Back to Multiple platform build/check report for BioC 3.16: simplified long |
|
This page was generated on 2023-04-12 11:05:11 -0400 (Wed, 12 Apr 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4502 |
palomino4 | Windows Server 2022 Datacenter | x64 | 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" | 4282 |
lconway | macOS 12.5.1 Monterey | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4310 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the MungeSumstats package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/MungeSumstats.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 1309/2183 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
MungeSumstats 1.6.0 (landing page) Alan Murphy
| nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.5.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
Package: MungeSumstats |
Version: 1.6.0 |
Command: /home/biocbuild/bbs-3.16-bioc/R/bin/R CMD check --install=check:MungeSumstats.install-out.txt --library=/home/biocbuild/bbs-3.16-bioc/R/site-library --timings MungeSumstats_1.6.0.tar.gz |
StartedAt: 2023-04-10 22:15:51 -0400 (Mon, 10 Apr 2023) |
EndedAt: 2023-04-10 22:39:19 -0400 (Mon, 10 Apr 2023) |
EllapsedTime: 1407.6 seconds |
RetCode: 0 |
Status: OK |
CheckDir: MungeSumstats.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.16-bioc/R/bin/R CMD check --install=check:MungeSumstats.install-out.txt --library=/home/biocbuild/bbs-3.16-bioc/R/site-library --timings MungeSumstats_1.6.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.16-bioc/meat/MungeSumstats.Rcheck’ * using R version 4.2.3 (2023-03-15) * using platform: x86_64-pc-linux-gnu (64-bit) * using session charset: UTF-8 * checking for file ‘MungeSumstats/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘MungeSumstats’ version ‘1.6.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘MungeSumstats’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed get_genome_builds 61.867 5.945 68.200 format_sumstats 33.108 3.776 37.082 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘testthat.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... ‘MungeSumstats.Rmd’ using ‘UTF-8’... OK ‘OpenGWAS.Rmd’ using ‘UTF-8’... OK ‘docker.Rmd’ using ‘UTF-8’... OK NONE * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: OK
MungeSumstats.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.16-bioc/R/bin/R CMD INSTALL MungeSumstats ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.16-bioc/R/site-library’ * installing *source* package ‘MungeSumstats’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (MungeSumstats)
MungeSumstats.Rcheck/tests/testthat.Rout
R version 4.2.3 (2023-03-15) -- "Shortstop Beagle" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > library(MungeSumstats) > > test_check("MungeSumstats") Collecting metadata from Open GWAS. Filtering metadata by substring criteria. Found 3 GWAS datasets matching search criteria across: - 3 trait(s) - 1 population(s) - 2 category(ies) - 2 subcategory(ies) - 2 publication(s) - 2 consortia(ium) - 1 genome build(s) Collecting metadata from Open GWAS. Filtering metadata by substring criteria. Filtering metadata by sample/case/control/SNP size criteria. Excluding sample/case/control size with NAs. Found 3 GWAS datasets matching search criteria across: - 3 trait(s) - 1 population(s) - 2 category(ies) - 2 subcategory(ies) - 2 publication(s) - 2 consortia(ium) - 1 genome build(s) Collecting metadata from Open GWAS. Filtering metadata by substring criteria. Found 45 GWAS datasets matching search criteria across: - 42 trait(s) - 3 population(s) - 2 category(ies) - 2 subcategory(ies) - 7 publication(s) - 5 consortia(ium) - 1 genome build(s) Downloading VCF ==> /tmp/RtmpiLPU1z/ieu-a-298.vcf.gz Downloading with download.file. trying URL 'https://gwas.mrcieu.ac.uk/files/ieu-a-298/ieu-a-298.vcf.gz' Content type 'application/gzip' length 234480 bytes (228 KB) ================================================== downloaded 228 KB Downloading VCF index ==> https://gwas.mrcieu.ac.uk/files/ieu-a-298/ieu-a-298.vcf.gz.tbi Downloading with download.file. trying URL 'https://gwas.mrcieu.ac.uk/files/ieu-a-298/ieu-a-298.vcf.gz.tbi' Content type 'application/gzip' length 37803 bytes (36 KB) ================================================== downloaded 36 KB Processing 1 datasets from Open GWAS. ========== Processing dataset : a-fake-id ========== Downloading VCF ==> /tmp/RtmpiLPU1z/a-fake-id.vcf.gz Downloading with download.file. trying URL 'https://gwas.mrcieu.ac.uk/files/a-fake-id/a-fake-id.vcf.gz' Processing 1 datasets from Open GWAS. ========== Processing dataset : ieu-a-298 ========== Using previously downloaded VCF. Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/ieu-a-298/ieu-a-298.tsv.gz Loading required namespace: GenomicFiles Using local VCF. File already tabix-indexed. Finding empty VCF columns based on first 10,000 rows. 1 sample detected: ieu-a-298 Constructing ScanVcfParam object. VCF contains: 10,684 variant(s) x 1 sample(s) Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Checking for empty columns. Unlisting 4 columns. Time difference of 0.7 secs VCF data.table contains: 10,684 rows x 11 columns. Time difference of 1.3 secs Renaming ID as SNP. VCF file has -log10 P-values; these will be converted to unadjusted p-values in the 'P' column. No INFO (SI) column detected. Standardising column headers. First line of summary statistics file: SNP chr BP end REF ALT FILTER ES SE LP SS P Summary statistics report: - 10,684 rows - 10,684 unique variants - 553 genome-wide significant variants (P<5e-8) - 22 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Ensuring that the N column is all integers. The sumstats N column is not all integers, this could effect downstream analysis. These will be converted to integers. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. N already exists within sumstats_dt. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/ieu-a-298/ieu-a-298.tsv.gz Summary statistics report: - 10,684 rows (100% of original 10,684 rows) - 10,684 unique variants - 553 genome-wide significant variants (P<5e-8) - 22 chromosomes Done munging in 0.061 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 END FILTER BETA SE LP N 1: rs76805690 1 2256288 C A 2256288 PASS 0.0389 0.0175 1.58536 74046 2: rs75379543 1 2261983 C A 2261983 PASS 0.0427 0.0167 1.96738 74046 3: rs75273719 1 2263666 G A 2263666 PASS 0.0502 0.0171 2.47353 74046 4: rs903904 1 2263888 C T 2263888 PASS 0.0413 0.0169 1.82769 74046 P 1: 0.025980051 2: 0.010780031 3: 0.003361012 4: 0.014869967 Returning path to saved data. ieu-a-298 : Done in 0.061 minutes. Done with all processing in 0.06 minutes. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f422af8e9bb.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f424e70f188 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A0 A1 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f422af8e9bb.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4272ad7d3d.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f424e70f188 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4272ad7d3d.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4227e7870.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f423943e2dd Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A2 A1 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for correct direction of A1 (reference) and A2 (alternative allele). Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Loading required package: stats4 Attaching package: 'S4Vectors' The following objects are masked from 'package:base': I, expand.grid, unname BSgenome::snpsById done in 40 seconds. There are 47 SNPs where A1 doesn't match the reference genome. These will be flipped with their effect columns. Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicate SNPs from SNP ID. Checking for SNPs with duplicated base-pair positions. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for bi-allelic SNPs. Warning: When method is an integer, must be >0. 67 SNPs (72%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4227e7870.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.694 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 G A 0.63060 -0.017 0.003 2.359e-10 3: rs34305371 1 72733610 G A 0.91231 -0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4226fcd880.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f423943e2dd Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Ensuring all SNPs are on the reference genome. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 17 seconds. Checking for correct direction of A1 (reference) and A2 (alternative allele). There are 46 SNPs where A1 doesn't match the reference genome. These will be flipped with their effect columns. Checking for missing data. Checking for duplicate columns. Checking for duplicate SNPs from SNP ID. Checking for SNPs with duplicated base-pair positions. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for bi-allelic SNPs. Warning: When method is an integer, must be >0. 67 SNPs (72%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4226fcd880.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.296 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 G A 0.63060 -0.017 0.003 2.359e-10 3: rs34305371 1 72733610 G A 0.91231 -0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42465eb2ad.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42a4b31d Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicate SNPs from SNP ID. Checking for SNPs with duplicated base-pair positions. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for bi-allelic SNPs. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 19 seconds. 1 SNPs are non-biallelic. These will be removed. Writing in tabular format ==> /tmp/RtmpiLPU1z/snp_bi_allelic.tsv.gz Warning: When method is an integer, must be >0. 46 SNPs (50%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42465eb2ad.tsv.gz Summary statistics report: - 92 rows (98.9% of original 93 rows) - 92 unique variants - 69 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.331 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f422730fa4b.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42a4b31d Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicate SNPs from SNP ID. Checking for SNPs with duplicated base-pair positions. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for bi-allelic SNPs. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 19 seconds. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f422730fa4b.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.339 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42732d7e1b.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f422c3adb30 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Ensuring parameters comply with LDSC format. Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. 1 SNP IDs are not correctly formatted. These will be corrected from the reference genome. Loading SNPlocs data. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Ensuring all SNPs are on the reference genome. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 22 seconds. Checking for correct direction of A1 (reference) and A2 (alternative allele). There are 46 SNPs where A1 doesn't match the reference genome. These will be flipped with their effect columns. Checking for missing data. Checking for duplicate columns. Checking for duplicate SNPs from SNP ID. Checking for SNPs with duplicated base-pair positions. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for bi-allelic SNPs. Computing Z-score from P using formula: `sign(BETA)*sqrt(stats::qchisq(P,1,lower=FALSE)` Assigning N=1001 for all SNPs. 67 SNPs (72%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42732d7e1b.