Back to Multiple platform build/check report for BioC 3.16: simplified long |
|
This page was generated on 2023-04-12 11:05:35 -0400 (Wed, 12 Apr 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4502 |
palomino4 | Windows Server 2022 Datacenter | x64 | 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" | 4282 |
lconway | macOS 12.5.1 Monterey | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4310 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the goSorensen package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/goSorensen.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 842/2183 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
goSorensen 1.0.0 (landing page) Pablo Flores
| nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.5.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
Package: goSorensen |
Version: 1.0.0 |
Command: F:\biocbuild\bbs-3.16-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:goSorensen.install-out.txt --library=F:\biocbuild\bbs-3.16-bioc\R\library --no-vignettes --timings goSorensen_1.0.0.tar.gz |
StartedAt: 2023-04-11 02:04:25 -0400 (Tue, 11 Apr 2023) |
EndedAt: 2023-04-11 02:14:45 -0400 (Tue, 11 Apr 2023) |
EllapsedTime: 620.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: goSorensen.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.16-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:goSorensen.install-out.txt --library=F:\biocbuild\bbs-3.16-bioc\R\library --no-vignettes --timings goSorensen_1.0.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.16-bioc/meat/goSorensen.Rcheck' * using R version 4.2.3 (2023-03-15 ucrt) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'goSorensen/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'goSorensen' version '1.0.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'goSorensen' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed buildEnrichTable 16.06 1.61 17.94 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'test_gosorensen_funcs.R' Running 'test_nonsense_genes.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: OK
goSorensen.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.16-bioc\R\bin\R.exe CMD INSTALL goSorensen ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.16-bioc/R/library' * installing *source* package 'goSorensen' ... ** using staged installation ** R ** data ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (goSorensen)
goSorensen.Rcheck/tests/test_gosorensen_funcs.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(goSorensen) Attaching package: 'goSorensen' The following object is masked from 'package:utils': upgrade > > # A contingency table of GO terms mutual enrichment > # between gene lists "atlas" and "sanger": > data(tab_atlas.sanger_BP3) > tab_atlas.sanger_BP3 Enriched in sanger Enriched in atlas TRUE FALSE TRUE 56 30 FALSE 1 471 > ?tab_atlas.sanger_BP3 > class(tab_atlas.sanger_BP3) [1] "table" > > # Sorensen-Dice dissimilarity on this contingency table: > ?dSorensen > dSorensen(tab_atlas.sanger_BP3) [1] 0.2167832 > > # Standard error of this Sorensen-Dice dissimilarity estimate: > ?seSorensen > seSorensen(tab_atlas.sanger_BP3) [1] 0.03822987 > > # Upper 95% confidence limit for the Sorensen-Dice dissimilarity: > ?duppSorensen > duppSorensen(tab_atlas.sanger_BP3) [1] 0.2796658 > # This confidence limit is based on an assimptotic normal N(0,1) > # approximation to the distribution of (dSampl - d) / se, where > # dSampl stands for the sample dissimilarity, d for the true dissimilarity > # and se for the sample dissimilarity standard error estimate. > > # Upper confidence limit but using a Student's t instead of a N(0,1) > # (just as an example, not recommended -no theoretical justification) > df <- sum(tab_atlas.sanger_BP3[1:3]) - 2 > duppSorensen(tab_atlas.sanger_BP3, z.conf.level = qt(1 - 0.95, df)) [1] 0.2803587 > > # Upper confidence limit but using a bootstrap approximation > # to the sampling distribution, instead of a N(0,1) > set.seed(123) > duppSorensen(tab_atlas.sanger_BP3, boot = TRUE) [1] 0.2871182 attr(,"eff.nboot") [1] 10000 > > # Some computations on diverse data structures: > badConti <- as.table(matrix(c(501, 27, 36, 12, 43, 15, 0, 0, 0), + nrow = 3, ncol = 3, + dimnames = list(c("a1","a2","a3"), + c("b1", "b2","b3")))) > tryCatch(nice2x2Table(badConti), error = function(e) {return(e)}) <simpleError in nice2x2Table.table(badConti): Not a 2x2 table> > > incompleteConti <- badConti[1,1:min(2,ncol(badConti)), drop = FALSE] > incompleteConti b1 b2 a1 501 12 > tryCatch(nice2x2Table(incompleteConti), error = function(e) {return(e)}) <simpleError in nice2x2Table.table(incompleteConti): Not a 2x2 table> > > contiAsVector <- c(32, 21, 81, 1439) > nice2x2Table(contiAsVector) [1] TRUE > contiAsVector.mat <- matrix(contiAsVector, nrow = 2) > contiAsVector.mat [,1] [,2] [1,] 32 81 [2,] 21 1439 > contiAsVectorLen3 <- c(32, 21, 81) > nice2x2Table(contiAsVectorLen3) [1] TRUE > > tryCatch(dSorensen(badConti), error = function(e) {return(e)}) <simpleError in nice2x2Table.table(x): Not a 2x2 table> > > # Apparently, the next order works fine, but