Back to Multiple platform build/check report for BioC 3.16: simplified long |
|
This page was generated on 2023-04-12 11:04:58 -0400 (Wed, 12 Apr 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4502 |
palomino4 | Windows Server 2022 Datacenter | x64 | 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" | 4282 |
lconway | macOS 12.5.1 Monterey | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4310 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the baySeq package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/baySeq.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 128/2183 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
baySeq 2.32.0 (landing page) Thomas J. Hardcastle
| nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) / x86_64 | OK | OK | ERROR | |||||||||
palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.5.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
Package: baySeq |
Version: 2.32.0 |
Command: /home/biocbuild/bbs-3.16-bioc/R/bin/R CMD check --install=check:baySeq.install-out.txt --library=/home/biocbuild/bbs-3.16-bioc/R/site-library --timings baySeq_2.32.0.tar.gz |
StartedAt: 2023-04-10 19:09:37 -0400 (Mon, 10 Apr 2023) |
EndedAt: 2023-04-10 19:17:28 -0400 (Mon, 10 Apr 2023) |
EllapsedTime: 471.0 seconds |
RetCode: 1 |
Status: ERROR |
CheckDir: baySeq.Rcheck |
Warnings: NA |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.16-bioc/R/bin/R CMD check --install=check:baySeq.install-out.txt --library=/home/biocbuild/bbs-3.16-bioc/R/site-library --timings baySeq_2.32.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.16-bioc/meat/baySeq.Rcheck’ * using R version 4.2.3 (2023-03-15) * using platform: x86_64-pc-linux-gnu (64-bit) * using session charset: UTF-8 * checking for file ‘baySeq/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘baySeq’ version ‘2.32.0’ * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘baySeq’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed baySeq-package 30.571 0.167 30.740 getPriors 22.738 0.092 22.831 getLikelihoods 8.343 0.035 8.380 * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... ‘baySeq.Rnw’... OK ‘baySeq_generic.Rnw’... failed to complete the test ERROR Errors in running code in vignettes: when running code in ‘baySeq_generic.Rnw’ ... } <bytecode: 0x556fd6554e38> <environment: namespace:baySeq> --- function search by body --- Function getLikelihoods in namespace baySeq has this body. ----------- END OF FAILURE REPORT -------------- Fatal error: length > 1 in coercion to logical sh: 0: getcwd() failed: No such file or directory ... incomplete output. Crash? * checking re-building of vignette outputs ... NOTE Error(s) in re-building vignettes: --- re-building ‘baySeq.Rnw’ using Sweave Loading required package: GenomicRanges Loading required package: stats4 Loading required package: BiocGenerics Attaching package: ‘BiocGenerics’ The following objects are masked from ‘package:stats’: IQR, mad, sd, var, xtabs The following objects are masked from ‘package:base’: Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: ‘S4Vectors’ The following objects are masked from ‘package:base’: I, expand.grid, unname Loading required package: IRanges Loading required package: GenomeInfoDb Loading required package: abind Loading required package: parallel Finding priors...done. Length of priorReps:1000 Length of priorSubset:1000 Length of subset:1000 Length of postRows:1000 Finding priors...done. Finding posterior likelihoods...Length of