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.404 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P IMPUTATION_SNP 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 NA 2: rs11210860 1 43982527 G A 0.63060 -0.017 0.003 2.359e-10 NA 3: rs34305371 1 72733610 G A 0.91231 -0.035 0.005 3.762e-14 NA 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 NA flipped Z IMPUTATION_z_score_p N 1: NA 5.630777 TRUE 1001 2: TRUE -6.335939 TRUE 1001 3: TRUE -7.568968 TRUE 1001 4: NA -5.630488 TRUE 1001 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4258be37d0.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42526137ce Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval N_CON N_CAS Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Computing effective sample size using the LDSC method: Neff = (N_CAS+N_CON) * (N_CAS/(N_CAS+N_CON)) / mean((N_CAS/(N_CAS+N_CON))[(N_CAS+N_CON)==max(N_CAS+N_CON)])) Computing sample size using the sum method: N = N_CAS + N_CON Computing effective sample size using the GIANT method: Neff = 2 / (1/N_CAS + 1/N_CON) Computing effective sample size using the METAL method: Neff = 4 / (1/N_CAS + 1/N_CON) 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4258be37d0.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P N_CON N_CAS 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 100 120 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 100 120 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 100 120 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 100 120 Neff_ldsc N Neff_giant Neff_metal 1: 220 220 109 218 2: 220 220 109 218 3: 220 220 109 218 4: 220 220 109 218 Returning path to saved data. Using local VCF. bgzip-compressing VCF file. Finding empty VCF columns based on first 10,000 rows. Dropping 1 duplicate column(s). 1 sample detected: EBI-a-GCST005647 Constructing ScanVcfParam object. VCF contains: 39,630,630 variant(s) x 1 sample(s) Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Dropping 1 duplicate column(s). Checking for empty columns. Unlisting 3 columns. Dropped 314 duplicate rows. Time difference of 0.1 secs VCF data.table contains: 101 rows x 11 columns. Time difference of 0.5 secs Renaming ID as SNP. VCF file has -log10 P-values; these will be converted to unadjusted p-values in the 'P' column. No INFO (SI) column detected. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42413a9ea1.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42748a2465 Checking for empty columns. Standardising column headers. First line of summary statistics file: SNP chr BP end REF ALT FILTER AF ES LP SE P N Summary statistics report: - 101 rows - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. N already exists within sumstats_dt. 2 SNPs (2%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42413a9ea1.tsv.gz Summary statistics report: - 101 rows (100% of original 101 rows) - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 END FILTER FRQ BETA LP SE 1: rs58108140 1 10583 G A 10583 PASS 0.1589 0.0312 0.369267 0.0393 2: rs806731 1 30923 G T 30923 PASS 0.7843 -0.0114 0.126854 0.0353 3: rs116400033 1 51479 T A 51479 PASS 0.1829 0.0711 1.262410 0.0370 4: rs146477069 1 54421 A G 54421 PASS 0.0352 -0.0240 0.112102 0.0830 P N 1: 0.42730011 293723 2: 0.74669974 293723 3: 0.05464998 293723 4: 0.77249913 293723 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42297030e9.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z [1] "aaaa" Standardising column headers. First line of summary statistics file: SNP chr BP end REF ALT FILTER AF ES LP SE P N Beta Summary statistics report: - 101 rows - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. N already exists within sumstats_dt. 2 SNPs (2%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42297030e9.tsv.gz Summary statistics report: - 101 rows (100% of original 101 rows) - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 END FILTER FRQ ES LP SE 1: rs58108140 1 10583 G A 10583 PASS 0.1589 0.0312 0.369267 0.0393 2: rs806731 1 30923 G T 30923 PASS 0.7843 -0.0114 0.126854 0.0353 3: rs116400033 1 51479 T A 51479 PASS 0.1829 0.0711 1.262410 0.0370 4: rs146477069 1 54421 A G 54421 PASS 0.0352 -0.0240 0.112102 0.0830 P N BETA 1: 0.42730011 293723 0.0312 2: 0.74669974 293723 -0.0114 3: 0.05464998 293723 0.0711 4: 0.77249913 293723 -0.0240 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f422d37413b.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42748a2465 Checking for empty columns. Standardising column headers. First line of summary statistics file: SNP chr BP end REF ALT FILTER AF ES LP P N Summary statistics report: - 101 rows - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. The sumstats SE column is not present...Deriving SE from Beta and P Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. N already exists within sumstats_dt. 2 SNPs (2%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f422d37413b.tsv.gz Summary statistics report: - 101 rows (100% of original 101 rows) - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 END FILTER FRQ BETA LP P 1: rs58108140 1 10583 G A 10583 PASS 0.1589 0.0312 0.369267 0.42730011 2: rs806731 1 30923 G T 30923 PASS 0.7843 -0.0114 0.126854 0.74669974 3: rs116400033 1 51479 T A 51479 PASS 0.1829 0.0711 1.262410 0.05464998 4: rs146477069 1 54421 A G 54421 PASS 0.0352 -0.0240 0.112102 0.77249913 N SE IMPUTATION_SE 1: 293723 0.03930361 TRUE 2: 293723 0.03529477 TRUE 3: 293723 0.03699948 TRUE 4: 293723 0.08301411 TRUE Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42265c9128.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42748a2465 Checking for empty columns. Standardising column headers. First line of summary statistics file: SNP CHR BP A1 A2 FRQ Z SE P N Summary statistics report: - 25 rows - 25 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase The sumstats BETA column is not present...Deriving BETA from Z and SE Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. N already exists within sumstats_dt. 13 SNPs (52%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42265c9128.tsv.gz Summary statistics report: - 25 rows (100% of original 25 rows) - 25 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ Z SE P N 1: rs12184267 1 715265 C T 0.9591931 -0.916 0.007518884 0.3598 225955 2: rs12184277 1 715367 A G 0.9589313 -0.656 0.007491601 0.5116 226215 3: rs12184279 1 717485 C A 0.9594241 -1.050 0.007534860 0.2938 226224 4: rs116801199 1 720381 G T 0.9578380 -0.300 0.007391344 0.7644 226626 BETA IMPUTATION_BETA 1: -0.006887298 TRUE 2: -0.004914490 TRUE 3: -0.007911603 TRUE 4: -0.002217403 TRUE Returning path to saved data. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Sorting coordinates. Filtering SNPs based on INFO score. 46 SNPs are below the INFO threshold of 0.9 and will be removed. Writing in tabular format ==> /tmp/RtmpiLPU1z/info_filter.tsv.gz INFO_filter==0. Skipping INFO score filtering step. Filtering SNPs based on INFO score. All rows have INFO>=0.9 Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Sorting coordinates. 3 p-values are >1 which LDSC/MAGMA may not be able to handle. These will be converted to 1. 5 p-values are <0 which LDSC/MAGMA may not be able to handle. These will be converted to 0. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Sorting coordinates. 8 p-values are <=5e-324 which LDSC/MAGMA may not be able to handle. These will be converted to 0. Reading header. Tabular format detected. Reading header. Tabular format detected. Reading header. Tabular format detected. Reading header. VCF format detected.This will be converted to a standardised table format. Importing tabular file: /home/biocbuild/bbs-3.16-bioc/R/site-library/MungeSumstats/extdata/eduAttainOkbay.txt Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Computing Z-score from P using formula: `sign(BETA)*sqrt(stats::qchisq(P,1,lower=FALSE)` Standardising column headers. First line of summary statistics file: SNP CHR BP A1 A2 FRQ BETA SE P Z newZ Computing Z-score from BETA ans SE using formula: `BETA/SE` ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4271659de4.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4264868ea7 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName EAF Beta SE Pval CHR_BP_A2_A1 Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Summary statistics file does not have obvious CHR/BP columns. Checking to see if they are joined in another column. Column CHR_BP_A2_A1 has been separated into the columns CHR, BP, A2, A1 Standardising column headers. First line of summary statistics file: SNP FRQ BETA SE P CHR BP A2 A1 Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4271659de4.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f426f15c89b.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4264868ea7 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f426f15c89b.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f422cf9fef2.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f427fc24f38 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName EAF Beta SE Pval CHR_BP_A2_A1 CHR_BP_A2_A1_2 Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Summary statistics file does not have obvious CHR/BP columns. Checking to see if they are joined in another column. Warning: Multiple columns in the sumstats file seem to relate to Chromosome:Base Pair position:A2:A1. The column CHR_BP_A2_A1_2 will be kept whereas the column(s) CHR_BP_A2_A1 will be removed. If this is not the correct column to keep, please remove all incorrect columns from those listed here before running `format_sumstats()`. Column CHR_BP_A2_A1_2 has been separated into the columns CHR, BP, A2, A1 Standardising column headers. First line of summary statistics file: SNP FRQ BETA SE P CHR BP A2 A1 Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f422cf9fef2.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42572142a9.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f427fc24f38 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42572142a9.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f423d152c0e.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42af9bb63 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS EAF Beta SE Pval alleles allele Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Warning: Multiple columns in the sumstats file seem to relate to alleles A1>A2. The column ALLELES will be kept whereas the column(s) ALLELE will be removed. If this is not the correct column to keep, please remove all incorrect columns from those listed here before running `format_sumstats()`. Column ALLELES has been separated into the columns A1, A2 Checking A1 is uppercase Checking A2 is uppercase Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f423d152c0e.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f423eb5a66c.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42af9bb63 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f423eb5a66c.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42549ec65d.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4240ec51a4 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName A1 A2 EAF Beta SE Pval CHR_BP Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Summary statistics file does not have obvious CHR/BP columns. Checking to see if they are joined in another column. Column CHR_BP has been separated into the columns CHR, BP Standardising column headers. First line of summary statistics file: SNP A1 A2 FRQ BETA SE P CHR BP Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42549ec65d.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f422cc2d361.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4240ec51a4 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f422cc2d361.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42679030cb.