Back to Multiple platform build/check report for BioC 3.15 |
|
This page was generated on 2022-03-18 11:07:46 -0400 (Fri, 18 Mar 2022).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | R Under development (unstable) (2022-02-17 r81757) -- "Unsuffered Consequences" | 4334 |
riesling1 | Windows Server 2019 Standard | x64 | R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" | 4097 |
palomino3 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2022-02-17 r81757 ucrt) -- "Unsuffered Consequences" | 4083 |
merida1 | macOS 10.14.6 Mojave | x86_64 | R Under development (unstable) (2022-03-02 r81842) -- "Unsuffered Consequences" | 4134 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the HPiP package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? here for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 889/2090 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.1.2 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
riesling1 | Windows Server 2019 Standard / x64 | OK | OK | OK | OK | |||||||||
palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: HPiP |
Version: 1.1.2 |
Command: D:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=D:\biocbuild\bbs-3.15-bioc\R\library --no-vignettes --timings HPiP_1.1.2.tar.gz |
StartedAt: 2022-03-17 19:20:05 -0400 (Thu, 17 Mar 2022) |
EndedAt: 2022-03-17 19:24:34 -0400 (Thu, 17 Mar 2022) |
EllapsedTime: 268.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### D:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=D:\biocbuild\bbs-3.15-bioc\R\library --no-vignettes --timings HPiP_1.1.2.tar.gz ### ############################################################################## ############################################################################## * using log directory 'D:/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck' * using R Under development (unstable) (2021-11-21 r81221) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.1.2' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed corr_plot 28.08 3.28 31.94 var_imp 27.36 3.83 33.21 FSmethod 26.36 4.49 30.84 pred_ensembel 18.12 0.35 9.40 enrichfindP 0.27 0.02 8.69 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See 'D:/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### D:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'D:/biocbuild/bbs-3.15-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices converting help for package 'HPiP' finding HTML links ... done FSmethod html FreqInteractors html Gold_ReferenceSet html UP000464024_df html calculateAAC html calculateAutocor html calculateBE html calculateCTDC html calculateCTDD html calculateCTDT html calculateCTriad html calculateDC html calculateF html calculateKSAAP html calculateQD_Sm html calculateTC html calculateTC_Sm html corr_plot html enrich.df html enrichfindP html enrichfind_cpx html enrichfind_hp html enrichplot html example_data html filter_missing_values html getFASTA html getHPI html get_negativePPI html get_positivePPI html host_se html impute_missing_data html plotPPI html pred_ensembel html predicted_PPIs html run_clustering html unlabel_data html var_imp html viral_se html ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP) Making 'packages.html' ...Warning in packageDescription(i, lib.loc = lib, fields = "Title", encoding = "UTF-8") : DESCRIPTION file of package 'GBScleanR' is missing or broken Warning in packageDescription(i, lib.loc = lib, fields = "Title", encoding = "UTF-8") : DESCRIPTION file of package 'mistyR' is missing or broken done