priorReps:0 Length of priorSubset:3000 Length of subset:3000 Length of postRows:3000 Analysing part 1 of 1 Preparing data...........................................................done. Estimating likelihoods......done! done. Warning in summarisePosteriors(cD) : No orderings contained in countData object. Finding priors...done. Finding posterior likelihoods...Length of priorReps:0 Length of priorSubset:3000 Length of subset:3000 Length of postRows:3000 Analysing part 1 of 1 Preparing data.........................................................done. Estimating likelihoods......done! done. --- finished re-building ‘baySeq.Rnw’ --- re-building ‘baySeq_generic.Rnw’ using Sweave Loading required package: parallel Loading required package: GenomicRanges Loading required package: stats4 Loading required package: BiocGenerics Attaching package: ‘BiocGenerics’ The following objects are masked from ‘package:stats’: IQR, mad, sd, var, xtabs The following objects are masked from ‘package:base’: Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: ‘S4Vectors’ The following objects are masked from ‘package:base’: I, expand.grid, unname Loading required package: IRanges Loading required package: GenomeInfoDb Loading required package: abind Finding priors...done. Finding posterior likelihoods...Length of priorReps:0 Length of priorSubset:1000 Length of subset:1000 Length of postRows:1000 Analysing part 1 of 1 Preparing data..........................................................done. Estimating likelihoods......done! Warning in makeOrderings(listPosts[[cc]]) : No valid ordering function available. done. Finding priors...done. Finding posterior likelihoods...Length of priorReps:0 Length of priorSubset:1000 Length of subset:1000 Length of postRows:1000 Analysing part 1 of 1 Preparing data....................................................done. Estimating likelihoods......done! Warning in makeOrderings(listPosts[[cc]]) : No valid ordering function available. done. Finding priors...done. Finding posterior likelihoods...Length of priorReps:0 Length of priorSubset:1000 Length of subset:1000 Length of postRows:1000 Analysing part 1 of 1 Preparing data......................................................done. Estimating likelihoods......done! done. Finding priors...done. Finding posterior likelihoods...Length of priorReps:0 Length of priorSubset:1000 Length of subset:1000 Length of postRows:1000 Analysing part 1 of 1 Preparing data............................................................done. Estimating likelihoods......done! done. ----------- FAILURE REPORT -------------- --- failure: length > 1 in coercion to logical --- --- srcref --- : --- package (from environment) --- baySeq --- call from context --- getLikelihoods(nbCD, modelPriorSets = list(A = 1:100, B = 101:1000), cl = cl) --- call from argument --- pET %in% c("iteratively", "BIC") && (any(sapply(modelPriorValues, length) < 100) & sapply(modelPriorSets, is.null)) --- R stacktrace --- where 1: getLikelihoods(nbCD, modelPriorSets = list(A = 1:100, B = 101:1000), cl = cl) where 2: eval(expr, .GlobalEnv) where 3: eval(expr, .GlobalEnv) where 4: withVisible(eval(expr, .GlobalEnv)) where 5: doTryCatch(return(expr), name, parentenv, handler) where 6: tryCatchOne(expr, names, parentenv, handlers[[1L]]) where 7: tryCatchList(expr, classes, parentenv, handlers) where 8: tryCatch(expr, error = function(e) { call <- conditionCall(e) if (!is.null(call)) { if (identical(call[[1L]], quote(doTryCatch))) call <- sys.call(-4L) dcall <- deparse(call, nlines = 1L) prefix <- paste("Error in", dcall, ": ") LONG <- 75L sm <- strsplit(conditionMessage(e), "\n")[[1L]] w <- 14L + nchar(dcall, type = "w") + nchar(sm[1L], type = "w") if (is.na(w)) w <- 14L + nchar(dcall, type = "b") + nchar(sm[1L], type = "b") if (w > LONG) prefix <- paste0(prefix, "\n ") } else prefix <- "Error : " msg <- paste0(prefix, conditionMessage(e), "\n") .Internal(seterrmessage(msg[1L])) if (!silent && isTRUE(getOption("show.error.messages"))) { cat(msg, file = outFile) .Internal(printDeferredWarnings()) } invisible(structure(msg, class = "try-error", condition = e)) }) where 9: try(withVisible(eval(expr, .GlobalEnv)), silent = TRUE) where 10: evalFunc(ce, options) where 11: tryCatchList(expr, classes, parentenv, handlers) where 12: tryCatch(evalFunc(ce, options), finally = { cat("\n") sink() }) where 13: driver$runcode(drobj, chunk, chunkopts) where 14: utils::Sweave(...) where 15: engine$weave(file, quiet = quiet, encoding = enc) where 16: doTryCatch(return(expr), name, parentenv, handler) where 17: tryCatchOne(expr, names, parentenv, handlers[[1L]]) where 18: tryCatchList(expr, classes, parentenv, handlers) where 19: tryCatch({ engine$weave(file, quiet = quiet, encoding = enc) setwd(startdir) output <- find_vignette_product(name, by = "weave", engine = engine) if (!have.makefile && vignette_is_tex(output)) { texi2pdf(file = output, clean = FALSE, quiet = quiet) output <- find_vignette_product(name, by = "texi2pdf", engine = engine) } }, error = function(e) { OK <<- FALSE message(gettextf("Error: processing vignette '%s' failed with diagnostics:\n%s", file, conditionMessage(e))) }) where 20: tools:::.buildOneVignette("baySeq_generic.Rnw", "/home/biocbuild/bbs-3.16-bioc/meat/baySeq.Rcheck/vign_test/baySeq", TRUE, FALSE, "baySeq_generic", "", "/tmp/RtmpBwuygy/file20d597400557eb.rds") --- value of length: 2 type: logical --- A B FALSE FALSE --- function from context --- function (cD, prs, pET = "BIC", marginalise = FALSE, subset = NULL, priorSubset = NULL, bootStraps = 1, bsNullOnly = TRUE, conv = 1e-04, nullData = FALSE, weightByLocLikelihoods = TRUE, modelPriorSets = list(), modelPriorValues = list(), returnAll = FALSE, returnPD = FALSE, verbose = TRUE, discardSampling = FALSE, modelLikes = TRUE, cl = NULL, tempFile = NULL, largeness = 1e+08) { .likeDataObs <- function(xdata, densityFunction, groups, consensus = FALSE, differentWeights = differentWeights, modelLikes = TRUE) { logsum <- function(x) { max(x, max(x, na.rm = TRUE) + log(sum(exp(x - max(x, na.rm = TRUE)), na.rm = TRUE)), na.rm = TRUE) } PDgivenr.Consensus <- function(number, cts, xrobs, xcobs, sobs, priors, groups, priorWeights, numintSamp, differentWeights, densityFunction) { prior <- lapply(1:ncol(priors), function(jj) priors[, jj]) repcts <- apply(cts, (1:length(dim(cts)))[-2], function(x) rep(x, nrow(priors))) xobs <- c(xrobs, lapply(xcobs, function(obs) array(obs, dim = c(ncol(cts) * nrow(priors), dim(obs)[-c(1:2)], 1))), lapply(sobs, function(obs) { slobs <- obs if (is.vector(slobs) || is.factor(slobs) || length(dim(slobs)) == 1) { return(rep(slobs, nrow(priors))) } else apply(slobs, 2:length(dim(slobs)), function(x) rep(x, nrow(priors))) })) xobs <- c(xobs, list(dim = datdim)) datalikes <- matrix(densityFunction(repcts, observables = xobs, parameters = lapply(prior, function(priorpar) rep(priorpar, each = ncol(cts)))), ncol = ncol(cts), byrow = TRUE) if (differentWeights) { ld <- sapply(1:length(groups), function(grpnum) { group <- groups[[grpnum]] wts <- priorWeights[[grpnum]] sampInfo <- numintSamp[[grpnum]] sum(sapply(1:length(levels(group)), function(gg) { selcts <- group == levels(group)[gg] & !is.na(group) weightings <- wts[[gg]] nzWts <- weightings != 0 wsInfo <- which(sampInfo[[gg]][, 1] == number) logsum(rowSums(datalikes[nzWts, selcts, drop = FALSE], na.rm = TRUE) + log(weightings[nzWts])) - log(sum(weightings[nzWts])) })) }) } else { weightings <- priorWeights[[1]][[1]] wsInfo <- which(numintSamp[[1]][[1]][, 1] == number) weightings[numintSamp[[1]][[1]][wsInfo, 2]] <- weightings[numintSamp[[1]][[1]][wsInfo, 2]] - numintSamp[[1]][[1]][wsInfo, 3] nzWts <- weightings != 0 datalikes <- datalikes[nzWts, , drop = FALSE] lweight <- log(weightings[nzWts]) lsumweight <- log(sum(weightings[nzWts])) matld <- sapply(whmat, function(grp) logsum(rowSums(datalikes[, grp, drop = FALSE]) + lweight) - lsumweight) ld <- sapply(split(matld[matmat], zid), sum) } ld } PDgivenr <- function(number, cts, xrobs, xcobs, sobs, priors, group, wts, sampInfo, differentWeights, modelLikes = TRUE, densityFunction) { glikes <- sapply(1:length(levels(group)), function(gg) { selcts <- group == levels(group)[gg] & !is.na(group) weightings <- wts[[c(1, gg)[differentWeights + 1]]] nzWts <- weightings != 0 prior <- lapply(1:ncol(priors[[gg]]), function(jj) priors[[gg]][nzWts, jj]) xobs <- c(xrobs, lapply(xcobs, function(obs) array(.sliceArray(list(NULL, which(selcts)), obs, drop = FALSE), dim = c(sum(nzWts) * sum(selcts), dim(obs)[-(1:2)], 1))), lapply(sobs, function(obs) { slobs <- .sliceArray(list(which(selcts)), obs, drop = FALSE) if (is.vector(slobs) || is.factor(slobs) || length(dim(slobs)) == 1) { return(rep(slobs, sum(nzWts))) } else apply(slobs, 2:length(dim(slobs)), function(x) rep(x, sum(nzWts))) })) xobs <- c(xobs, list(dim = datdim)) repcts <- apply(.sliceArray(list(NULL, which(selcts)), cts, drop = FALSE), (1:length(dim(cts)))[-2], function(x) rep(x, sum(nzWts))) wsInfo <- which(sampInfo[[c(1, gg)[differentWeights + 1]]][, 1] == number) likeD <- rowSums(matrix(densityFunction(repcts, observables = xobs, parameters = lapply(prior, function(priorpar) rep(priorpar, each = sum(selcts)))), ncol = sum(selcts), byrow = TRUE), na.rm = TRUE) + log(weightings[nzWts]) - log(sum(weightings[nzWts])) if (modelLikes) { mL <- logsum(likeD) return(mL) } else { lD <- rep(-Inf, nrow(priors[[gg]])) lD[nzWts] <- likeD return(lD) } }) if (modelLikes) { return(sum(glikes)) } else return(glikes) } xid <- xdata$id cts <- xdata$data xrobs <- xdata$rowObs xcobs <- xdata$cellObs if (consensus) { PDlikes <- PDgivenr.Consensus(number = xid, cts = cts, xrobs = xrobs, xcobs = xcobs, sobs = sampleObservables, priors = CDpriors, groups = groups, priorWeights = priorWeights, numintSamp = numintSamp, differentWeights = differentWeights, densityFunction = densityFunction[[1]]) } else { PDlikes <- lapply(1:length(CDpriors), function(gg) PDgivenr(number = xid, cts = cts, xrobs = xrobs, xcobs = xcobs, sobs = sampleObservables, priors = CDpriors[[gg]], group = groups[[gg]], wts = priorWeights[[c(1, gg)[differentWeights + 1]]], sampInfo = numintSamp[[c(1, gg)[differentWeights + 1]]], differentWeights = differentWeights, modelLikes = modelLikes, densityFunction <- densityFunction[[gg]])) if (modelLikes) PDlikes <- unlist(PDlikes) } return(PDlikes) } if (!inherits(cD, what = "countData")) stop("variable 'cD' must be of or descend from class 'countData'") if (length(modelPriorValues) == 0 & !missing(prs)) modelPriorValues <- prs listPosts <- list() if (!