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f421907c72 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName A1 A2 EAF Beta SE Pval CHR_BP CHR_BP_2 Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Summary statistics file does not have obvious CHR/BP columns. Checking to see if they are joined in another column. Warning: Multiple columns in the sumstats file seem to relate to Chromosome:Base Pair position. The column CHR_BP_2 will be kept whereas the column(s) CHR_BP will be removed. If this is not the correct column to keep, please remove all incorrect columns from those listed here before running `format_sumstats()`. Column CHR_BP_2 has been separated into the columns CHR, BP Standardising column headers. First line of summary statistics file: SNP A1 A2 FRQ BETA SE P CHR BP Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42679030cb.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4225774237.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f421907c72 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4225774237.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f427f02d5fb.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42219cf79 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f427f02d5fb.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4238f048c4.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4222575caa Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4238f048c4.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. Setting sorted=FALSE (required when formatted=FALSE). ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f425ac9eac1.tsv.gz Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Assigning N=1000 for all SNPs. N already exists within sumstats_dt. [1] "Testing: compute_n='ldsc'" Computing effective sample size using the LDSC method: Neff = (N_CAS+N_CON) * (N_CAS/(N_CAS+N_CON)) / mean((N_CAS/(N_CAS+N_CON))[(N_CAS+N_CON)==max(N_CAS+N_CON)])) [1] "Testing: compute_n='giant'" Computing effective sample size using the GIANT method: Neff = 2 / (1/N_CAS + 1/N_CON) [1] "Testing: compute_n='metal'" Computing effective sample size using the METAL method: Neff = 4 / (1/N_CAS + 1/N_CON) [1] "Testing: compute_n='sum'" Computing sample size using the sum method: N = N_CAS + N_CON ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f425976c6ad.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4253247ecd Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f425976c6ad.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f423c4af31b.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Saving output messages to: /tmp/RtmpiLPU1z/MungeSumstats_log_msg.txt Any runtime errors will be saved to: /tmp/RtmpiLPU1z/MungeSumstats_log_output.txt Messages will not be printed to terminal. Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42694679f4.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4226de01b1 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42694679f4.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4271981a43.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42726fc5e3 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 186 rows - 93 unique variants - 140 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. 93 sumstat rows are duplicated. These duplicates will be removed. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4271981a43.tsv.gz Summary statistics report: - 93 rows (50% of original 186 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4254f7cdb4.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42726fc5e3 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4254f7cdb4.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f427e933e2b.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42726fc5e3 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 94 rows - 94 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicate SNPs from SNP ID. Checking for SNPs with duplicated base-pair positions. 1 base-pair positions are duplicated in the sumstats file. These duplicates will be removed. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for bi-allelic SNPs. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 21 seconds. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f427e933e2b.tsv.gz Summary statistics report: - 93 rows (98.9% of original 94 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.372 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4274f58b91.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4269165f7a Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Filtering effect columns, ensuring none equal 0. 5 SNPs have effect values = 0 and will be removed Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 44 SNPs (50%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4274f58b91.tsv.gz Summary statistics report: - 88 rows (94.6% of original 93 rows) - 88 unique variants - 65 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4259c3bae9.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f425d0ed695 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval FRQ Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs based on FRQ. 38 SNPs are below the FRQ threshold of 0.9 and will be removed. Writing in tabular format ==> /tmp/RtmpiLPU1z/frq_filter.tsv.gz Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 55 SNPs (100%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4259c3bae9.tsv.gz Summary statistics report: - 55 rows (59.1% of original 93 rows) - 55 unique variants - 41 genome-wide significant variants (P<5e-8) - 16 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 EAF BETA SE P FRQ 1: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 1.863269 2: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 1.169733 3: rs1008078 1 91189731 T C 0.37310 -0.016 0.003 6.005e-10 1.401423 4: rs61787263 1 98618714 T C 0.76120 0.016 0.003 5.391e-08 1.873332 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f427204c82.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f425d0ed695 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval FRQ Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs based on FRQ. 38 SNPs are below the FRQ threshold of 0.9 and will be removed. Writing in tabular format ==> /tmp/RtmpiLPU1z/frq_filter.tsv.gz Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 55 SNPs (100%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=FALSE, the FRQ column will be renamed MAJOR_ALLELE_FRQ to differentiate the values from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f427204c82.tsv.gz Summary statistics report: - 55 rows (59.1% of original 93 rows) - 55 unique variants - 41 genome-wide significant variants (P<5e-8) - 16 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 EAF BETA SE P 1: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 2: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 3: rs1008078 1 91189731 T C 0.37310 -0.016 0.003 6.005e-10 4: rs61787263 1 98618714 T C 0.76120 0.016 0.003 5.391e-08 MAJOR_ALLELE_FRQ 1: 1.863269 2: 1.169733 3: 1.401423 4: 1.873332 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f421afeff3a.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4234a69f31 Checking for empty columns. Standardising column headers. First line of summary statistics file: SNP CHR BP A1 A2 FRQ BETA SE P Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f421afeff3a.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f421d6b36.tsv.gz Standardising column headers. First line of summary statistics file: SNP CHR BP A1 A2 Uniq.a1a2 EAF BETA P Summary statistics report: - 2 rows - 2 unique variants - 1 genome-wide significant variants (P<5e-8) - 2 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Ensuring all SNPs are on the reference genome. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 2 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 18 seconds. Found 1 Indels. These won't be checked against the reference genome as it does not contain Indels. WARNING If your sumstat doesn't contain Indels, set the indel param to FALSE & rerun MungeSumstats::format_sumstats() Checking for correct direction of A1 (reference) and A2 (alternative allele). There are 1 SNPs where A1 doesn't match the reference genome. These will be flipped with their effect columns. Checking for missing data. Checking for duplicate columns. Checking for duplicate SNPs from SNP ID. Checking for SNPs with duplicated base-pair positions. Found Indels. These won't be checked for duplicates based on base-pair position as there can be multiples. WARNING If your sumstat doesn't contain Indels, set the indel param to FALSE & rerun MungeSumstats::format_sumstats() Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. SE is not present but can be imputed with BETA & P. Set impute_se=TRUE and rerun to do this. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for bi-allelic SNPs. Warning: When method is an integer, must be >0. 1 SNPs (50%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f421d6b36.tsv.gz Summary statistics report: - 2 rows (100% of original 2 rows) - 2 unique variants - 1 genome-wide significant variants (P<5e-8) - 2 chromosomes Done munging in 0.337 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 UNIQ.A1A2 FRQ BETA 1: rs12987662 2 100821548 C A aa 0.6213000 -0.027000000 2: rs34589910 4 6364621 C CG 4:6364621_C_CG 0.0945334 -0.006257323 P 1: 2.693000e-24 2: 4.883341e-01 Returning data directly. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42e62dcde.tsv.gz Standardising column headers. First line of summary statistics file: SNP CHR BP A1 A2 Uniq.a1a2 EAF BETA P Summary statistics report: - 3 rows - 3 unique variants - 1 genome-wide significant variants (P<5e-8) - 3 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. 2 SNP IDs appear to be made up of chr:bp, these will be replaced by their SNP ID from the reference genome Loading SNPlocs data. Found Indels. These won't be checked against the reference genome as it does not contain Indels. WARNING If your sumstat doesn't contain Indels, set the indel param to FALSE & rerun MungeSumstats::format_sumstats() Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Ensuring all SNPs are on the reference genome. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 2 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 17 seconds. Checking for correct direction of A1 (reference) and A2 (alternative allele). There are 2 SNPs where A1 doesn't match the reference genome. These will be flipped with their effect columns. Checking for missing data. Checking for duplicate columns. Checking for duplicate SNPs from SNP ID. Checking for SNPs with duplicated base-pair positions. INFO column not available. Skipping INFO score filtering step. SE is not present but can be imputed with BETA & P. Set impute_se=TRUE and rerun to do this. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for bi-allelic SNPs. Warning: When method is an integer, must be >0. 2 SNPs (100%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42e62dcde.tsv.gz Summary statistics report: - 2 rows (66.7% of original 3 rows) - 2 unique variants - 1 genome-wide significant variants (P<5e-8) - 2 chromosomes Done munging in 0.312 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 UNIQ.A1A2 FRQ BETA P 1: rs12987662 2 100821548 C A aa 0.6213 -0.0270 2.693e-24 2: rs9320913 6 98584733 C A bb 0.5433 -0.0123 2.100e-07 Returning data directly. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4258f341a2.tsv Converting full summary stats file to tabix format for fast querying... Reading header. Ensuring file is bgzipped. Tabix-indexing file. Removing temproary .tsv file. Reading header. Reading entire file. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42136ee4e5.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4242dc2a88 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval INFO Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. Filtering SNPs based on INFO score. 