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 101.005805 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.071920 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.925909 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.527274 final value 94.484137 converged Fitting Repeat 5 # weights: 103 initial value 96.159307 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.491678 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 100.863438 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 109.467290 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 99.651726 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 101.146539 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.056748 iter 10 value 93.260452 final value 93.221034 converged Fitting Repeat 2 # weights: 507 initial value 98.321342 final value 94.466823 converged Fitting Repeat 3 # weights: 507 initial value 128.843219 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 94.409381 iter 10 value 92.609595 iter 20 value 92.605178 final value 92.605128 converged Fitting Repeat 5 # weights: 507 initial value 106.801684 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 107.247387 iter 10 value 94.487518 iter 20 value 94.402544 iter 30 value 89.899915 iter 40 value 88.948538 iter 50 value 88.810281 iter 60 value 88.380186 iter 70 value 86.942840 iter 80 value 85.121919 iter 90 value 84.121055 iter 100 value 83.488606 final value 83.488606 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.299795 iter 10 value 94.523308 iter 20 value 91.050228 iter 30 value 87.241210 iter 40 value 86.978880 iter 50 value 85.830022 iter 60 value 85.361549 iter 70 value 85.295459 iter 80 value 84.958781 iter 90 value 84.792829 iter 90 value 84.792828 iter 90 value 84.792828 final value 84.792828 converged Fitting Repeat 3 # weights: 103 initial value 106.824124 iter 10 value 94.495468 iter 20 value 94.489159 iter 30 value 94.297387 iter 40 value 84.646871 iter 50 value 84.533176 iter 60 value 84.159696 iter 70 value 83.923119 iter 80 value 83.916722 final value 83.916715 converged Fitting Repeat 4 # weights: 103 initial value 97.797105 iter 10 value 94.455695 iter 20 value 92.319820 iter 30 value 92.018591 iter 40 value 91.852082 iter 50 value 90.955797 iter 60 value 90.787549 iter 70 value 90.767129 final value 90.766961 converged Fitting Repeat 5 # weights: 103 initial value 114.113021 iter 10 value 94.489048 iter 20 value 89.443767 iter 30 value 86.124125 iter 40 value 84.939626 iter 50 value 84.459315 iter 60 value 84.357571 iter 70 value 84.322775 iter 80 value 84.312022 iter 80 value 84.312021 final value 84.312021 converged Fitting Repeat 1 # weights: 305 initial value 100.791653 iter 10 value 92.385493 iter 20 value 91.675542 iter 30 value 91.607948 iter 40 value 89.005621 iter 50 value 87.968398 iter 60 value 87.329718 iter 70 value 84.740689 iter 80 value 84.262230 iter 90 value 84.150889 iter 100 value 84.108321 final value 84.108321 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.679126 iter 10 value 94.522650 iter 20 value 93.774353 iter 30 value 87.877536 iter 40 value 85.902096 iter 50 value 84.114731 iter 60 value 83.474534 iter 70 value 81.904364 iter 80 value 81.416729 iter 90 value 81.130462 iter 100 value 80.863274 final value 80.863274 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.795396 iter 10 value 94.385522 iter 20 value 87.631992 iter 30 value 86.533556 iter 40 value 85.956535 iter 50 value 83.863125 iter 60 value 82.720600 iter 70 value 82.316779 iter 80 value 81.985140 iter 90 value 81.528976 iter 100 value 81.048287 final value 81.048287 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.710933 iter 10 value 92.888778 iter 20 value 85.506801 iter 30 value 83.632376 iter 40 value 82.523567 iter 50 value 81.634145 iter 60 value 81.387757 iter 70 value 81.227840 iter 80 value 81.149301 iter 90 value 81.124319 iter 100 value 81.087739 final value 81.087739 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.086452 iter 10 value 94.484295 iter 20 value 94.229010 iter 30 value 91.401758 iter 40 value 89.205833 iter 50 value 87.076718 iter 60 value 85.314725 iter 70 value 84.404722 iter 80 value 84.118761 iter 90 value 83.804529 iter 100 value 83.730653 final value 83.730653 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 132.932084 iter 10 value 94.481597 iter 20 value 91.100277 iter 30 value 87.849122 iter 40 value 84.389139 iter 50 value 84.218789 iter 60 value 84.130101 iter 70 value 83.561768 iter 