returns a wrong value! > dSorensen(badConti, check.table = FALSE) [1] 0.05915493 > > tryCatch(dSorensen(incompleteConti), error = function(e) {return(e)}) <simpleError in nice2x2Table.table(x): Not a 2x2 table> > dSorensen(contiAsVector) [1] 0.6144578 > dSorensen(contiAsVector.mat) [1] 0.6144578 > dSorensen(contiAsVectorLen3) [1] 0.6144578 > dSorensen(contiAsVectorLen3, check.table = FALSE) [1] 0.6144578 > dSorensen(c(0,0,0,45)) [1] NaN > > tryCatch(seSorensen(badConti), error = function(e) {return(e)}) <simpleError in nice2x2Table.table(x): Not a 2x2 table> > tryCatch(seSorensen(incompleteConti), error = function(e) {return(e)}) <simpleError in nice2x2Table.table(x): Not a 2x2 table> > seSorensen(contiAsVector) [1] 0.04818012 > seSorensen(contiAsVector.mat) [1] 0.04818012 > seSorensen(contiAsVectorLen3) [1] 0.04818012 > seSorensen(contiAsVectorLen3, check.table = FALSE) [1] 0.04818012 > tryCatch(seSorensen(contiAsVectorLen3, check.table = "not"), error = function(e) {return(e)}) <simpleError in seSorensen.numeric(contiAsVectorLen3, check.table = "not"): Argument 'check.table' must be logical> > seSorensen(c(0,0,0,45)) [1] NaN > > tryCatch(duppSorensen(badConti), error = function(e) {return(e)}) <simpleError in nice2x2Table.table(x): Not a 2x2 table> > tryCatch(duppSorensen(incompleteConti), error = function(e) {return(e)}) <simpleError in nice2x2Table.table(x): Not a 2x2 table> > duppSorensen(contiAsVector) [1] 0.6937071 > duppSorensen(contiAsVector.mat) [1] 0.6937071 > set.seed(123) > duppSorensen(contiAsVector, boot = TRUE) [1] 0.6922658 attr(,"eff.nboot") [1] 10000 > set.seed(123) > duppSorensen(contiAsVector.mat, boot = TRUE) [1] 0.6922658 attr(,"eff.nboot") [1] 10000 > duppSorensen(contiAsVectorLen3) [1] 0.6937071 > # Bootstrapping requires full contingency tables (4 values) > set.seed(123) > tryCatch(duppSorensen(contiAsVectorLen3, boot = TRUE), error = function(e) {return(e)}) <simpleError in duppSorensen.numeric(contiAsVectorLen3, boot = TRUE): Bootstraping requires a numeric vector of 4 frequencies> > duppSorensen(c(0,0,0,45)) [1] NaN > > # Equivalence test, H0: d >= d0 vs H1: d < d0 (d0 = 0.4444) > ?equivTestSorensen > equiv.atlas.sanger <- equivTestSorensen(tab_atlas.sanger_BP3) > equiv.atlas.sanger Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab_atlas.sanger_BP3 (d - d0) / se = -5.9551, p-value = 1.3e-09 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.2796658 sample estimates: Sorensen dissimilarity 0.2167832 attr(,"se") standard error 0.03822987 > getTable(equiv.atlas.sanger) Enriched in sanger Enriched in atlas TRUE FALSE TRUE 56 30 FALSE 1 471 > getPvalue(equiv.atlas.sanger) p-value 1.299869e-09 > > tryCatch(equivTestSorensen(badConti), error = function(e) {return(e)}) <simpleError in nice2x2Table.table(x): Not a 2x2 table> > tryCatch(equivTestSorensen(incompleteConti), error = function(e) {return(e)}) <simpleError in nice2x2Table.table(x): Not a 2x2 table> > equivTestSorensen(contiAsVector) Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: contiAsVector (d - d0) / se = 3.5287, p-value = 0.9998 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.6937071 sample estimates: Sorensen dissimilarity 0.6144578 attr(,"se") standard error 0.04818012 > equivTestSorensen(contiAsVector.mat) Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: contiAsVector.mat (d - d0) / se = 3.5287, p-value = 0.9998 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.6937071 sample estimates: Sorensen dissimilarity 0.6144578 attr(,"se") standard error 0.04818012 > set.seed(123) > equivTestSorensen(contiAsVector.mat, boot = TRUE) Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: contiAsVector.mat (d - d0) / se = 3.5287, p-value = 0.9996 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.6922658 sample estimates: Sorensen dissimilarity 0.6144578 attr(,"se") standard error 0.04818012 > equivTestSorensen(contiAsVectorLen3) Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: contiAsVectorLen3 (d - d0) / se = 3.5287, p-value = 0.9998 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.6937071 sample estimates: Sorensen dissimilarity 0.6144578 attr(,"se") standard error 0.04818012 > > tryCatch(equivTestSorensen(contiAsVectorLen3, boot = TRUE), error = function(e) {return(e)}) <simpleError in equivTestSorensen.numeric(contiAsVectorLen3, boot = TRUE): Bootstraping requires a numeric vector of 4 frequencies> > > equivTestSorensen(c(0,0,0,45)) No test performed due non finite (d - d0) / se statistic data: c(0, 0, 0, 45) (d - d0) / se = NaN, p-value = NA alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 NaN sample estimates: Sorensen dissimilarity NaN attr(,"se") standard error NaN > > # Sorensen-Dice computations from scratch, directly from gene lists > data(allOncoGeneLists) > ?allOncoGeneLists > data(humanEntrezIDs) > # First, the mutual GO node enrichment tables are built, then computations > # proceed from these contingency tables. > # Building the contingency tables is a slow process (many enrichment tests) > normTest <- equivTestSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]], + listNames = c("atlas", "sanger"), + onto = "BP", GOLevel = 5, + geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > normTest Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = -8.0329, p-value = 4.758e-16 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3567572 sample estimates: Sorensen dissimilarity 0.3341788 attr(,"se") standard error 0.01372669 > > # To perform a bootstrap test from scratch would be even slower: > # set.seed(123) > # bootTest <- equivTestSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]], > # listNames = c("atlas", "sanger"), > # boot = TRUE, > # onto = "BP", GOLevel = 5, > # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > # bootTest > > # It is much faster to upgrade 'normTest' to be a bootstrap test: > set.seed(123) > bootTest <- upgrade(normTest, boot = TRUE) > bootTest Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = -8.0329, p-value = 9.999e-05 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.000000 0.357055 sample estimates: Sorensen dissimilarity 0.3341788 attr(,"se") standard error 0.01372669 > # To know the number of planned bootstrap replicates: > getNboot(bootTest) [1] 10000 > # To know the number of valid bootstrap replicates: > getEffNboot(bootTest) [1] 10000 > > # There are similar methods for dSorensen, seSorensen, duppSorensen, etc. to > # compute directly from a pair of gene lists. > # They are quite slow for the same reason as before (many enrichment tests). > # dSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]], > # listNames = c("atlas", "sanger"), > # onto = "BP", GOLevel = 5, > # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > # seSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]], > # listNames = c("atlas", "sanger"), > # onto = "BP", GOLevel = 5, > # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > # > # duppSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]], > # listNames = c("atlas", "sanger"), > # onto = "BP", GOLevel = 5, > # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > # > # set.seed(123) > # duppSorensen(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]], > # boot = TRUE, > # listNames = c("atlas", "sanger"), > # onto = "BP", GOLevel = 5, > # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > # etc. > > # To build the contingency table first and then compute from it, may be a more flexible > # and saving time strategy, in general: > ?buildEnrichTable > tab <- buildEnrichTable(allOncoGeneLists[["atlas"]], allOncoGeneLists[["sanger"]], + listNames = c("atlas", "sanger"), + onto = "BP", GOLevel = 5, + geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > > tab Enriched in sanger Enriched in atlas TRUE FALSE TRUE 525 477 FALSE 50 9096 > > # (Here, an obvious faster possibility would be to recover the enrichment contingency > # table from the previous normal test result:) > tab <- getTable(normTest) > tab Enriched in sanger Enriched in atlas TRUE FALSE TRUE 525 477 FALSE 50 9096 > > tst <- equivTestSorensen(tab) > tst Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = -8.0329, p-value = 4.758e-16 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3567572 sample estimates: Sorensen dissimilarity 0.3341788 attr(,"se") standard error 0.01372669 > set.seed(123) > bootTst <- equivTestSorensen(tab, boot = TRUE) > bootTst Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = -8.0329, p-value = 9.999e-05 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.000000 0.357055 sample estimates: Sorensen dissimilarity 0.3341788 attr(,"se") standard error 0.01372669 > > dSorensen(tab) [1] 0.3341788 > seSorensen(tab) [1] 0.01372669 > # or: > getDissimilarity(tst) Sorensen dissimilarity 0.3341788 attr(,"se") standard error 0.01372669 > > duppSorensen(tab) [1] 0.3567572 > getUpper(tst) dUpper 0.3567572 > > set.seed(123) > duppSorensen(tab, boot = TRUE) [1] 0.357055 attr(,"eff.nboot") [1] 10000 > getUpper(bootTst) dUpper 0.357055 > > # To perform from scratch all pairwise tests (or other Sorensen-Dice computations) > # is even much slower. For example, all pairwise... > # Dissimilarities: > # # allPairDiss <- dSorensen(allOncoGeneLists, > # # onto = "BP", GOLevel = 5, > # # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > # # allPairDiss > # > # # Still time consuming but faster: build all tables computing in parallel: > # allPairDiss <- dSorensen(allOncoGeneLists, > # onto = "BP", GOLevel = 5, > # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db", > # parallel = TRUE) > # allPairDiss > > # Standard errors: > # seSorensen(allOncoGeneLists, > # onto = "BP", GOLevel = 5, > # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > # > # Upper confidence interval limits: > # duppSorensen(allOncoGeneLists, > # onto = "BP", GOLevel = 5, > # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > # All pairwise asymptotic normal tests: > # allTests <- equivTestSorensen(allOncoGeneLists, > # onto = "BP", GOLevel = 5, > # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > # getPvalue(allTests, simplify = FALSE) > # getPvalue(allTests) > # p.adjust(getPvalue(allTests), method = "holm") > # To perform all pairwise bootstrap