 0 | 0 | |
alpacaComputeWBMmat | 0.001 | 0.000 | 0.000 | |
alpacaCrane | 0 | 0 | 0 | |
alpacaDeltaZAnalysis | 0 | 0 | 0 | |
alpacaDeltaZAnalysisLouvain | 0 | 0 | 0 | |
alpacaExtractTopGenes | 0.316 | 0.004 | 0.320 | |
alpacaGOtabtogenes | 0 | 0 | 0 | |
alpacaGenLouvain | 0 | 0 | 0 | |
alpacaGoToGenes | 0 | 0 | 0 | |
alpacaListToGo | 0 | 0 | 0 | |
alpacaMetaNetwork | 0 | 0 | 0 | |
alpacaNodeToGene | 0.001 | 0.000 | 0.000 | |
alpacaRotationAnalysis | 0.000 | 0.001 | 0.000 | |
alpacaRotationAnalysisLouvain | 0 | 0 | 0 | |
alpacaSimulateNetwork | 0 | 0 | 0 | |
alpacaTestNodeRank | 0 | 0 | 0 | |
alpacaTidyConfig | 0 | 0 | 0 | |
alpacaTopEnsembltoTopSym | 0 | 0 | 0 | |
alpacaWBMlouvain | 0 | 0 | 0 | |
condorCluster | 1.072 | 0.006 | 1.080 | |
condorCoreEnrich | 1.693 | 0.057 | 1.761 | |
condorMatrixModularity | 0.007 | 0.002 | 0.009 | |
condorModularityMax | 0.022 | 0.004 | 0.025 | |
condorPlotCommunities | 1.045 | 0.009 | 1.056 | |
condorPlotHeatmap | 0.149 | 0.019 | 0.169 | |
condorQscore | 1.008 | 0.007 | 1.017 | |
craneBipartite | 0 | 0 | 0 | |
createCondorObject | 0.002 | 0.000 | 0.002 | |
createPandaStyle | 0 | 0 | 0 | |
lioness | 3.754 | 0.248 | 4.011 | |
lionessPy | 0.002 | 0.001 | 0.002 | |
monster | 5.616 | 0.471 | 6.126 | |
monsterBereFull | 2.616 | 0.217 | 2.840 | |
monsterCalculateTmPValues | 0.011 | 0.002 | 0.013 | |
monsterCheckDataType | 0.155 | 0.378 | 0.537 | |
monsterGetTm | 0.002 | 0.002 | 0.004 | |
monsterHclHeatmapPlot | 0.616 | 0.027 | 0.645 | |
monsterMonsterNI | 2.319 | 0.064 | 2.391 | |
monsterPlotMonsterAnalysis | 28.138 | 2.699 | 30.938 | |
monsterPrintMonsterAnalysis | 28.247 | 2.972 | 31.325 | |
monsterTransformationMatrix | 0.624 | 0.027 | 0.653 | |
monsterTransitionNetworkPlot | 0.193 | 0.007 | 0.200 | |
monsterTransitionPCAPlot | 0.130 | 0.004 | 0.135 | |
monsterdTFIPlot | 0.189 | 0.004 | 0.193 | |
otter | 0.002 | 0.001 | 0.002 | |
pandaPy | 0.002 | 0.001 | 0.003 | |
pandaToAlpaca | 0.003 | 0.001 | 0.004 | |
pandaToCondorObject | 0.002 | 0.000 | 0.002 | |
runEgret | 0.012 | 0.003 | 0.017 | |
sambar | 1.532 | 0.183 | 1.725 | |
sourcePPI | 0.007 | 0.001 | 0.008 | |
visPandaInCytoscape | 0.000 | 0.000 | 0.001 | |