80 value 82.548299 iter 90 value 82.243864 iter 100 value 82.027760 final value 82.027760 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.568135 iter 10 value 94.204100 iter 20 value 87.013533 iter 30 value 84.128691 iter 40 value 82.905638 iter 50 value 81.767152 iter 60 value 81.359331 iter 70 value 80.870557 iter 80 value 80.505337 iter 90 value 80.299699 iter 100 value 80.258636 final value 80.258636 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.811849 iter 10 value 94.773217 iter 20 value 94.173852 iter 30 value 92.051593 iter 40 value 91.871068 iter 50 value 91.822166 iter 60 value 91.806151 iter 70 value 91.646939 iter 80 value 88.345218 iter 90 value 86.501737 iter 100 value 83.956604 final value 83.956604 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.940524 iter 10 value 94.498145 iter 20 value 94.428649 iter 30 value 92.121492 iter 40 value 88.897041 iter 50 value 86.717416 iter 60 value 83.768607 iter 70 value 83.295668 iter 80 value 82.926313 iter 90 value 82.325005 iter 100 value 82.185529 final value 82.185529 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 129.231652 iter 10 value 92.689434 iter 20 value 84.514512 iter 30 value 83.883080 iter 40 value 83.257022 iter 50 value 82.927640 iter 60 value 82.713622 iter 70 value 82.528570 iter 80 value 82.395681 iter 90 value 82.309778 iter 100 value 82.225157 final value 82.225157 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.537993 final value 94.485893 converged Fitting Repeat 2 # weights: 103 initial value 94.684619 final value 94.485941 converged Fitting Repeat 3 # weights: 103 initial value 101.687747 final value 94.485544 converged Fitting Repeat 4 # weights: 103 initial value 105.009199 iter 10 value 90.803460 iter 20 value 90.416446 iter 30 value 88.068090 iter 40 value 86.348003 iter 50 value 86.300343 iter 60 value 86.283414 iter 70 value 86.282879 iter 80 value 86.282391 iter 90 value 86.280603 iter 100 value 86.274835 final value 86.274835 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 95.078457 final value 94.485783 converged Fitting Repeat 1 # weights: 305 initial value 94.936673 iter 10 value 94.488206 iter 20 value 94.408113 iter 30 value 87.023667 iter 40 value 86.958716 iter 50 value 86.958443 final value 86.958438 converged Fitting Repeat 2 # weights: 305 initial value 111.493752 iter 10 value 94.488826 iter 20 value 94.448150 iter 30 value 84.591242 iter 40 value 83.573982 iter 50 value 83.553457 iter 60 value 83.549116 final value 83.540098 converged Fitting Repeat 3 # weights: 305 initial value 97.334192 iter 10 value 94.488942 iter 20 value 94.413910 iter 30 value 91.327147 iter 40 value 91.323651 iter 50 value 91.323363 iter 60 value 91.322571 iter 70 value 91.322332 iter 70 value 91.322332 iter 70 value 91.322332 final value 91.322332 converged Fitting Repeat 4 # weights: 305 initial value 97.622781 iter 10 value 94.489493 iter 20 value 94.479558 iter 30 value 94.466829 iter 40 value 94.426985 iter 50 value 94.423682 final value 94.423632 converged Fitting Repeat 5 # weights: 305 initial value 100.703919 iter 10 value 94.489058 iter 20 value 94.444942 iter 30 value 88.491633 iter 40 value 86.858501 iter 50 value 83.692573 iter 60 value 83.102838 iter 70 value 82.890320 iter 80 value 82.887531 iter 90 value 81.938635 iter 100 value 81.262652 final value 81.262652 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.644116 iter 10 value 87.098676 iter 20 value 86.217134 iter 30 value 86.156432 iter 40 value 86.153742 iter 50 value 86.151563 iter 60 value 86.149586 iter 70 value 86.148652 iter 80 value 86.148148 iter 90 value 86.148023 iter 90 value 86.148023 iter 90 value 86.148023 final value 86.148023 converged Fitting Repeat 2 # weights: 507 initial value 105.041374 iter 10 value 94.489753 iter 20 value 93.726219 iter 30 value 88.051815 iter 40 value 86.044644 iter 50 value 86.029536 final value 86.027412 converged Fitting Repeat 3 # weights: 507 initial value 96.730166 iter 10 value 94.492325 iter 20 value 89.703458 