38 SNPs are below the INFO threshold of 0.9 and will be removed. Writing in tabular format ==> /tmp/RtmpiLPU1z/info_filter.tsv.gz Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 28 SNPs (50.9%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42136ee4e5.tsv.gz Summary statistics report: - 55 rows (59.1% of original 93 rows) - 55 unique variants - 41 genome-wide significant variants (P<5e-8) - 16 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P INFO 1: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 1.863269 2: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 1.169733 3: rs1008078 1 91189731 T C 0.37310 -0.016 0.003 6.005e-10 1.401423 4: rs61787263 1 98618714 T C 0.76120 0.016 0.003 5.391e-08 1.873332 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4272a6476.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42218def11 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4272a6476.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4274d240b6.tsv.gz Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4274d240b6.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Sorting coordinates. Performing data liftover from hg19 to hg38. Converting summary statistics to Genomic Ranges. Downloading chain file from UCSC Genome Browser. trying URL 'ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/liftOver/hg19ToHg38.over.chain.gz' Content type 'unknown' length 227698 bytes (222 KB) ================================================== /tmp/RtmpiLPU1z/hg19ToHg38.over.chain.gz Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Performing data liftover from hg19 to hg38. Converting summary statistics to Genomic Ranges. Using existing chain file. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f422ebe69b7.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4229c4b65a Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Ensuring all SNPs are on the reference genome. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 23 seconds. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Performing data liftover from hg19 to hg38. Converting summary statistics to Genomic Ranges. Using existing chain file. Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f422ebe69b7.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.427 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8430543 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43516856 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72267927 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72296486 T C 0.23690 -0.017 0.003 1.797e-08 IMPUTATION_gen_build 1: TRUE 2: TRUE 3: TRUE 4: TRUE Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f425b9fafe6.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Importing tabular file: /tmp/RtmpiLPU1z/file20f422ebe69b7.tsv.gz Checking for empty columns. Standardising column headers. First line of summary statistics file: SNP CHR BP A1 A2 FRQ BETA SE P IMPUTATION_gen_build Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Ensuring all SNPs are on the reference genome. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 54 seconds. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Performing data liftover from hg38 to hg19. Converting summary statistics to Genomic Ranges. Using existing chain file. Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f425b9fafe6.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.941 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 IMPUTATION_GEN_BUILD IMPUTATION_gen_build 1: TRUE TRUE 2: TRUE TRUE 3: TRUE TRUE 4: TRUE TRUE Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42bc12c7.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4229c4b65a Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Ensuring all SNPs are on the reference genome. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 19 seconds. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42bc12c7.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.343 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. [1] "/tmp/RtmpiLPU1z/data/file1/file20f421c605d56.tsv.gz" [1] "/tmp/RtmpiLPU1z/data/file2/file20f4226053746.tsv.gz" [1] "/tmp/RtmpiLPU1z/data/file3/file20f422f645ca.tsv.gz" [1] "/tmp/RtmpiLPU1z/data/file4/file20f423f7488df.tsv.gz" [1] "/tmp/RtmpiLPU1z/data/file5/file20f424fc9eda0.tsv.gz" [1] "/tmp/RtmpiLPU1z/data/file6/file20f421990b366.tsv.gz" [1] "/tmp/RtmpiLPU1z/data/file7/file20f423b7bf60a.tsv.gz" [1] "/tmp/RtmpiLPU1z/data/file8/file20f4251bbc117.tsv.gz" [1] "/tmp/RtmpiLPU1z/data/file9/file20f427dd54546.tsv.gz" [1] "/tmp/RtmpiLPU1z/data/file10/file20f426a3a5fc2.tsv.gz" 10 file(s) found. Parsing info from 10 log file(s). ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f427588bc0b.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f421689bf15 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 92 unique variants - 69 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. WARNING: 1 rows in sumstats file are missing data and will be removed. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 46 SNPs (50%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f427588bc0b.tsv.gz Summary statistics report: - 92 rows (98.9% of original 93 rows) - 92 unique variants - 69 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs10061788 5 87934707 A G 0.2164 0.021 0.004 2.464e-09 2: rs1007883 16 51163406 T C 0.3713 -0.015 0.003 5.326e-08 3: rs1008078 1 91189731 T C 0.3731 -0.016 0.003 6.005e-10 4: rs1043209 14 23373986 A G 0.6026 0.018 0.003 1.816e-11 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42313f91db.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f421689bf15 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42313f91db.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs10061788 5 87934707 A G 0.2164 0.021 0.004 2.464e-09 2: rs1007883 16 51163406 T C 0.3713 -0.015 0.003 5.326e-08 3: rs1008078 1 91189731 T C 0.3731 -0.016 0.003 6.005e-10 4: rs1043209 14 23373986 A G 0.6026 0.018 0.003 1.816e-11 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4247d0915a.tsv.gz Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 21 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Loading SNPlocs data. There is no Chromosome or Base Pair Position column found within the data. It must be inferred from other column information. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 1 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 1 seconds. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4247d0915a.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.041 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs10061788 5 87934707 A G 0.2164 0.021 0.004 2.464e-09 2: rs1007883 16 51163406 T C 0.3713 -0.015 0.003 5.326e-08 3: rs1008078 1 91189731 T C 0.3731 -0.016 0.003 6.005e-10 4: rs1043209 14 23373986 A G 0.6026 0.018 0.003 1.816e-11 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4262058392.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4242824b13 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. 1 SNPs found with multiple RSIDs on one row, the first will be taken. If you would rather remove these SNPs set `remove_multi_rs_snp=TRUE`. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4262058392.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 convert_multi_rs_SNP 1: NA 2: NA 3: NA 4: NA Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4279d8c2c.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4242824b13 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4279d8c2c.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4276aa56b7.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f421e53d48b Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 92 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Writing in tabular format ==> /tmp/RtmpiLPU1z/snp_multi_rs_one_row.tsv.gz 1 SNPs found with multiple RSIDs on one row, these will be removed. If you would rather take the first RS ID set `remove_multi_rs_snp`=FALSE Checking SNP RSIDs. 1 SNP IDs are not correctly formatted. These will be corrected from the reference genome. Loading SNPlocs data. Writing in tabular format ==> /tmp/RtmpiLPU1z/snp_not_found_from_chr_bp.tsv.gz Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Ensuring all SNPs are on the reference genome. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 90 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 19 seconds. 1 SNPs are not on the reference genome. These will be corrected from the reference genome. Loading SNPlocs data. Writing in tabular format ==> /tmp/RtmpiLPU1z/snp_not_found_from_chr_bp_2.tsv.gz Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 90 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 19 seconds. Checking for correct direction of A1 (reference) and A2 (alternative allele). There are 43 SNPs where A1 doesn't match the reference genome. These will be flipped with their effect columns. Checking for missing data. WARNING: 1 rows in sumstats file are missing data and will be removed. Writing in tabular format ==> /tmp/RtmpiLPU1z/missing_data.tsv.gz Checking for duplicate columns. Checking for duplicate SNPs from SNP ID. 1 RSIDs are duplicated in the sumstats file. These duplicates will be removed Writing in tabular format ==> /tmp/RtmpiLPU1z/dup_snp_id.tsv.gz Checking for SNPs with duplicated base-pair positions. 1 base-pair positions are duplicated in the sumstats file. These duplicates will be removed. Writing in tabular format ==> /tmp/RtmpiLPU1z/dup_base_pair_position.tsv.gz INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. 1 SNPs have SE values <= 0 and will be removed Writing in tabular format ==> /tmp/RtmpiLPU1z/se_neg.tsv.gz Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for strand ambiguous SNPs. 8 SNPs are strand-ambiguous alleles including 4 A/T and 4 C/G ambiguous SNPs. These will be removed Writing in tabular format ==> /tmp/RtmpiLPU1z/snp_strand_ambiguous.tsv.gz Checking for bi-allelic SNPs. Warning: When method is an integer, must be >0. 54 SNPs (68.4%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4276aa56b7.tsv.gz Summary statistics report: - 79 rows (84.9% of original 93 rows) - 79 unique variants - 57 genome-wide significant variants (P<5e-8) - 18 chromosomes Done munging in 0.688 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P IMPUTATION_SNP 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 NA 2: rs34305371 1 72733610 G A 0.91231 -0.035 0.005 3.762e-14 NA 3: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 NA 4: rs1008078 1 91189731 C T 0.62690 0.016 0.003 6.005e-10 NA flipped 1: NA 2: TRUE 3: NA 4: TRUE Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42196c83ef.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42a2a474 Checking for empty columns. Standardising column headers. First line of summary statistics file: chromosome rs_id markername position_hg18 Effect_allele Other_allele EAF_HapMapCEU N_SMK Effect_SMK StdErr_SMK P_value_SMK N_NONSMK Effect_NonSMK StdErr_NonSMK P_value_NonSMK Summary statistics report: - 5 rows - 5 unique variants - 1 chromosomes Checking for multi-GWAS. WARNING: Multiple traits found in sumstats file only one of which can be analysed: SMK, NONSMK Standardising column headers. First line of summary statistics file: CHR SNP MARKERNAME POSITION_HG18 A2 A1 EAF_HAPMAPCEU N EFFECT STDERR P_VALUE N_NONSMK EFFECT_NONSMK STDERR_NONSMK P_VALUE_NONSMK Checking for multiple RSIDs on one row. Checking SNP RSIDs. 1 SNP IDs are not correctly formatted and will be removed. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Summary statistics file does not have obvious CHR/BP columns. Checking to see if they are joined in another column. Column MARKERNAME has been separated into the columns CHR, BP Standardising column headers. First line of summary statistics file: CHR SNP POSITION_HG18 A2 A1 EAF_HAPMAPCEU N BETA SE P N_NONSMK EFFECT_NONSMK STDERR_NONSMK P_VALUE_NONSMK BP Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Ensuring that the N column is all integers. The sumstats N column is not all integers, this could effect downstream analysis. These will be converted to integers. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Making X/Y/MT CHR uppercase. N already exists within sumstats_dt. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42196c83ef.tsv.gz Summary statistics report: - 4 rows (80% of original 5 rows) - 4 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 POSITION_HG18 EAF_HAPMAPCEU N BETA 1: rs1000050 chr1 161003087 C T 161003087 0.9000 36257 0.0001 2: rs1000073 chr1 155522020 G A 155522020 0.3136 36335 0.0046 3: rs1000075 chr1 94939420 C T 94939420 0.3583 38959 -0.0013 4: rs1000085 chr1 66630503 G C 66630503 0.1667 38761 0.0053 SE P N_NONSMK EFFECT_NONSMK STDERR_NONSMK P_VALUE_NONSMK 1: 0.0109 0.9931 127514 0.0058 0.0059 0.3307 2: 0.0083 0.5812 126780 0.0038 0.0045 0.3979 3: 0.0082 0.8687 147567 -0.0043 0.0044 0.3259 4: 0.0095 0.5746 147259 -0.0034 0.0052 0.5157 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42286e2cd4.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4232e407b3 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval N N_fixed Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Ensuring that the N column is all integers. The sumstats N column is not all integers, this could effect downstream analysis. These will be converted to integers. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. N already exists within sumstats_dt. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42286e2cd4.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P N N_FIXED 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 5 5 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 1 1 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 1 1 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 7 7 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f427a4be7d1.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f422033f46f Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval N Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. The sumstats N column is not all integers, this could effect downstream analysis.These will NOT be converted to integers. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. 1 SNPs have N values 5 standard deviations above the mean and will be removed Writing in tabular format ==> /tmp/RtmpiLPU1z/n_large.tsv.gz Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. N already exists within sumstats_dt. 47 SNPs (51.1%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f427a4be7d1.tsv.gz Summary statistics report: - 92 rows (98.9% of original 93 rows) - 92 unique variants - 69 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P N 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 3 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 5 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 3 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 3 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4252fb8141.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f422033f46f Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval N Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. The sumstats N column is not all integers, this could effect downstream analysis.These will NOT be converted to integers. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. 1 SNPs have N values 5 standard deviations above the mean and will be removed Writing in tabular format ==> /tmp/RtmpiLPU1z/n_large.tsv.gz Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. N already exists within sumstats_dt. 47 SNPs (51.1%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4252fb8141.tsv.gz Summary statistics report: - 92 rows (98.9% of original 93 rows) - 92 unique variants - 69 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P N 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 3 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 5 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 3 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 3 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f424cd91a91.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f422033f46f Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval N Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. The sumstats N column is not all integers, this could effect downstream analysis.These will NOT be converted to integers. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. 1 SNPs have N values 5 standard deviations above the mean and will be removed Writing in tabular format ==> /tmp/RtmpiLPU1z/n_large.tsv.gz Removing rows where is.na(N) 0 SNPs have N values that are NA and will be removed. Writing in tabular format ==> /tmp/RtmpiLPU1z/n_null.tsv.gz Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. N already exists within sumstats_dt. 47 SNPs (51.1%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f424cd91a91.tsv.gz Summary statistics report: - 92 rows (98.9% of original 93 rows) - 92 unique variants - 69 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P N 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 3 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 5 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 3 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 3 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4247720d6c.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f423d888072 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. WARNING: No A2 column found in the data, multi-allelic can't not be accurately chosen (as any of the choices could be valid). bi_allelic_filter has been forced to TRUE. Loading SNPlocs data. There is no A1 or A2 allele information column found within the data. It must be inferred from other column information. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 18 seconds. Deriving both A1 and A2 from reference genome WARNING: Inferring the alternative allele (A2) from the reference genome. In some instances, there are more than one alternative allele. Arbitrarily, only the first will be kept. See column `alt_alleles` in your returned sumstats file for all alternative alleles. Writing in tabular format ==> /tmp/RtmpiLPU1z/alleles_not_found_from_snp.tsv.gz Checking for missing data. Checking for duplicate columns. Checking for duplicate SNPs from SNP ID. Checking for SNPs with duplicated base-pair positions. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for bi-allelic SNPs. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4247720d6c.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.335 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P alt_alleles 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 C 2: rs11210860 1 43982527 G A 0.36940 0.017 0.003 2.359e-10 A 3: rs34305371 1 72733610 G A 0.08769 0.035 0.005 3.762e-14 A 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 C IMPUTATION_A1 IMPUTATION_A2 1: TRUE TRUE 2: TRUE TRUE 3: TRUE TRUE 4: TRUE TRUE Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4215d4e5f.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f423d888072 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A2 is uppercase Loading SNPlocs data. There is no A1 or A2 allele information column found within the data. It must be inferred from other column information. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 21 seconds. One of A1/A2 are missing, allele flipping will be tested Deriving A1 from reference genome Writing in tabular format ==> /tmp/RtmpiLPU1z/alleles_not_found_from_snp.tsv.gz Checking for correct direction of A1 (reference) and A2 (alternative allele). There are 46 SNPs where A1 doesn't match the reference genome. These will be flipped with their effect columns. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4215d4e5f.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.372 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P IMPUTATION_A1 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 TRUE 2: rs11210860 1 43982527 G G 0.36940 -0.017 0.003 2.359e-10 TRUE 3: rs34305371 1 72733610 G G 0.08769 -0.035 0.005 3.762e-14 TRUE 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 TRUE flipped 1: NA 2: TRUE 3: TRUE 4: NA Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4264ace1b8.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f423d888072 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase WARNING: No A2 column found in the data, multi-allelic can't not be accurately chosen (as any of the choices could be valid). bi_allelic_filter has been forced to TRUE. Loading SNPlocs data. There is no A1 or A2 allele information column found within the data. It must be inferred from other column information. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 20 seconds. One of A1/A2 are missing, allele flipping will be tested Deriving A2 from reference genome WARNING: Inferring the alternative allele (A2) from the reference genome. In some instances, there are more than one alternative allele. Arbitrarily, only the first will be kept. See column `alt_alleles` in your returned sumstats file for all alternative alleles. Writing in tabular format ==> /tmp/RtmpiLPU1z/alleles_not_found_from_snp.tsv.gz Checking for correct direction of A1 (reference) and A2 (alternative allele). Checking for missing data. Checking for duplicate columns. Checking for duplicate SNPs from SNP ID. Checking for SNPs with duplicated base-pair positions. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for bi-allelic SNPs. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4264ace1b8.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.353 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P alt_alleles 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 C 2: rs11210860 1 43982527 A A 0.36940 0.017 0.003 2.359e-10 A 3: rs34305371 1 72733610 A A 0.08769 0.035 0.005 3.762e-14 A 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 C IMPUTATION_A2 1: TRUE 2: TRUE 3: TRUE 4: TRUE Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42fe5102e.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f423d888072 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for correct direction of A1 (reference) and A2 (alternative allele). Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 19 seconds. There are 46 SNPs where A1 doesn't match the reference genome. These will be flipped with their effect columns. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42fe5102e.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.344 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 G A 0.36940 -0.017 0.003 2.359e-10 3: rs34305371 1 72733610 G A 0.08769 -0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f422b970cc3.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f427931f507 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Summary statistics file does not have obvious CHR/BP columns. Checking to see if they are joined in another column. Standardising column headers. First line of summary statistics file: SNP BP A1 A2 FRQ BETA SE P Loading SNPlocs data. There is no Chromosome or Base Pair Position column found within the data. It must be inferred from other column information. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 19 seconds. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f422b970cc3.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.351 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42552322d6.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f425ed8987f Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Summary statistics file does not have obvious CHR/BP columns. Checking to see if they are joined in another column. Standardising column headers. First line of summary statistics file: SNP A1 A2 FRQ BETA SE P Loading SNPlocs data. There is no Chromosome or Base Pair Position column found within the data. It must be inferred from other column information. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 18 seconds. Writing in tabular format ==> /tmp/RtmpiLPU1z/chr_bp_not_found_from_snp.tsv.gz Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42552322d6.