(class(subset) == "integer" | class(subset) == "numeric" | is.null(subset))) stop("'subset' must be integer, numeric, or NULL") if (is.null(subset)) subset <- 1:nrow(cD) if (is.null(priorSubset)) priorSubset <- subset if (length(modelPriorSets) == 0) modelPriorSets <- list(subset) if (any(duplicated(unlist(modelPriorSets)))) stop("Some element appears twice in the modelPriorSets list") if (!all(subset %in% unlist(modelPriorSets))) stop("The modelPriorSets list does not contain all the data specified in the `subset' parameter (or all data, if this parameter is not specified).") modelPriorSets <- lapply(modelPriorSets, function(x) x[x %in% subset]) if (is.numeric(modelPriorValues)) modelPriorValues <- lapply(modelPriorSets, function(x) modelPriorValues) if (is.list(modelPriorValues) && length(modelPriorValues) == 0) { modelPriorValues <- lapply(modelPriorSets, function(x) rep(NA, length(cD@groups))) } if (length(modelPriorValues) != length(modelPriorSets)) stop("The length of 'modelPriorValues' (if a list) must be identical to that of 'modelPriorSets' (or zero).") if (pET %in% c("none", "iteratively")) lapply(modelPriorValues, function(prs) { if (length(prs) != length(cD@groups)) stop("All members of modelPriorValues must be of same length as the number of groups in the 'cD' object") if (any(prs < 0)) stop("Negative values in all members of modelPriorValues are not permitted") if (!nullData & sum(prs) != 1) stop("If 'nullData = FALSE' then all members of modelPriorValues should sum to 1.") if (nullData & sum(prs) >= 1) stop("If 'nullData = TRUE' then all members of modelPriorValues should sum to less than 1.") }) if (pET %in% c("iteratively", "BIC") && (any(sapply(modelPriorValues, length) < 100) & sapply(modelPriorSets, is.null))) warning("Some subsets contain fewer than one hundred members; estimation of model priors may be unstable") if (is.null(conv)) conv <- 0 groups <- cD@groups CDpriors <- cD@priors$priors cdDF <- cD@densityFunction if (length(cdDF) == 1) cdDF <- lapply(1:length(groups), function(ii) cdDF[[1]]) if (length(cD@densityFunction) == 1) { densityFunction <- lapply(1:length(groups), function(ii) cD@densityFunction[[1]]@density) } else densityFunction <- lapply(1:length(groups), function(ii) cD@densityFunction[[ii]]@density) numintSamp <- cD@priors$sampled weights <- cD@priors$weights if (is.null(weights)) weights <- rep(1, nrow(cD@priors$sampled)) nullWeights <- cD@priors$nullWeights data <- cD@data datdim <- dim(cD) sampleObservables <- cD@sampleObservables rowObservables <- cD@rowObservables if (!("seglens" %in% names(cD@cellObservables) || "seglens" %in% names(rowObservables))) rowObservables <- c(rowObservables, list(seglens = rep(1, nrow(cD)))) if (!("libsizes" %in% names(sampleObservables))) sampleObservables <- c(sampleObservables, list(seglens = rep(1, ncol(cD)))) if (is.matrix(CDpriors)) consensus <- TRUE else consensus <- FALSE if (is.numeric(weights) & is.matrix(numintSamp) & bootStraps == 1 & !nullData) { differentWeights <- FALSE numintSamp <- list(list(numintSamp)) priorWeights <- .constructWeights(numintSamp = numintSamp, weights = weights, CDpriors = CDpriors, consensus = consensus) } else { differentWeights <- TRUE if (discardSampling) numintSamp[, 1] <- NA if (is.matrix(numintSamp)) numintSamp <- lapply(groups, function(x) lapply(1:length(levels(x)), function(z) numintSamp)) if (is.null(weights)) weights <- lapply(numintSamp, function(x) lapply(x, function(z) weights = rep(1, nrow(z)))) if (is.numeric(weights)) weights <- lapply(numintSamp, function(x) lapply(x, function(z) weights = weights)) priorWeights <- .constructWeights(numintSamp = numintSamp, weights = weights, CDpriors = CDpriors, consensus = consensus) } if (nullData) { ndelocGroup <- which(unlist(lapply(cD@groups, function(x) all(x[!is.na(x)] == x[!is.na(x)][1])))) if (length(ndelocGroup) == 0) stop("If 'nullData = TRUE' then there must exist some vector in groups whose members are all identical") else ndelocGroup <- ndelocGroup[1] nullFunction <- cD@densityFunction[[ndelocGroup]]@nullFunction modifyNullPriors <- cD@densityFunction[[ndelocGroup]]@modifyNullPriors if (is.null(body(nullFunction)) & nullData) { warning("nullData cannot be TRUE if no nullFunction is specified within the supplied densityFunction object.") nullData <- FALSE } else { groups <- c(groups, null = groups[ndelocGroup]) densityFunction <- c(densityFunction, densityFunction[ndelocGroup]) cdDF <- c(cdDF, cdDF[ndelocGroup]) ndenulGroup <- length(groups) numintSamp[[ndenulGroup]] <- numintSamp[[ndelocGroup]] CDpriors[[ndenulGroup]] <- modifyNullPriors(CDpriors[[ndelocGroup]], datdim) if (!consensus) ndePriors <- nullFunction(CDpriors[[ndelocGroup]][[1]]) else ndePriors <- nullFunction(CDpriors) if (weightByLocLikelihoods && "locLikelihoods" %in% slotNames(cD) && nrow(cD@locLikelihoods) > 0) { newts <- exp(rowSums(log(1 - exp(cD@locLikelihoods)), na.rm = TRUE))[cD@priors$sampled[, 1]] weights <- lapply(groups, function(x) lapply(levels(x), function(jj) return(1 - newts))) weights[[ndenulGroup]][[1]] <- newts cD } else { if (is.null(nullWeights)) { nullweights <- priorWeights[[ndelocGroup]][[1]] sep <- bimodalSeparator(ndePriors[ndePriors > -Inf], nullweights[ndePriors > -Inf]) modelPriorValues <- lapply(modelPriorValues, function(prs) c(prs, 1 - sum(prs))) priorWeights[[ndenulGroup]] <- priorWeights[[ndelocGroup]] priorWeights[[ndenulGroup]][[1]] <- priorWeights[[ndenulGroup]][[1]] * as.numeric(ndePriors <= sep) priorWeights[[ndelocGroup]][[1]] <- priorWeights[[ndelocGroup]][[1]] * as.numeric(ndePriors > sep) weights[[ndenulGroup]] <- weights[[ndelocGroup]] weights[[ndelocGroup]][[1]][numintSamp[[ndelocGroup]][[1]][, 2] %in% which(ndePriors <= sep)] <- 0 weights[[ndenulGroup]][[1]][numintSamp[[ndenulGroup]][[1]][, 2] %in% which(ndePriors > sep)] <- 0 } else weights[[ndenulGroup]] <- nullWeights } priorWeights <- .constructWeights(numintSamp = numintSamp, weights = weights, CDpriors = CDpriors, consensus = consensus) } } propest <- NULL converged <- FALSE if (consensus) { z <- lapply(groups, function(grp) split(1:ncol(cD), as.numeric(grp))) whmat <- unique(do.call("c", z)) matmat <- match(do.call("c", z), whmat) zid <- rep(1:length(z), sapply(z, length)) } else { matmat <- NULL whmat <- NULL zid <- NULL } if (!is.null(cl)) clusterExport(cl, c("CDpriors", "datdim", "densityFunction", "sampleObservables", ".sliceArray", "matmat", "whmat", "zid"), envir = environment()) if (verbose) message("Finding posterior likelihoods...", appendLF = FALSE) if (bootStraps > 1) { priorReps <- unique(unlist(sapply(numintSamp, function(x) as.integer(unique(sapply(x, function(z) z[, 1])))))) priorReps <- priorReps[priorReps > 0 & !is.na(priorReps)] if (!all(priorReps %in% 1:nrow(cD@data)) & bootStraps > 1) { warning("Since the sampled values in the '@priors' slot are not available, bootstrapping is not possible.") bootStraps <- 1 } } else priorReps <- c() message("Length of priorReps:", length(priorReps)) message("Length of priorSubset:", length(priorSubset)) message("Length of subset:", length(subset)) postRows <- unique(c(priorReps, priorSubset, subset)) message("Length of postRows:", length(postRows)) .fastUniques <- function(x) { if (nrow(x) > 1) { return(c(TRUE, rowSums(x[-1L, , drop = FALSE] == x[-nrow(x), , drop = FALSE]) != ncol(x))) } else return(TRUE) } whunq <- TRUE ncuts <- ceiling(length(groups) * as.double(nrow(cD))/largeness) if (ncuts == 1) splitRows <- list(postRows) else splitRows <- split(postRows, cut(postRows, ncuts, labels = FALSE)) posteriors <- NULL for (cc in 1:bootStraps) { if (cc > 1) { if (!bsNullOnly | !nullData) { weights <- lapply(1:length(numintSamp), function(ii) lapply(1:length(numintSamp[[ii]]), function(jj) exp(posteriors[numintSamp[[ii]][[jj]][, 1], ii]))) } else { weights <- lapply(1:length(numintSamp), function(ii) lapply(1:length(numintSamp[[ii]]), function(jj) { if (ii == ndenulGroup) weights = exp(posteriors[numintSamp[[ii]][[jj]][, 1], ii]) else weights = 1 - exp(posteriors[numintSamp[[ii]][[jj]][, 1], ndenulGroup]) weights })) } } ps <- NULL if (is.null(cl)) { if (cc > 1) priorWeights <- .constructWeights(numintSamp = numintSamp, weights = weights, CDpriors = CDpriors) } for (ss in 1:length(splitRows)) { if (verbose) message("Analysing part ", ss, " of ", length(splitRows)) if (verbose) message("Preparing data...", appendLF = FALSE) sliceData <- list() sliceData <- lapply(splitRows[[ss]], function(id) { if (verbose) if (sample(1:round(nrow(data)/50), 1) == 1) message(".", appendLF = FALSE) list(id = id, data = asub(data, id, dims = 1, drop = FALSE), cellObs = lapply(cD@cellObservables, function(cob) asub(cob, id, dims = 1, drop = FALSE)), rowObs = lapply(rowObservables, function(rob) asub(rob, id, dims = 1, drop = FALSE))) }) if (verbose) message("done.") if (verbose) message("Estimating likelihoods...", appendLF = FALSE) if (is.null(cl)) { tps <- lapply(sliceData, .likeDataObs, densityFunction = densityFunction, groups = groups, consensus = consensus, differentWeights = differentWeights, modelLikes = modelLikes) } else { clusterExport(cl, "numintSamp", envir = environment()) clusterCall(cl, .constructWeights, numintSamp = numintSamp, weights = weights, CDpriors = CDpriors, withinCluster = TRUE, consensus = consensus) getLikesEnv <- new.env(parent = .GlobalEnv) environment(.likeDataObs) <- getLikesEnv tps <- parLapplyLB(cl[1:min(length(cl), length(postRows[whunq]))], sliceData, .likeDataObs, densityFunction = densityFunction, groups = groups, consensus = consensus, differentWeights = differentWeights, modelLikes = modelLikes) } if (!is.null(tempFile)) save(tps, file = paste(tempFile, "_", ss, ".RData", sep = "")) if (verbose) message("...done!") ps <- c(ps, tps) } rps <- matrix(NA, ncol = length(groups), nrow = nrow(cD@data)) rps[postRows[whunq], ] <- do.call("rbind", ps) if (returnPD) return(rps) restprs <- lapply(1:length(modelPriorSets), function(pp) { pSub <- intersect(priorSubset, modelPriorSets[[pp]]) prs <- modelPriorValues[[pp]] if (pET == "iterative" || (pET == "BIC" & all(is.na(modelPriorValues[[pp]])))) { if (length(pSub) == nrow(cD) && all(1:nrow(cD) == pSub)) pps <- rps else pps <- rps[pSub, , drop = FALSE] restprs <- getPosteriors(ps = pps, prs, pET = pET, marginalise = FALSE, groups = groups, priorSubset = NULL, eqOverRep = lapply(cdDF, function(x) x@equalOverReplicates(dim(cD))), cl = cl)$priors } else restprs <- prs restprs }) restprs <- lapply(restprs, function(x) { names(x) <- names(groups) x }) names(restprs) <- names(modelPriorSets) ppsPosts <- lapply(1:length(modelPriorSets), function(pp) { pSub <- postRows if (length(pSub) == nrow(cD) && all(1:nrow(cD) == pSub)) pps <- rps else pps <- rps[pSub, , drop = FALSE] pps <- getPosteriors(ps = pps, prs = restprs[[pp]], pET = "none", marginalise = marginalise, groups = groups, priorSubset = NULL, cl = cl) list(pps = pps, pSub = pSub) }) if (is.null(posteriors)) posteriors <- matrix(NA, ncol = length(groups), nrow = nrow(cD@data)) compPosts <- do.call("c", lapply(ppsPosts, function(x) x$pSub)) newPosts <- posteriors for (ii in 1:length(ppsPosts)) { newPosts[ppsPosts[[ii]]$pSub, ] <- ppsPosts[[ii]]$pps$posteriors } if (any(!is.na(posteriors))) if (all(abs(exp(posteriors[compPosts, , drop = FALSE]) - exp(newPosts[compPosts, , drop = FALSE])) < conv)) converged <- TRUE posteriors <- newPosts cat(".") if (returnAll | converged | cc == bootStraps) { retPosts <- posteriors retPosts[priorReps[!(priorReps %in% subset)], ] <- NA nullPosts <- matrix(ncol = 0, nrow = 0) if (nullData) { nullPosts <- retPosts[, ndenulGroup, drop = FALSE] retPosts <- retPosts[, -ndenulGroup, drop = FALSE] } colnames(retPosts) <- names(cD@groups) if (nullData) { cD@priors$weights <- weights[-ndenulGroup] cD@priors$nullWeights <- weights[[ndenulGroup]] } else cD@priors$weights <- weights listPosts[[cc]] <- (new(class(cD), cD, posteriors = retPosts, nullPosts = nullPosts, priorModels = restprs)) listPosts[[cc]] <- makeOrderings(listPosts[[cc]]) } if (converged) (break)() } if (!is.null(cl)) clusterEvalQ(cl, rm(list = ls())) if (verbose) message("done.") if (!returnAll) return(listPosts[[cc]]) else { if (length(listPosts) == 1) return(listPosts[[1]]) else return(listPosts) } } <bytecode: 0x56527d564940> <environment: namespace:baySeq> --- function search by body --- Function getLikelihoods in namespace baySeq has this body. ----------- END OF FAILURE REPORT -------------- Fatal error: length > 1 in coercion to logical SUMMARY: processing the following file failed: ‘baySeq_generic.Rnw’ Error: Vignette re-building failed. Execution halted * checking PDF version of manual ... OK * DONE Status: 1 ERROR, 1 NOTE See ‘/home/biocbuild/bbs-3.16-bioc/meat/baySeq.Rcheck/00check.log’ for details.
baySeq.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.16-bioc/R/bin/R CMD INSTALL baySeq ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.16-bioc/R/site-library’ * installing *source* package ‘baySeq’ ... ** using staged installation ** R ** data ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (baySeq)
baySeq.Rcheck/baySeq-Ex.timings
name | user | system | elapsed | |
allModels | 0.252 | 0.001 | 0.251 | |
baySeq-classes | 0.105 | 0.004 | 0.110 | |
baySeq-package | 30.571 | 0.167 | 30.740 | |
bimodalSep | 0.001 | 0.000 | 0.001 | |
densityFunction | 0 | 0 | 0 | |
getLibsizes | 0.005 | 0.000 | 0.005 | |
getLikelihoods | 8.343 | 0.035 | 8.380 | |
getPosteriors | 0.004 | 0.000 | 0.005 | |
getPriors | 22.738 | 0.092 | 22.831 | |
getTPs | 0.007 | 0.000 | 0.007 | |
makeOrderings | 0.037 | 0.000 | 0.036 | |
marginaliseEqual | 0.233 | 0.005 | 0.236 | |
marginalisePairwise | 0.233 | 0.003 | 0.236 | |
plotMA.CD | 0.023 | 0.001 | 0.022 | |
plotPosteriors | 0.052 | 0.004 | 0.055 | |
plotPriors | 0.031 | 0.000 | 0.031 | |
selectTop | 0.014 | 0.000 | 0.014 | |
summarisePosteriors | 0.006 | 0.000 | 0.005 | |
topCounts | 0.018 | 0.000 | 0.017 | |