iter 30 value 86.016799 iter 40 value 85.983021 final value 85.982056 converged Fitting Repeat 4 # weights: 507 initial value 138.652972 iter 10 value 94.657021 iter 20 value 94.574924 iter 30 value 86.608673 iter 40 value 84.955692 iter 50 value 84.634047 iter 60 value 84.303558 iter 70 value 84.277322 iter 80 value 84.271220 iter 90 value 84.268572 iter 100 value 83.245624 final value 83.245624 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 125.583113 iter 10 value 94.511703 iter 20 value 94.494915 iter 30 value 93.862785 iter 40 value 89.853712 iter 50 value 85.650310 iter 60 value 81.874353 iter 70 value 81.470927 iter 80 value 81.462303 iter 90 value 81.361026 iter 100 value 81.268599 final value 81.268599 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.951005 iter 10 value 92.945356 iter 10 value 92.945355 iter 10 value 92.945355 final value 92.945355 converged Fitting Repeat 2 # weights: 103 initial value 107.443404 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.353042 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 101.810352 final value 94.052914 converged Fitting Repeat 5 # weights: 103 initial value 99.746033 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 117.865209 iter 10 value 92.894873 final value 92.894611 converged Fitting Repeat 2 # weights: 305 initial value 97.379775 iter 10 value 92.945357 iter 10 value 92.945357 iter 10 value 92.945357 final value 92.945357 converged Fitting Repeat 3 # weights: 305 initial value 94.044761 iter 10 value 92.890020 final value 92.886891 converged Fitting Repeat 4 # weights: 305 initial value 94.294260 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 96.399794 iter 10 value 93.318808 iter 20 value 93.090941 final value 93.090910 converged Fitting Repeat 1 # weights: 507 initial value 99.950124 iter 10 value 92.945360 final value 92.945355 converged Fitting Repeat 2 # weights: 507 initial value 104.777087 iter 10 value 92.946503 final value 92.945355 converged Fitting Repeat 3 # weights: 507 initial value 109.050606 iter 10 value 92.948727 final value 92.945355 converged Fitting Repeat 4 # weights: 507 initial value 127.114831 iter 10 value 92.945355 iter 10 value 92.945355 iter 10 value 92.945355 final value 92.945355 converged Fitting Repeat 5 # weights: 507 initial value 98.271210 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 119.147716 iter 10 value 93.680077 iter 20 value 93.068097 iter 30 value 92.951668 iter 40 value 92.949218 iter 50 value 92.449061 iter 60 value 90.421901 iter 70 value 89.249741 iter 80 value 89.187798 iter 90 value 89.079041 iter 100 value 84.334022 final value 84.334022 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.027636 iter 10 value 94.055111 iter 20 value 93.614484 iter 30 value 93.079750 iter 40 value 92.950755 iter 50 value 92.949754 iter 60 value 92.946325 iter 70 value 92.942247 iter 80 value 91.157199 iter 90 value 85.929023 iter 100 value 84.304429 final value 84.304429 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.095844 iter 10 value 93.399002 iter 20 value 92.457740 iter 30 value 88.404037 iter 40 value 88.363238 iter 50 value 88.258936 iter 60 value 86.812894 iter 70 value 86.282263 iter 80 value 85.864131 iter 90 value 85.816734 iter 100 value 85.797360 final value 85.797360 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 105.186839 iter 10 value 94.059053 iter 20 value 93.844819 iter 30 value 93.165337 iter 40 value 93.045282 iter 50 value 92.165911 iter 60 value 89.912382 iter 70 value 84.664266 iter 80 value 84.355879 iter 90 value 84.298319 iter 100 value 84.246986 final value 84.246986 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.438281 iter 10 value 94.021576 iter 20 value 88.568953 iter 30 value 87.089895 iter 40 value 86.675786 iter 50 value 85.918184 iter 60 value 85.816948 iter 70 value 85.798564 final value 85.797309 converged Fitting Repeat 1 # weights: 305 initial value 110.649567 iter 10 value 94.347502 iter 20 value 90.689770 iter 30 value 88.603542 iter 40 