tests from scratch is (slightly) > # even more time consuming: > # set.seed(123) > # allBootTests <- equivTestSorensen(allOncoGeneLists, > # boot = TRUE, > # onto = "BP", GOLevel = 5, > # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > # Not all bootstrap replicates may conduct to finite statistics: > # getNboot(allBootTests) > > # Given the normal tests (object 'allTests'), it is much faster to upgrade > # it to have the bootstrap tests: > # set.seed(123) > # allBootTests <- upgrade(allTests, boot = TRUE) > # getPvalue(allBootTests, simplify = FALSE) > > # Again, the faster and more flexible possibility may be: > # 1) First, build all pairwise enrichment contingency tables (slow first step): > # allTabsBP.4 <- buildEnrichTable(allOncoGeneLists, > # onto = "BP", GOLevel = 5, > # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > # allTabsBP.4 > > # Better, directly use the dataset available at this package, goSorensen: > data(allTabsBP.4) > allTabsBP.4 $cangenes $cangenes$atlas Enriched in atlas Enriched in cangenes TRUE FALSE TRUE 1 0 FALSE 959 9397 $cis $cis$atlas Enriched in atlas Enriched in cis TRUE FALSE TRUE 181 11 FALSE 779 9386 $cis$cangenes Enriched in cangenes Enriched in cis TRUE FALSE TRUE 1 191 FALSE 0 10165 $miscellaneous $miscellaneous$atlas Enriched in atlas Enriched in miscellaneous TRUE FALSE TRUE 450 57 FALSE 510 9340 $miscellaneous$cangenes Enriched in cangenes Enriched in miscellaneous TRUE FALSE TRUE 1 506 FALSE 0 9850 $miscellaneous$cis Enriched in cis Enriched in miscellaneous TRUE FALSE TRUE 145 362 FALSE 47 9803 $sanger $sanger$atlas Enriched in atlas Enriched in sanger TRUE FALSE TRUE 500 45 FALSE 460 9352 $sanger$cangenes Enriched in cangenes Enriched in sanger TRUE FALSE TRUE 1 544 FALSE 0 9812 $sanger$cis Enriched in cis Enriched in sanger TRUE FALSE TRUE 153 392 FALSE 39 9773 $sanger$miscellaneous Enriched in miscellaneous Enriched in sanger TRUE FALSE TRUE 359 186 FALSE 148 9664 $Vogelstein $Vogelstein$atlas Enriched in atlas Enriched in Vogelstein TRUE FALSE TRUE 542 76 FALSE 418 9321 $Vogelstein$cangenes Enriched in cangenes Enriched in Vogelstein TRUE FALSE TRUE 1 617 FALSE 0 9739 $Vogelstein$cis Enriched in cis Enriched in Vogelstein TRUE FALSE TRUE 163 455 FALSE 29 9710 $Vogelstein$miscellaneous Enriched in miscellaneous Enriched in Vogelstein TRUE FALSE TRUE 374 244 FALSE 133 9606 $Vogelstein$sanger Enriched in sanger Enriched in Vogelstein TRUE FALSE TRUE 512 106 FALSE 33 9706 $waldman $waldman$atlas Enriched in atlas Enriched in waldman TRUE FALSE TRUE 641 138 FALSE 319 9259 $waldman$cangenes Enriched in cangenes Enriched in waldman TRUE FALSE TRUE 1 778 FALSE 0 9578 $waldman$cis Enriched in cis Enriched in waldman TRUE FALSE TRUE 171 608 FALSE 21 9557 $waldman$miscellaneous Enriched in miscellaneous Enriched in waldman TRUE FALSE TRUE 467 312 FALSE 40 9538 $waldman$sanger Enriched in sanger Enriched in waldman TRUE FALSE TRUE 446 333 FALSE 99 9479 $waldman$Vogelstein Enriched in Vogelstein Enriched in waldman TRUE FALSE TRUE 488 291 FALSE 130 9448 attr(,"class") [1] "tableList" "list" > class(allTabsBP.4) [1] "tableList" "list" > # 2) Then perform all required computatios from these enrichment contingency tables... > # All pairwise tests: > allTests <- equivTestSorensen(allTabsBP.4) > allTests $cangenes $cangenes$atlas Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = 266.22, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 1 sample estimates: Sorensen dissimilarity 0.9979188 attr(,"se") standard error 0.002079 $cis $cis$atlas Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = 13.583, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.7149878 sample estimates: Sorensen dissimilarity 0.6857639 attr(,"se") standard error 0.01776688 $cis$cangenes Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = 52.885, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 1 sample estimates: Sorensen dissimilarity 0.9896373 attr(,"se") standard error 0.010309 $miscellaneous $miscellaneous$atlas Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = -3.8685, p-value = 5.474e-05 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.000000 0.411139 sample estimates: Sorensen dissimilarity 0.3865031 attr(,"se") standard error 0.01497758 $miscellaneous$cangenes Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = 140.39, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 1 sample estimates: Sorensen dissimilarity 0.996063 attr(,"se") standard error 0.003929258 $miscellaneous$cis Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = 5.9904, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.000000 0.623749 sample estimates: Sorensen dissimilarity 0.5851216 attr(,"se") standard error 0.02348381 $sanger $sanger$atlas Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = -7.738, p-value = 5.051e-15 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3586962 sample estimates: Sorensen dissimilarity 0.3355482 attr(,"se") standard error 0.01407301 $sanger$cangenes Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = 150.94, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 