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.33 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4242cd0ea5.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f422b7d98a Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. 1 SNP IDs are not correctly formatted. These will be corrected from the reference genome. Loading SNPlocs data. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4242cd0ea5.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.003 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f423c633b59.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f422b7d98a Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f423c633b59.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4221e5c0f4.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42fce51b0 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. 1 SNP IDs appear to be made up of chr:bp, these will be replaced by their SNP ID from the reference genome Loading SNPlocs data. 1 SNP IDs are not correctly formatted and will be removed. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Summary statistics file does not have obvious CHR/BP columns. Checking to see if they are joined in another column. Standardising column headers. First line of summary statistics file: SNP A1 A2 FRQ BETA SE P Loading SNPlocs data. There is no Chromosome or Base Pair Position column found within the data. It must be inferred from other column information. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 92 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 17 seconds. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 46 SNPs (50%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4221e5c0f4.tsv.gz Summary statistics report: - 92 rows (98.9% of original 93 rows) - 92 unique variants - 69 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.313 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42521df0af.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f422e47aa8 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. 1 SNP IDs are not correctly formatted. These will be corrected from the reference genome. Loading SNPlocs data. 1 SNP IDs appear to be made up of chr:bp, these will be replaced by their SNP ID from the reference genome Loading SNPlocs data. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42521df0af.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.005 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f426319dbb.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f422e73d79c Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42644a4357.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42fce51b0 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42644a4357.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4231aaf662.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4241267d15 Checking for empty columns. Standardising column headers. First line of summary statistics file: CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Loading SNPlocs data. There is no SNP column found within the data. It must be inferred from other column information. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4231aaf662.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.051 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4213f41156.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f423e8f419b Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Ensuring all SNPs are on the reference genome. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 16 seconds. 1 SNPs are not on the reference genome. These will be corrected from the reference genome. Loading SNPlocs data. Writing in tabular format ==> /tmp/RtmpiLPU1z/snp_not_found_from_chr_bp.tsv.gz Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 19 seconds. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4213f41156.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.643 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4265dbc99.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f423e8f419b Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Ensuring all SNPs are on the reference genome. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 93 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 52 seconds. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4265dbc99.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.904 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. Inferring genome build of 1 sumstats file(s). ss1 Inferring genome build. Reading in only the first 50 rows of sumstats. Importing tabular file: /home/biocbuild/bbs-3.16-bioc/R/site-library/MungeSumstats/extdata/eduAttainOkbay.txt Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 50 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 28 seconds. Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 50 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 38 seconds. Inferred genome build: GRCH37 Time difference of 1.19268 mins GRCH37: 1 file(s) ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f424c4b2b48.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f421ecdbb45 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 23 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. 3 SNPs are on chromosomes X, Y, MT and will be removed Writing in tabular format ==> /tmp/RtmpiLPU1z/chr_excl.tsv.gz Warning: When method is an integer, must be >0. 45 SNPs (50%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f424c4b2b48.tsv.gz Summary statistics report: - 90 rows (96.8% of original 93 rows) - 90 unique variants - 67 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4268b5db2a.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f421ecdbb45 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4268b5db2a.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. Reading header. Reading entire file. Reading header. Reading header. Reading header. Reading header. Reading header. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f422eb6c232 Checking for empty columns. Standardising column headers. First line of summary statistics file: SNP CHR BP A1 A2 FRQ BETA SE P Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4239c810c Checking for empty columns. Standardising column headers. First line of summary statistics file: SNP CHR BP A1 A2 FRQ BETA SE P ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f424d5b6f3e.vcf.bgz Sorting coordinates. Converting summary statistics to Genomic Ranges. Converting summary statistics to VRanges. Writing in VCF format ==> /tmp/RtmpiLPU1z/file20f424d5b6f3e.vcf.bgz Using local VCF. Finding empty VCF columns based on first 10,000 rows. 1 sample detected: GWAS Constructing ScanVcfParam object. Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Checking for empty columns. Time difference of 0.1 secs VCF data.table contains: 93 rows x 11 columns. Time difference of 0.5 secs No INFO (SI) column detected. Standardising column headers. First line of summary statistics file: ID chr BP end REF ALT SNP FRQ BETA SE P Using local VCF. bgzip-compressing VCF file. Finding empty VCF columns based on first 10,000 rows. Dropping 1 duplicate column(s). 1 sample detected: EBI-a-GCST005647 Constructing ScanVcfParam object. VCF contains: 39,630,630 variant(s) x 1 sample(s) Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Dropping 1 duplicate column(s). Checking for empty columns. Unlisting 3 columns. Dropped 314 duplicate rows. Time difference of 0.1 secs VCF data.table contains: 101 rows x 11 columns. Time difference of 0.6 secs Renaming ID as SNP. VCF file has -log10 P-values; these will be converted to unadjusted p-values in the 'P' column. No INFO (SI) column detected. Standardising column headers. First line of summary statistics file: SNP chr BP end REF ALT FILTER AF ES LP SE P ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4266fb8a13.vcf.bgz Sorting coordinates. Converting summary statistics to Genomic Ranges. Converting summary statistics to VRanges. Writing in VCF format ==> /tmp/RtmpiLPU1z/file20f4266fb8a13.vcf.bgz Using local VCF. Finding empty VCF columns based on first 10,000 rows. 1 sample detected: GWAS Constructing ScanVcfParam object. Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Checking for empty columns. Time difference of 0.2 secs VCF data.table contains: 101 rows x 13 columns. Time difference of 0.7 secs VCF file has -log10 P-values; these will be converted to unadjusted p-values in the 'P' column. No INFO (SI) column detected. Standardising column headers. First line of summary statistics file: ID chr BP end REF SNP END FILTER FRQ BETA LP SE P ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42614f8094.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Standardising column headers. First line of summary statistics file: SNP P FRQ BETA CHR BP Summary statistics report: - 5 rows - 5 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. 5 SNP IDs contain other information in the same column. These will be separated. Checking for merged allele column. Column SNP_INFO has been separated into the columns A1, A2 Checking A1 is uppercase Checking A2 is uppercase Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. SE is not present but can be imputed with BETA & P. Set impute_se=TRUE and rerun to do this. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 3 SNPs (60%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42614f8094.tsv.gz Summary statistics report: - 5 rows (100% of original 5 rows) - 5 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 P FRQ BETA 1: rs140052487 1 54353 C A 0.037219838 0.3000548 0.8797957 2: rs558796213 1 54564 G T 0.004382482 0.5848666 0.7068747 3: rs561234294 1 54591 A G 0.070968402 0.3334671 0.7319726 4: rs2462492 1 54676 C T 0.065769040 0.6220120 0.9316344 Returning data directly. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** ******::NOTE::****** - Log results will be saved to `tempdir()` by default. - This means all log data from the run will be deleted upon ending the R session. - To keep it, change `log_folder` to an actual directory (e.g. log_folder='./'). ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4215fb93c6.tsv.gz Log data to be saved to ==> /tmp/RtmpiLPU1z Standardising column headers. First line of summary statistics file: SNP P FRQ BETA CHR BP A1 A2 Summary statistics report: - 5 rows - 5 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. SE is not present but can be imputed with BETA & P. Set impute_se=TRUE and rerun to do this. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 3 SNPs (60%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4215fb93c6.tsv.gz Summary statistics report: - 5 rows (100% of original 5 rows) - 5 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 P FRQ BETA 1: rs140052487 1 54353 C A 0.037219838 0.3000548 0.8797957 2: rs558796213 1 54564 G T 0.004382482 0.5848666 0.7068747 3: rs561234294 1 54591 A G 0.070968402 0.3334671 0.7319726 4: rs2462492 1 54676 C T 0.065769040 0.6220120 0.9316344 Returning data directly. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f421c595060.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4237c9534e Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f425b1c32e5.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4240ef69ce Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f425b1c32e5.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4227675e2d.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4240ef69ce Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4227675e2d.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f421f324783.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f42101d3957 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f421f324783.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f427de93c76.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4235b134d Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 47 SNPs (50.5%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f427de93c76.