value 87.796582 iter 50 value 86.504450 iter 60 value 84.670067 iter 70 value 84.160721 iter 80 value 83.771329 iter 90 value 83.591645 iter 100 value 83.242357 final value 83.242357 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.450009 iter 10 value 94.066024 iter 20 value 93.619199 iter 30 value 93.317057 iter 40 value 86.279196 iter 50 value 85.859402 iter 60 value 85.381046 iter 70 value 84.347421 iter 80 value 83.189265 iter 90 value 82.762589 iter 100 value 82.635463 final value 82.635463 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.260530 iter 10 value 94.012274 iter 20 value 89.002297 iter 30 value 87.011099 iter 40 value 86.683198 iter 50 value 86.208802 iter 60 value 85.806760 iter 70 value 85.567705 iter 80 value 85.472897 iter 90 value 85.415179 iter 100 value 85.379372 final value 85.379372 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.477553 iter 10 value 94.841412 iter 20 value 93.018172 iter 30 value 90.373170 iter 40 value 89.408779 iter 50 value 87.953246 iter 60 value 87.372405 iter 70 value 86.592503 iter 80 value 85.233834 iter 90 value 84.859592 iter 100 value 84.720537 final value 84.720537 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.898921 iter 10 value 93.920034 iter 20 value 93.591157 iter 30 value 92.156791 iter 40 value 89.941166 iter 50 value 88.835260 iter 60 value 85.419171 iter 70 value 84.973022 iter 80 value 84.345881 iter 90 value 83.089530 iter 100 value 82.277010 final value 82.277010 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.388766 iter 10 value 89.129508 iter 20 value 85.683221 iter 30 value 83.788580 iter 40 value 83.338580 iter 50 value 83.173330 iter 60 value 82.819539 iter 70 value 82.212721 iter 80 value 82.081448 iter 90 value 81.933845 iter 100 value 81.617466 final value 81.617466 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.961085 iter 10 value 93.347459 iter 20 value 92.979809 iter 30 value 91.790936 iter 40 value 87.645745 iter 50 value 86.850838 iter 60 value 85.903671 iter 70 value 83.187484 iter 80 value 82.358732 iter 90 value 81.759623 iter 100 value 81.002078 final value 81.002078 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.091066 iter 10 value 93.241821 iter 20 value 91.286234 iter 30 value 89.835953 iter 40 value 86.179014 iter 50 value 85.002558 iter 60 value 84.219805 iter 70 value 83.775150 iter 80 value 82.893134 iter 90 value 82.362626 iter 100 value 81.575262 final value 81.575262 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.443272 iter 10 value 93.647175 iter 20 value 91.984914 iter 30 value 89.311569 iter 40 value 86.181668 iter 50 value 85.405564 iter 60 value 83.330483 iter 70 value 81.935071 iter 80 value 81.297509 iter 90 value 81.172798 iter 100 value 81.063317 final value 81.063317 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.563636 iter 10 value 94.609340 iter 20 value 93.935580 iter 30 value 93.406691 iter 40 value 92.996982 iter 50 value 92.832599 iter 60 value 86.692891 iter 70 value 82.600083 iter 80 value 82.079421 iter 90 value 81.954958 iter 100 value 81.918892 final value 81.918892 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.622958 iter 10 value 93.362540 iter 20 value 92.947533 iter 30 value 92.945471 iter 40 value 92.887544 iter 40 value 92.887543 iter 40 value 92.887543 final value 92.887543 converged Fitting Repeat 2 # weights: 103 initial value 94.348175 final value 94.054508 converged Fitting Repeat 3 # weights: 103 initial value 97.627008 iter 10 value 94.056807 final value 94.055120 converged Fitting Repeat 4 # weights: 103 initial value 109.311012 iter 10 value 92.947915 iter 20 value 92.947558 iter 30 value 92.946424 iter 40 value 92.742521 iter 50 value 92.231996 iter 60 value 90.120709 iter 70 value 86.115882 iter 80 value 85.471136 iter 90 value 85.439958 iter 90 value 85.439957 iter 90 value 85.439957 final value 85.439957 converged Fitting Repeat 5 # weights: 103 initial value 94.576716 final value 94.054754 converged Fitting Repeat 1 # weights: 305 initial