1 sample estimates: Sorensen dissimilarity 0.996337 attr(,"se") standard error 0.003656295 $sanger$cis Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = 6.1374, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.6224203 sample estimates: Sorensen dissimilarity 0.5848033 attr(,"se") standard error 0.02286957 $sanger$miscellaneous Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = -7.701, p-value = 6.75e-15 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3446065 sample estimates: Sorensen dissimilarity 0.3174905 attr(,"se") standard error 0.01648539 $Vogelstein $Vogelstein$atlas Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = -9.8173, p-value < 2.2e-16 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3350683 sample estimates: Sorensen dissimilarity 0.3130545 attr(,"se") standard error 0.01338347 $Vogelstein$cangenes Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = 171.22, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 1 sample estimates: Sorensen dissimilarity 0.996769 attr(,"se") standard error 0.003225798 $Vogelstein$cis Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = 7.0238, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.6333811 sample estimates: Sorensen dissimilarity 0.5975309 attr(,"se") standard error 0.02179538 $Vogelstein$miscellaneous Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = -6.7191, p-value = 9.142e-12 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3618762 sample estimates: Sorensen dissimilarity 0.3351111 attr(,"se") standard error 0.01627199 $Vogelstein$sanger Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = -32.259, p-value < 2.2e-16 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.1360863 sample estimates: Sorensen dissimilarity 0.1195185 attr(,"se") standard error 0.0100725 $waldman $waldman$atlas Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = -15.308, p-value < 2.2e-16 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.2823131 sample estimates: Sorensen dissimilarity 0.2627947 attr(,"se") standard error 0.01186635 $waldman$cangenes Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = 215.94, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 1 sample estimates: Sorensen dissimilarity 0.9974359 attr(,"se") standard error 0.002560815 $waldman$cis Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = 10.327, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.6801719 sample estimates: Sorensen dissimilarity 0.6477858 attr(,"se") standard error 0.01968936 $waldman$miscellaneous Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = -12.16, p-value < 2.2e-16 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.2968117 sample estimates: Sorensen dissimilarity 0.273717 attr(,"se") standard error 0.01404058 $waldman$sanger Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = -7.9582, p-value = 8.729e-16 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3507062 sample estimates: Sorensen dissimilarity 0.326284 attr(,"se") standard error 0.01484766 $waldman$Vogelstein Normal asymptotic test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity data: tab (d - d0) / se = -10.211, p-value < 2.2e-16 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3244082 sample estimates: Sorensen dissimilarity 0.3013601 attr(,"se") standard error 0.01401229 attr(,"class") [1] "equivSDhtestList" "list" > class(allTests) [1] "equivSDhtestList" "list" > set.seed(123) > allBootTests <- equivTestSorensen(allTabsBP.4, boot = TRUE) > allBootTests $cangenes $cangenes$atlas Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (6298 effective bootstrap replicates of 10000) data: tab (d - d0) / se = 266.22, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 1 sample estimates: Sorensen dissimilarity 0.9979188 attr(,"se") standard error 0.002079 $cis $cis$atlas Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = 13.583, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.7143131 sample estimates: Sorensen dissimilarity 0.6857639 attr(,"se") standard error 0.01776688 $cis$cangenes Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (6342 effective bootstrap replicates of 10000) data: tab (d - d0) / se = 52.885, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 1 sample estimates: Sorensen dissimilarity 0.9896373 attr(,"se") standard error 0.010309 $miscellaneous $miscellaneous$atlas Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = -3.8685, p-value = 2e-04 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.4111369 sample estimates: Sorensen dissimilarity 0.3865031 attr(,"se") standard error 0.01497758 $miscellaneous$cangenes Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (6382 effective bootstrap replicates of 10000) data: tab (d - d0) / se = 140.39, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 1 sample estimates: Sorensen dissimilarity 0.996063 attr(,"se") standard error 0.003929258 $miscellaneous$cis Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = 5.9904, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.6245189 sample estimates: Sorensen dissimilarity 0.5851216 attr(,"se") standard error 0.02348381 $sanger $sanger$atlas Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = -7.738, p-value = 9.999e-05 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3588894 sample estimates: Sorensen dissimilarity 0.3355482 attr(,"se") standard error 0.01407301 $sanger$cangenes Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (6401 effective bootstrap replicates of 10000) data: tab (d - d0) / se = 150.94, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 1 sample estimates: Sorensen dissimilarity 0.996337 attr(,"se") standard error 0.003656295 $sanger$cis Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = 6.1374, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.6222571 sample estimates: Sorensen dissimilarity 0.5848033 attr(,"se") standard error 0.02286957 $sanger$miscellaneous Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = -7.701, p-value = 9.999e-05 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3449603 sample estimates: Sorensen dissimilarity 0.3174905 attr(,"se") standard error 0.01648539 $Vogelstein $Vogelstein$atlas Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = -9.8173, p-value = 9.999e-05 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3357311 sample estimates: Sorensen dissimilarity 0.3130545 attr(,"se") standard error 0.01338347 $Vogelstein$cangenes Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (6276 effective bootstrap replicates of 10000) data: tab (d - d0) / se = 171.22, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 1 sample estimates: Sorensen dissimilarity 0.996769 attr(,"se") standard error 0.003225798 $Vogelstein$cis Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = 7.0238, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.6328101 sample estimates: Sorensen dissimilarity 0.5975309 attr(,"se") standard error 0.02179538 $Vogelstein$miscellaneous Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = -6.7191, p-value = 9.999e-05 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3629782 sample estimates: Sorensen dissimilarity 0.3351111 attr(,"se") standard error 0.01627199 $Vogelstein$sanger Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = -32.259, p-value = 9.999e-05 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.000000 0.136948 sample estimates: Sorensen dissimilarity 0.1195185 attr(,"se") standard error 0.0100725 $waldman $waldman$atlas Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = -15.308, p-value = 9.999e-05 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.2826499 sample estimates: Sorensen dissimilarity 0.2627947 attr(,"se") standard error 0.01186635 $waldman$cangenes Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (6278 effective bootstrap replicates of 10000) data: tab (d - d0) / se = 215.94, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 1 sample estimates: Sorensen dissimilarity 0.9974359 attr(,"se") standard error 0.002560815 $waldman$cis Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = 10.327, p-value = 1 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.6796177 sample estimates: Sorensen dissimilarity 0.6477858 attr(,"se") standard error 0.01968936 $waldman$miscellaneous Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = -12.16, p-value = 9.999e-05 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.2973298 sample estimates: Sorensen dissimilarity 0.273717 attr(,"se") standard error 0.01404058 $waldman$sanger Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = -7.9582, p-value = 9.999e-05 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3515402 sample estimates: Sorensen dissimilarity 0.326284 attr(,"se") standard error 0.01484766 $waldman$Vogelstein Bootstrap test for 2x2 contingency tables based on the Sorensen-Dice dissimilarity (10000 bootstrap replicates) data: tab (d - d0) / se = -10.211, p-value = 9.999e-05 alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0.0000000 0.3243615 sample estimates: Sorensen dissimilarity 0.3013601 attr(,"se") standard error 0.01401229 attr(,"class") [1] "equivSDhtestList" "list" > class(allBootTests) [1] "equivSDhtestList" "list" > getPvalue(allBootTests, simplify = FALSE) atlas cangenes cis miscellaneous sanger Vogelstein atlas 0.00000000 1 1 0.00019998 9.999e-05 9.999e-05 cangenes 1.00000000 0 1 1.00000000 1.000e+00 1.000e+00 cis 1.00000000 1 0 1.00000000 1.000e+00 1.000e+00 miscellaneous 0.00019998 1 1 0.00000000 9.999e-05 9.999e-05 sanger 0.00009999 1 1 0.00009999 0.000e+00 9.999e-05 Vogelstein 0.00009999 1 1 0.00009999 9.999e-05 0.000e+00 waldman 0.00009999 1 1 0.00009999 9.999e-05 9.999e-05 waldman atlas 9.999e-05 cangenes 1.000e+00 cis 1.000e+00 miscellaneous 9.999e-05 sanger 9.999e-05 Vogelstein 9.999e-05 waldman 0.000e+00 > getEffNboot(allBootTests) cangenes.atlas cis.atlas cis.cangenes 6298 10000 6342 miscellaneous.atlas miscellaneous.cangenes miscellaneous.cis 10000 6382 10000 sanger.atlas sanger.cangenes sanger.cis 10000 6401 10000 sanger.miscellaneous Vogelstein.atlas Vogelstein.cangenes 10000 10000 6276 Vogelstein.cis Vogelstein.miscellaneous Vogelstein.sanger 10000 10000 10000 waldman.atlas waldman.cangenes waldman.cis 10000 6278 10000 