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4251511f2a.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4254c2f83a Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. 5 SNPs have SE values <= 0 and will be removed Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 44 SNPs (50%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4251511f2a.tsv.gz Summary statistics report: - 88 rows (94.6% of original 93 rows) - 88 unique variants - 65 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Support Returning unmapped column names without making them uppercase. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Support Returning unmapped column names without making them uppercase. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4262340f46.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4246ac4dc7 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 85 rows - 85 unique variants - 63 genome-wide significant variants (P<5e-8) - 19 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for strand ambiguous SNPs. Warning: When method is an integer, must be >0. 43 SNPs (50.6%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4262340f46.tsv.gz Summary statistics report: - 85 rows (100% of original 85 rows) - 85 unique variants - 63 genome-wide significant variants (P<5e-8) - 19 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4299b6d73.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4246ac4dc7 Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for strand ambiguous SNPs. 8 SNPs are strand-ambiguous alleles including 4 A/T and 4 C/G ambiguous SNPs. These will be removed Warning: When method is an integer, must be >0. 43 SNPs (50.6%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4299b6d73.tsv.gz Summary statistics report: - 85 rows (91.4% of original 93 rows) - 85 unique variants - 63 genome-wide significant variants (P<5e-8) - 19 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 FRQ BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42148ab075.tsv.gz ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42304a406b.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f4219b8a6cb Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Summary statistics report: - 93 rows - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42304a406b.tsv.gz Summary statistics report: - 93 rows (100% of original 93 rows) - 93 unique variants - 70 genome-wide significant variants (P<5e-8) - 20 chromosomes Done munging in 0.001 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 EAF BETA SE P 1: rs301800 1 8490603 T C 0.17910 0.019 0.003 1.794e-08 2: rs11210860 1 43982527 A G 0.36940 0.017 0.003 2.359e-10 3: rs34305371 1 72733610 A G 0.08769 0.035 0.005 3.762e-14 4: rs2568955 1 72762169 T C 0.23690 -0.017 0.003 1.797e-08 Returning data directly. Converting summary statistics to Genomic Ranges. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4211308700.tsv.gz ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f421751c693.tsv.gz ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f427eb5a7a3.tsv.gz ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4230b830c9.tsv.gz ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4239f7f5eb.tsv.gz ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f423b6525.tsv.gz ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f424b95e0fd.tsv.gz ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4229f99480.tsv.gz ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4268bcacba.tsv.gz ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f422058d937.tsv.gz ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f427b4ab3aa.tsv.gz ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42b176538.tsv.gz Using local VCF. bgzip-compressing VCF file. Finding empty VCF columns based on first 10,000 rows. Dropping 1 duplicate column(s). 1 sample detected: EBI-a-GCST005647 Constructing ScanVcfParam object. VCF contains: 39,630,630 variant(s) x 1 sample(s) Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Dropping 1 duplicate column(s). Checking for empty columns. Unlisting 3 columns. Dropped 314 duplicate rows. Time difference of 0.2 secs VCF data.table contains: 101 rows x 11 columns. Time difference of 1.2 secs Renaming ID as SNP. VCF file has -log10 P-values; these will be converted to unadjusted p-values in the 'P' column. No INFO (SI) column detected. Standardising column headers. First line of summary statistics file: SNP chr BP end REF ALT FILTER AF ES LP SE P Summary statistics report: - 101 rows - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 2 SNPs (2%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42b176538.tsv.gz Summary statistics report: - 101 rows (100% of original 101 rows) - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.047 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 END FILTER FRQ BETA LP SE 1: rs58108140 1 10583 G A 10583 PASS 0.1589 0.0312 0.369267 0.0393 2: rs806731 1 30923 G T 30923 PASS 0.7843 -0.0114 0.126854 0.0353 3: rs116400033 1 51479 T A 51479 PASS 0.1829 0.0711 1.262410 0.0370 4: rs146477069 1 54421 A G 54421 PASS 0.0352 -0.0240 0.112102 0.0830 P 1: 0.42730011 2: 0.74669974 3: 0.05464998 4: 0.77249913 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42122f4198.tsv.gz Using local VCF. bgzip-compressing VCF file. Finding empty VCF columns based on first 10,000 rows. Dropping 1 duplicate column(s). 1 sample detected: EBI-a-GCST005647 Constructing ScanVcfParam object. VCF contains: 39,630,630 variant(s) x 1 sample(s) Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Dropping 1 duplicate column(s). Checking for empty columns. Unlisting 3 columns. Dropped 314 duplicate rows. Time difference of 0.1 secs VCF data.table contains: 101 rows x 11 columns. Time difference of 1 secs Renaming ID as SNP. VCF file has -log10 P-values; these will be converted to unadjusted p-values in the 'P' column. No INFO (SI) column detected. Standardising column headers. First line of summary statistics file: SNP chr BP end REF ALT FILTER AF ES LP SE P Summary statistics report: - 101 rows - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for correct direction of A1 (reference) and A2 (alternative allele). Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 101 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 46 seconds. There are 1 SNPs where A1 doesn't match the reference genome. These will be flipped with their effect columns. Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicate SNPs from SNP ID. Checking for SNPs with duplicated base-pair positions. Found Indels. These won't be checked for duplicates based on base-pair position as there can be multiples. WARNING If your sumstat doesn't contain Indels, set the indel param to FALSE & rerun MungeSumstats::format_sumstats() Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Checking for bi-allelic SNPs. Warning: When method is an integer, must be >0. 2 SNPs (2%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42122f4198.tsv.gz Summary statistics report: - 101 rows (100% of original 101 rows) - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.902 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 END FILTER FRQ BETA LP SE 1: rs58108140 1 10583 G A 10583 PASS 0.1589 0.0312 0.369267 0.0393 2: rs806731 1 30923 G T 30923 PASS 0.7843 -0.0114 0.126854 0.0353 3: rs116400033 1 51479 T A 51479 PASS 0.1829 0.0711 1.262410 0.0370 4: rs146477069 1 54421 A G 54421 PASS 0.0352 -0.0240 0.112102 0.0830 P 1: 0.42730011 2: 0.74669974 3: 0.05464998 4: 0.77249913 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42746350de.tsv.gz Using local VCF. bgzip-compressing VCF file. Finding empty VCF columns based on first 10,000 rows. Dropping 1 duplicate column(s). 1 sample detected: EBI-a-GCST005647 Constructing ScanVcfParam object. VCF contains: 39,630,630 variant(s) x 1 sample(s) Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Dropping 1 duplicate column(s). Checking for empty columns. Unlisting 3 columns. Dropped 314 duplicate rows. Time difference of 0.1 secs VCF data.table contains: 101 rows x 11 columns. Time difference of 0.5 secs Renaming ID as SNP. VCF file has -log10 P-values; these will be converted to unadjusted p-values in the 'P' column. No INFO (SI) column detected. Standardising column headers. First line of summary statistics file: SNP chr BP end REF ALT FILTER AF ES LP SE P Summary statistics report: - 101 rows - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 2 SNPs (2%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42746350de.tsv.gz Summary statistics report: - 101 rows (100% of original 101 rows) - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.019 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 END FILTER FRQ BETA LP SE 1: rs58108140 1 10583 G A 10583 PASS 0.1589 0.0312 0.369267 0.0393 2: rs806731 1 30923 G T 30923 PASS 0.7843 -0.0114 0.126854 0.0353 3: rs116400033 1 51479 T A 51479 PASS 0.1829 0.0711 1.262410 0.0370 4: rs146477069 1 54421 A G 54421 PASS 0.0352 -0.0240 0.112102 0.0830 P 1: 0.42730011 2: 0.74669974 3: 0.05464998 4: 0.77249913 Returning data directly. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f422982e1fe.tsv.gz Using local VCF. bgzip-compressing VCF file. Finding empty VCF columns based on first 10,000 rows. Dropping 1 duplicate column(s). 1 sample detected: EBI-a-GCST005647 Constructing ScanVcfParam object. VCF contains: 39,630,630 variant(s) x 1 sample(s) Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Dropping 1 duplicate column(s). Checking for empty columns. Unlisting 3 columns. Dropped 314 duplicate rows. Time difference of 0.1 secs VCF data.table contains: 101 rows x 11 columns. Time difference of 0.4 secs Renaming ID as SNP. VCF file has -log10 P-values; these will be converted to unadjusted p-values in the 'P' column. No INFO (SI) column detected. Standardising column headers. First line of summary statistics file: SNP chr BP end REF ALT FILTER AF ES LP SE P Summary statistics report: - 101 rows - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 2 SNPs (2%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f422982e1fe.tsv.gz Summary statistics report: - 101 rows (100% of original 101 rows) - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.02 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 END FILTER FRQ BETA LP SE 1: rs58108140 1 10583 G A 10583 PASS 0.1589 0.0312 0.369267 0.0393 2: rs806731 1 30923 G T 30923 PASS 0.7843 -0.0114 0.126854 0.0353 3: rs116400033 1 51479 T A 51479 PASS 0.1829 0.0711 1.262410 0.0370 4: rs146477069 1 54421 A G 54421 PASS 0.0352 -0.0240 0.112102 0.0830 P 1: 0.42730011 2: 0.74669974 3: 0.05464998 4: 0.77249913 Returning data directly. Converting summary statistics to Genomic Ranges. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4227ceae6d.tsv.gz Using local VCF. bgzip-compressing VCF file. Finding empty VCF columns based on first 10,000 rows. Dropping 1 duplicate column(s). 1 sample detected: EBI-a-GCST005647 Constructing ScanVcfParam object. VCF contains: 39,630,630 variant(s) x 1 sample(s) Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Dropping 1 duplicate column(s). Checking for empty columns. Unlisting 3 columns. Dropped 314 duplicate rows. Time difference of 0.1 secs VCF data.table contains: 101 rows x 11 columns. Time difference of 0.4 secs Renaming ID as SNP. VCF file has -log10 P-values; these will be converted to unadjusted p-values in the 'P' column. No INFO (SI) column detected. Standardising column headers. First line of summary statistics file: SNP chr BP end REF ALT FILTER AF ES LP SE P Summary statistics report: - 101 rows - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Warning: When method is an integer, must be >0. 