value 105.770977 iter 10 value 94.058168 iter 20 value 93.845966 iter 30 value 93.163848 iter 40 value 92.945938 iter 40 value 92.945938 iter 40 value 92.945938 final value 92.945938 converged Fitting Repeat 2 # weights: 305 initial value 96.399810 iter 10 value 94.057344 iter 20 value 94.044329 iter 30 value 89.918981 iter 40 value 87.608232 iter 50 value 87.424023 iter 60 value 87.336634 final value 87.335898 converged Fitting Repeat 3 # weights: 305 initial value 106.994322 iter 10 value 93.091471 iter 20 value 92.720813 iter 30 value 92.717768 iter 40 value 92.651794 iter 50 value 92.646082 iter 50 value 92.646081 iter 50 value 92.646081 final value 92.646081 converged Fitting Repeat 4 # weights: 305 initial value 99.187098 iter 10 value 94.058020 iter 20 value 94.042966 iter 30 value 90.956389 iter 40 value 90.802918 iter 50 value 90.364615 iter 50 value 90.364615 iter 50 value 90.364614 final value 90.364614 converged Fitting Repeat 5 # weights: 305 initial value 98.254347 iter 10 value 92.850593 iter 20 value 89.892741 iter 30 value 89.406751 iter 40 value 89.402378 iter 50 value 89.393140 iter 60 value 89.348813 iter 70 value 89.307262 iter 80 value 89.196807 iter 90 value 88.459777 iter 100 value 87.856734 final value 87.856734 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.488540 iter 10 value 94.269366 iter 20 value 94.039554 iter 30 value 88.874749 iter 40 value 88.845068 iter 50 value 88.838293 iter 60 value 88.584331 iter 70 value 87.245838 iter 80 value 87.198403 iter 90 value 85.197073 final value 85.185764 converged Fitting Repeat 2 # weights: 507 initial value 103.613977 iter 10 value 92.953818 iter 20 value 92.895495 iter 30 value 92.894250 iter 40 value 89.843563 iter 50 value 85.846482 iter 60 value 84.700175 iter 70 value 82.643674 iter 80 value 80.591679 iter 90 value 80.492413 iter 100 value 80.357371 final value 80.357371 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.009301 iter 10 value 93.824870 iter 20 value 93.823351 iter 30 value 92.978380 final value 92.888056 converged Fitting Repeat 4 # weights: 507 initial value 94.274153 iter 10 value 88.432702 iter 20 value 85.884861 iter 30 value 85.884182 final value 85.884086 converged Fitting Repeat 5 # weights: 507 initial value 102.751749 iter 10 value 93.211478 iter 20 value 92.091991 iter 30 value 91.958674 iter 40 value 91.500788 iter 50 value 91.426061 iter 60 value 90.714385 iter 70 value 90.655275 iter 80 value 90.653120 iter 90 value 90.054506 iter 100 value 85.733210 final value 85.733210 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.313659 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.762688 iter 10 value 94.443916 iter 20 value 94.443247 final value 94.443244 converged Fitting Repeat 3 # weights: 103 initial value 105.793903 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.598661 iter 10 value 93.701667 final value 93.701657 converged Fitting Repeat 5 # weights: 103 initial value 109.126189 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.507640 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.467731 final value 94.482150 converged Fitting Repeat 3 # weights: 305 initial value 122.157009 iter 10 value 94.444287 final value 94.443243 converged Fitting Repeat 4 # weights: 305 initial value 99.112575 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 102.607083 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 140.404551 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 100.249647 final value 94.449438 converged Fitting Repeat 3 # weights: 507 initial value 134.526592 final value 94.443243 converged Fitting Repeat 4 # weights: 507 initial value 109.332405 iter 10 value 85.278026 final value 84.806308 converged Fitting Repeat 5 # weights: 507 initial value 98.829573 iter 10 value 94.443861 iter 20 value 94.443245 iter 20 value 94.443244 iter 20 value 94.443244 final value 94.443244 converged Fitting Repeat 1 # weights: 103 initial value 97.199707 iter 10 value 93.629224 iter 20 value 83.244259 iter 30 value 