waldman.miscellaneous waldman.sanger waldman.Vogelstein 10000 10000 10000 > > # To adjust for testing multiplicity: > p.adjust(getPvalue(allBootTests), method = "holm") cangenes.atlas.p-value cis.atlas.p-value 1.00000000 1.00000000 cis.cangenes.p-value miscellaneous.atlas.p-value 1.00000000 0.00239976 miscellaneous.cangenes.p-value miscellaneous.cis.p-value 1.00000000 1.00000000 sanger.atlas.p-value sanger.cangenes.p-value 0.00209979 1.00000000 sanger.cis.p-value sanger.miscellaneous.p-value 1.00000000 0.00209979 Vogelstein.atlas.p-value Vogelstein.cangenes.p-value 0.00209979 1.00000000 Vogelstein.cis.p-value Vogelstein.miscellaneous.p-value 1.00000000 0.00209979 Vogelstein.sanger.p-value waldman.atlas.p-value 0.00209979 0.00209979 waldman.cangenes.p-value waldman.cis.p-value 1.00000000 1.00000000 waldman.miscellaneous.p-value waldman.sanger.p-value 0.00209979 0.00209979 waldman.Vogelstein.p-value 0.00209979 > > # If only partial statistics are desired: > dSorensen(allTabsBP.4) atlas cangenes cis miscellaneous sanger Vogelstein atlas 0.0000000 0.9979188 0.6857639 0.3865031 0.3355482 0.3130545 cangenes 0.9979188 0.0000000 0.9896373 0.9960630 0.9963370 0.9967690 cis 0.6857639 0.9896373 0.0000000 0.5851216 0.5848033 0.5975309 miscellaneous 0.3865031 0.9960630 0.5851216 0.0000000 0.3174905 0.3351111 sanger 0.3355482 0.9963370 0.5848033 0.3174905 0.0000000 0.1195185 Vogelstein 0.3130545 0.9967690 0.5975309 0.3351111 0.1195185 0.0000000 waldman 0.2627947 0.9974359 0.6477858 0.2737170 0.3262840 0.3013601 waldman atlas 0.2627947 cangenes 0.9974359 cis 0.6477858 miscellaneous 0.2737170 sanger 0.3262840 Vogelstein 0.3013601 waldman 0.0000000 > duppSorensen(allTabsBP.4) atlas cangenes cis miscellaneous sanger Vogelstein atlas 0.0000000 1 0.7149878 0.4111390 0.3586962 0.3350683 cangenes 1.0000000 0 1.0000000 1.0000000 1.0000000 1.0000000 cis 0.7149878 1 0.0000000 0.6237490 0.6224203 0.6333811 miscellaneous 0.4111390 1 0.6237490 0.0000000 0.3446065 0.3618762 sanger 0.3586962 1 0.6224203 0.3446065 0.0000000 0.1360863 Vogelstein 0.3350683 1 0.6333811 0.3618762 0.1360863 0.0000000 waldman 0.2823131 1 0.6801719 0.2968117 0.3507062 0.3244082 waldman atlas 0.2823131 cangenes 1.0000000 cis 0.6801719 miscellaneous 0.2968117 sanger 0.3507062 Vogelstein 0.3244082 waldman 0.0000000 > seSorensen(allTabsBP.4) atlas cangenes cis miscellaneous sanger atlas 0.00000000 0.002079000 0.01776688 0.014977580 0.014073007 cangenes 0.00207900 0.000000000 0.01030900 0.003929258 0.003656295 cis 0.01776688 0.010309002 0.00000000 0.023483807 0.022869567 miscellaneous 0.01497758 0.003929258 0.02348381 0.000000000 0.016485388 sanger 0.01407301 0.003656295 0.02286957 0.016485388 0.000000000 Vogelstein 0.01338347 0.003225798 0.02179538 0.016271992 0.010072500 waldman 0.01186635 0.002560815 0.01968936 0.014040581 0.014847661 Vogelstein waldman atlas 0.013383469 0.011866345 cangenes 0.003225798 0.002560815 cis 0.021795381 0.019689356 miscellaneous 0.016271992 0.014040581 sanger 0.010072500 0.014847661 Vogelstein 0.000000000 0.014012289 waldman 0.014012289 0.000000000 > > > # Tipically, in a real study it would be interesting to scan tests > # along some ontologies and levels inside these ontologies: > # (which obviously will be a quite slow process) > # gc() > # set.seed(123) > # allBootTests_BP_MF_lev4to8 <- allEquivTestSorensen(allOncoGeneLists, > # boot = TRUE, > # geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db", > # ontos = c("BP", "MF"), GOLevels = 4:8) > # getPvalue(allBootTests_BP_MF_lev4to8) > # getEffNboot(allBootTests_BP_MF_lev4to8) > > proc.time() user system elapsed 119.07 7.48 126.64
goSorensen.Rcheck/tests/test_nonsense_genes.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(goSorensen) Attaching package: 'goSorensen' The following object is masked from 'package:utils': upgrade > > testError <- function(e) {return(e)} > > tryCatch(dSorensen("Sec1", onto = "BP"), error = testError) <simpleError in buildEnrichTable.character(x, y, check.table = check.table, ...): Argument 'y' is missing, 'x' and 'y' must be 'character' vectors of valid gene identifiers> > > data(allOncoGeneLists) > ?allOncoGeneLists > data(humanEntrezIDs) > > # Non-sense random gene lists. Generating Entrez-like gene identifiers, but random: > set.seed(1234567) > genList1 <- unique(as.character(sample.int(99999, size = 100))) > genList2 <- unique(as.character(sample.int(99999, size = 100))) > # Gene identifiers are numbers like Entrez identifiers at 'humanEntrezIDs', but random. > dSorensen(genList1, genList2, + listNames = c("genList1", "genList2"), + onto = "BP", GOLevel = 5, + geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") [1] NaN > duppSorensen(genList1, genList2, + listNames = c("genList1", "genList2"), + onto = "BP", GOLevel = 5, + geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") [1] NaN > seSorensen(genList1, genList2, + listNames = c("genList1", "genList2"), + onto = "BP", GOLevel = 5, + geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") [1] NaN > nonSenseTst <- equivTestSorensen(genList1, genList2, + listNames = c("genList1", "genList2"), + onto = "BP", GOLevel = 5, + geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > nonSenseTst No test performed due not finite (d - d0) / se statistic data: tab (d - d0) / se = NaN, p-value = NA alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 NaN sample estimates: Sorensen dissimilarity NaN attr(,"se") standard error NaN > tab <- getTable(nonSenseTst) > tab Enriched in genList2 Enriched in genList1 TRUE FALSE TRUE 0 0 FALSE 0 10148 > # Or, alternatively: > tab <- buildEnrichTable(genList1, genList2, + listNames = c("genList1", "genList2"), + onto = "BP", GOLevel = 5, + geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") > tab Enriched in genList2 Enriched in genList1 TRUE FALSE TRUE 0 0 FALSE 0 10148 > dSorensen(tab) [1] NaN > duppSorensen(tab) [1] NaN > seSorensen(tab) [1] NaN > equivTestSorensen(tab) No test performed due not finite (d - d0) / se statistic data: tab (d - d0) / se = NaN, p-value = NA alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 NaN sample estimates: Sorensen dissimilarity NaN attr(,"se") standard error NaN > > # Even more non-sense, letters non numeric-style like those at 'humanEntrezIDs': > set.seed(1234567) > genList1 <- unique(vapply(seq_len(100), function(i) { + paste0(sample(c(letters, LETTERS), 6, replace = TRUE), collapse = "") + }, FUN.VALUE = character(1))) > genList2 <- unique(vapply(seq_len(100), function(i) { + paste0(sample(c(letters, LETTERS), 6, replace = TRUE), collapse = "") + }, FUN.VALUE = character(1))) > > # Gene identifiers incompatible with those at 'humanEntrezIDs': > dSorensen(genList1, genList2, + listNames = c("genList1", "genList2"), + onto = "BP", GOLevel = 5, + geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") --> No gene can be mapped.... --> Expected input gene ID: 3309,8546,222698,2692,284359,56776 --> return NULL... --> No gene can be mapped.... --> Expected input gene ID: 54997,132243,3371,344018,84678,9184 --> return NULL... [1] NaN > duppSorensen(genList1, genList2, + listNames = c("genList1", "genList2"), + onto = "BP", GOLevel = 5, + geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") --> No gene can be mapped.... --> Expected input gene ID: 3007,11144,221400,734,51207,374768 --> return NULL... --> No gene can be mapped.... --> Expected input gene ID: 84225,9825,53405,5819,90780,84056 --> return NULL... [1] NaN > seSorensen(genList1, genList2, + listNames = c("genList1", "genList2"), + onto = "BP", GOLevel = 5, + geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") --> No gene can be mapped.... --> Expected input gene ID: 100137049,151195,23617,5888,4956,128497 --> return NULL... --> No gene can be mapped.... --> Expected input gene ID: 1235,440822,50487,57113,116369,6774 --> return NULL... [1] NaN > nonSenseTst <- equivTestSorensen(genList1, genList2, + listNames = c("genList1", "genList2"), + onto = "BP", GOLevel = 5, + geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") --> No gene can be mapped.... --> Expected input gene ID: 2241,4323,7040,2072,8654,190 --> return NULL... --> No gene can be mapped.... --> Expected input gene ID: 51087,5781,23492,84787,147700,7272 --> return NULL... > nonSenseTst No test performed due not finite (d - d0) / se statistic data: tab (d - d0) / se = NaN, p-value = NA alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 NaN sample estimates: Sorensen dissimilarity NaN attr(,"se") standard error NaN > tab <- getTable(nonSenseTst) > tab Enriched in genList2 Enriched in genList1 TRUE FALSE TRUE 0 0 FALSE 0 10148 > # Or, alternatively: > tab <- buildEnrichTable(genList1, genList2, + listNames = c("genList1", "genList2"), + onto = "BP", GOLevel = 5, + geneUniverse = humanEntrezIDs, orgPackg = "org.Hs.eg.db") --> No gene can be mapped.... --> Expected input gene ID: 578,84464,23230,23626,90,406 --> return NULL... --> No gene can be mapped.... --> Expected input gene ID: 18,132625,431707,84275,54890,2302 --> return NULL... > tab Enriched in genList2 Enriched in genList1 TRUE FALSE TRUE 0 0 FALSE 0 10148 > dSorensen(tab) [1] NaN > duppSorensen(tab) [1] NaN > seSorensen(tab) [1] NaN > equivTestSorensen(tab) No test performed due not finite (d - d0) / se statistic data: tab (d - d0) / se = NaN, p-value = NA alternative hypothesis: true equivalence limit d0 is less than 0.4444444 95 percent confidence interval: 0 NaN sample estimates: Sorensen dissimilarity NaN attr(,"se") standard error NaN > > proc.time() user system elapsed 282.85 7.68 299.37
goSorensen.Rcheck/goSorensen-Ex.timings
name | user | system | elapsed | |
allEquivTestSorensen | 0 | 0 | 0 | |
buildEnrichTable | 16.06 | 1.61 | 17.94 | |
dSorensen | 0.11 | 0.06 | 0.17 | |
duppSorensen | 0.19 | 0.02 | 0.22 | |
equivTestSorensen | 0.19 | 0.00 | 0.19 | |
getDissimilarity | 0.25 | 0.15 | 0.43 | |
getEffNboot | 1.19 | 0.07 | 1.25 | |
getNboot | 1.09 | 0.04 | 1.14 | |
getPvalue | 0.30 | 0.14 | 0.44 | |
getSE | 0.28 | 0.13 | 0.41 | |
getTable | 0.39 | 0.12 | 0.51 | |
getUpper | 0.23 | 0.14 | 0.38 | |
nice2x2Table | 0 | 0 | 0 | |
pbtAllOntosAndLevels | 0.16 | 0.00 | 0.16 | |
seSorensen | 0.00 | 0.02 | 0.02 | |
upgrade | 0.81 | 0.22 | 1.03 | |