2 SNPs (2%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4227ceae6d.tsv.gz Summary statistics report: - 101 rows (100% of original 101 rows) - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.018 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 END FILTER FRQ BETA LP SE 1: rs58108140 1 10583 G A 10583 PASS 0.1589 0.0312 0.369267 0.0393 2: rs806731 1 30923 G T 30923 PASS 0.7843 -0.0114 0.126854 0.0353 3: rs116400033 1 51479 T A 51479 PASS 0.1829 0.0711 1.262410 0.0370 4: rs146477069 1 54421 A G 54421 PASS 0.0352 -0.0240 0.112102 0.0830 P 1: 0.42730011 2: 0.74669974 3: 0.05464998 4: 0.77249913 Returning data directly. Converting summary statistics to Genomic Ranges. Converting summary statistics to VRanges. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f4217b7651d.tsv.gz Using local VCF. bgzip-compressing VCF file. Finding empty VCF columns based on first 10,000 rows. Dropping 1 duplicate column(s). 1 sample detected: EBI-a-GCST005647 Constructing ScanVcfParam object. VCF contains: 39,630,630 variant(s) x 1 sample(s) Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Dropping 1 duplicate column(s). Checking for empty columns. Unlisting 3 columns. Dropped 314 duplicate rows. Time difference of 0.1 secs VCF data.table contains: 101 rows x 11 columns. Time difference of 0.5 secs Renaming ID as SNP. VCF file has -log10 P-values; these will be converted to unadjusted p-values in the 'P' column. No INFO (SI) column detected. Standardising column headers. First line of summary statistics file: SNP chr BP end REF ALT FILTER AF ES LP SE P Ensuring parameters comply with LDSC format. Setting `compute_z=TRUE` to comply with LDSC format. Summary statistics report: - 101 rows - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Checking for correct direction of A1 (reference) and A2 (alternative allele). Loading SNPlocs data. Loading reference genome data. Preprocessing RSIDs. Validating RSIDs of 101 SNPs using BSgenome::snpsById... BSgenome::snpsById done in 30 seconds. Reordering so first three column headers are SNP, CHR and BP in this order. Reordering so the fourth and fifth columns are A1 and A2. Checking for missing data. Checking for duplicate columns. Checking for duplicated rows. INFO column not available. Skipping INFO score filtering step. Filtering SNPs, ensuring SE>0. Ensuring all SNPs have N<5 std dev above mean. Removing 'chr' prefix from CHR. Making X/Y/MT CHR uppercase. Computing Z-score from P using formula: `sign(BETA)*sqrt(stats::qchisq(P,1,lower=FALSE)` Assigning N=1001 for all SNPs. 2 SNPs (2%) have FRQ values > 0.5. Conventionally the FRQ column is intended to show the minor/effect allele frequency. The FRQ column was mapped from one of the following from the inputted summary statistics file: FRQ, EAF, FREQUENCY, FRQ_U, F_U, MAF, FREQ, FREQ_TESTED_ALLELE, FRQ_TESTED_ALLELE, FREQ_EFFECT_ALLELE, FRQ_EFFECT_ALLELE, EFFECT_ALLELE_FREQUENCY, EFFECT_ALLELE_FREQ, EFFECT_ALLELE_FRQ, A1FREQ, A1FRQ, A2FREQ, A2FRQ, ALLELE_FREQUENCY, ALLELE_FREQ, ALLELE_FRQ, AF, MINOR_AF, EFFECT_AF, A2_AF, EFF_AF, ALT_AF, ALTERNATIVE_AF, INC_AF, A_2_AF, TESTED_AF, AF1, ALLELEFREQ, ALT_FREQ, EAF_HRC, EFFECTALLELEFREQ, FREQ.A1.1000G.EUR, FREQ.A1.ESP.EUR, FREQ.ALLELE1.HAPMAPCEU, FREQ.B, FREQ1, FREQ1.HAPMAP, FREQ_EUROPEAN_1000GENOMES, FREQ_HAPMAP, FREQ_TESTED_ALLELE_IN_HRS, FRQ_A1, FRQ_U_113154, FRQ_U_31358, FRQ_U_344901, FRQ_U_43456, POOLED_ALT_AF, AF_ALT, AF.ALT, AF-ALT, ALT.AF, ALT-AF, A2.AF, A2-AF, AF.EFF, AF_EFF, AF_EFF As frq_is_maf=TRUE, the FRQ column will not be renamed. If the FRQ values were intended to represent major allele frequency, set frq_is_maf=FALSE to rename the column as MAJOR_ALLELE_FRQ and differentiate it from minor/effect allele frequency. Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f4217b7651d.tsv.gz Summary statistics report: - 101 rows (100% of original 101 rows) - 101 unique variants - 0 genome-wide significant variants (P<5e-8) - 1 chromosomes Done munging in 0.54 minutes. Successfully finished preparing sumstats file, preview: Reading header. SNP CHR BP A1 A2 END FILTER FRQ BETA LP SE 1: rs58108140 1 10583 G A 10583 PASS 0.1589 0.0312 0.369267 0.0393 2: rs806731 1 30923 G T 30923 PASS 0.7843 -0.0114 0.126854 0.0353 3: rs116400033 1 51479 T A 51479 PASS 0.1829 0.0711 1.262410 0.0370 4: rs146477069 1 54421 A G 54421 PASS 0.0352 -0.0240 0.112102 0.0830 P Z N 1: 0.42730011 0.7938202 1001 2: 0.74669974 -0.3229941 1001 3: 0.05464998 1.9216487 1001 4: 0.77249913 -0.2891075 1001 Returning path to saved data. ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42303b8d30.tsv.gz Reading header. Tabular format detected. Importing tabular file: /tmp/RtmpiLPU1z/file20f426de9854d Checking for empty columns. Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Summary statistics report: - 93 rows - 93 unique variants - 20 chromosomes Checking for multi-GWAS. Checking for multiple RSIDs on one row. Checking SNP RSIDs. Checking for merged allele column. Checking A1 is uppercase Checking A2 is uppercase Standardising column headers. First line of summary statistics file: MarkerName CHR POS A1 A2 EAF Beta SE Pval Sorting coordinates. .tsv === write tests === Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f421ea1b616.tsv === read tests === Importing tabular file: /tmp/RtmpiLPU1z/file20f421ea1b616.tsv Checking for empty columns. .tsv.gz === write tests === Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f426a33831b.tsv.gz === read tests === Importing tabular file: /tmp/RtmpiLPU1z/file20f426a33831b.tsv.gz Checking for empty columns. .tsv.bgz === write tests === Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42a90704b.tsv.bgz === read tests === Importing tabular bgz file: /tmp/RtmpiLPU1z/file20f42a90704b.tsv.bgz Checking for empty columns. .tsv.gz === write tests === Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f427be82ee1.tsv Writing uncomressed instead of gzipped to enable index Converting full summary stats file to tabix format for fast querying... Reading header. Ensuring file is bgzipped. Tabix-indexing file. Removing temproary .tsv file. === read tests === Importing tabular bgz file: /tmp/RtmpiLPU1z/file20f427be82ee1.tsv.bgz Checking for empty columns. .tsv.bgz === write tests === Sorting coordinates. Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f423855503e.tsv Writing uncomressed instead of gzipped to enable index Converting full summary stats file to tabix format for fast querying... Reading header. Ensuring file is bgzipped. Tabix-indexing file. Removing temproary .tsv file. === read tests === Importing tabular bgz file: /tmp/RtmpiLPU1z/file20f423855503e.tsv.bgz Checking for empty columns. .csv === write tests === Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f423b6ebf63.csv === read tests === Importing tabular file: /tmp/RtmpiLPU1z/file20f423b6ebf63.csv Checking for empty columns. .csv.gz === write tests === Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f421c3a67fa.csv.gz === read tests === Importing tabular file: /tmp/RtmpiLPU1z/file20f421c3a67fa.csv.gz Checking for empty columns. .vcf === write tests === ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** save_path suggests VCF output but write_vcf=FALSE. Switching output to tabular format (.tsv.gz). Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f42399a744d.tsv.gz Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f42399a744d.tsv.gz === read tests === Importing tabular file: /tmp/RtmpiLPU1z/file20f42399a744d.tsv.gz Checking for empty columns. .vcf.gz === write tests === ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** save_path suggests VCF output but write_vcf=FALSE. Switching output to tabular format (.tsv.gz). Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f425be915ae.tsv.gz Writing in tabular format ==> /tmp/RtmpiLPU1z/file20f425be915ae.tsv.gz === read tests === Importing tabular file: /tmp/RtmpiLPU1z/file20f425be915ae.tsv.gz Checking for empty columns. .vcf === write tests === Sorting coordinates. Converting summary statistics to Genomic Ranges. Converting summary statistics to VRanges. Writing in VCF format ==> /tmp/RtmpiLPU1z/file20f4248786fcf.vcf === read tests === Using local VCF. bgzip-compressing VCF file. Finding empty VCF columns based on first 10,000 rows. 1 sample detected: GWAS Constructing ScanVcfParam object. Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Checking for empty columns. Time difference of 0.1 secs VCF data.table contains: 93 rows x 11 columns. Time difference of 0.4 secs No INFO (SI) column detected. .vcf.gz === write tests === Sorting coordinates. Converting summary statistics to Genomic Ranges. Converting summary statistics to VRanges. Writing in VCF format ==> /tmp/RtmpiLPU1z/file20f4268745111.vcf.gz === read tests === Using local VCF. Finding empty VCF columns based on first 10,000 rows. 1 sample detected: GWAS Constructing ScanVcfParam object. Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Checking for empty columns. Time difference of 0.4 secs VCF data.table contains: 93 rows x 11 columns. Time difference of 1.3 secs No INFO (SI) column detected. .vcf === write tests === Sorting coordinates. Converting summary statistics to Genomic Ranges. Converting summary statistics to VRanges. Writing in VCF format ==> /tmp/RtmpiLPU1z/file20f42158b4170.vcf .vcf === write tests === ******::NOTE::****** - Formatted results will be saved to `tempdir()` by default. - This means all formatted summary stats will be deleted upon ending the R session. - To keep formatted summary stats, change `save_path` ( e.g. `save_path=file.path('./formatted',basename(path))` ), or make sure to copy files elsewhere after processing ( e.g. `file.copy(save_path, './formatted/' )`. ******************** Formatted summary statistics will be saved to ==> /tmp/RtmpiLPU1z/file20f426613d4ef.vcf.bgz Sorting coordinates. Converting summary statistics to Genomic Ranges. Converting summary statistics to VRanges. Writing in VCF format ==> /tmp/RtmpiLPU1z/file20f426613d4ef.vcf.bgz === read tests === Using local VCF. File already tabix-indexed. Finding empty VCF columns based on first 10,000 rows. 1 sample detected: GWAS Constructing ScanVcfParam object. Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Checking for empty columns. Time difference of 0.3 secs VCF data.table contains: 93 rows x 11 columns. Time difference of 1.7 secs No INFO (SI) column detected. .vcf.bgz === write tests === Sorting coordinates. Converting summary statistics to Genomic Ranges. Converting summary statistics to VRanges. Writing in VCF format ==> /tmp/RtmpiLPU1z/file20f4272e42df4.vcf.bgz === read tests === Using local VCF. File already tabix-indexed. Finding empty VCF columns based on first 10,000 rows. 1 sample detected: GWAS Constructing ScanVcfParam object. Reading VCF file: single-threaded Converting VCF to data.table. Expanding VCF first, so number of rows may increase. Checking for empty columns. Time difference of 0.1 secs VCF data.table contains: 93 rows x 11 columns. Time difference of 0.9 secs No INFO (SI) column detected. [ FAIL 0 | WARN 9 | SKIP 0 | PASS 187 ] [ FAIL 0 | WARN 9 | SKIP 0 | PASS 187 ] > > proc.time() user system elapsed 685.415 92.889 871.106
MungeSumstats.Rcheck/MungeSumstats-Ex.timings
name | user | system | elapsed | |
compute_nsize | 0.035 | 0.001 | 0.035 | |
download_vcf | 0.001 | 0.000 | 0.001 | |
find_sumstats | 0 | 0 | 0 | |
format_sumstats | 33.108 | 3.776 | 37.082 | |
formatted_example | 0.019 | 0.004 | 0.022 | |
get_genome_builds | 61.867 | 5.945 | 68.200 | |
import_sumstats | 0.001 | 0.000 | 0.000 | |
index_tabular | 0.037 | 0.004 | 0.041 | |
index_vcf | 0.033 | 0.000 | 0.033 | |
liftover | 0.932 | 0.100 | 2.732 | |
list_sumstats | 0.000 | 0.001 | 0.002 | |
load_snp_loc_data | 0.000 | 0.001 | 0.000 | |
parse_logs | 0.007 | 0.001 | 0.008 | |
read_header | 0.001 | 0.000 | 0.002 | |
read_sumstats | 0.005 | 0.000 | 0.006 | |
read_vcf | 1.639 | 0.120 | 1.759 | |
standardise_header | 0.010 | 0.004 | 0.014 | |
vcf2df | 0.522 | 0.000 | 0.523 | |
write_sumstats | 0.006 | 0.000 | 0.006 | |