82.726921 iter 40 value 82.245358 iter 50 value 82.084575 iter 60 value 82.044921 final value 82.044754 converged Fitting Repeat 2 # weights: 103 initial value 104.081053 iter 10 value 94.408052 iter 20 value 93.294283 iter 30 value 93.210370 iter 40 value 93.196378 iter 50 value 89.574688 iter 60 value 83.338744 iter 70 value 82.871958 iter 80 value 82.199236 iter 90 value 81.893351 iter 100 value 80.902537 final value 80.902537 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 105.393299 iter 10 value 94.488729 iter 20 value 93.635892 iter 30 value 93.221018 iter 40 value 83.991727 iter 50 value 82.968205 iter 60 value 82.098393 iter 70 value 81.770762 iter 80 value 81.736795 iter 90 value 80.433902 iter 100 value 80.256397 final value 80.256397 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.427944 iter 10 value 94.342914 iter 20 value 87.867162 iter 30 value 86.002742 iter 40 value 85.777858 iter 50 value 82.767909 iter 60 value 82.328919 iter 70 value 81.898722 iter 80 value 81.720187 iter 90 value 81.533681 iter 100 value 80.464066 final value 80.464066 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.790044 iter 10 value 88.619976 iter 20 value 82.760896 iter 30 value 82.526680 iter 40 value 82.076482 iter 50 value 81.783387 iter 60 value 81.757639 iter 70 value 81.745561 final value 81.745559 converged Fitting Repeat 1 # weights: 305 initial value 120.303939 iter 10 value 94.466734 iter 20 value 83.551684 iter 30 value 81.825451 iter 40 value 80.993721 iter 50 value 79.778270 iter 60 value 79.155977 iter 70 value 78.739655 iter 80 value 78.625252 iter 90 value 78.551659 iter 100 value 78.532191 final value 78.532191 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.569585 iter 10 value 94.349689 iter 20 value 93.517664 iter 30 value 93.343661 iter 40 value 87.029621 iter 50 value 84.522208 iter 60 value 83.027979 iter 70 value 81.204985 iter 80 value 80.130292 iter 90 value 79.642287 iter 100 value 79.528694 final value 79.528694 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.709066 iter 10 value 94.430806 iter 20 value 93.506968 iter 30 value 85.546737 iter 40 value 84.113619 iter 50 value 83.889022 iter 60 value 83.203439 iter 70 value 81.641825 iter 80 value 81.502953 iter 90 value 81.204217 iter 100 value 80.719504 final value 80.719504 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.262750 iter 10 value 94.539390 iter 20 value 90.649252 iter 30 value 83.786728 iter 40 value 83.213753 iter 50 value 81.617480 iter 60 value 80.380459 iter 70 value 79.561564 iter 80 value 78.664436 iter 90 value 78.432733 iter 100 value 78.289378 final value 78.289378 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.325851 iter 10 value 94.659480 iter 20 value 94.479580 iter 30 value 84.424874 iter 40 value 83.074660 iter 50 value 82.482520 iter 60 value 81.681504 iter 70 value 79.497494 iter 80 value 78.916390 iter 90 value 78.742830 iter 100 value 78.666604 final value 78.666604 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.777745 iter 10 value 94.136669 iter 20 value 89.940338 iter 30 value 87.343915 iter 40 value 85.563819 iter 50 value 83.044679 iter 60 value 80.422198 iter 70 value 79.356760 iter 80 value 79.098552 iter 90 value 78.804953 iter 100 value 78.413874 final value 78.413874 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 127.889319 iter 10 value 90.478969 iter 20 value 84.054378 iter 30 value 82.400136 iter 40 value 81.274998 iter 50 value 80.745456 iter 60 value 79.890418 iter 70 value 79.088944 iter 80 value 78.735332 iter 90 value 78.651957 iter 100 value 78.591246 final value 78.591246 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.182249 iter 10 value 89.365568 iter 20 value 85.609869 iter 30 value 84.868504 iter 40 value 84.739091 iter 50 value 82.652279 iter 60 value 81.642007 iter 70 value 81.187042 iter 80 value 80.280440 iter 90 value 79.045358 iter 100 value 78.735548 final value 78.735548 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.355166 iter 10 value 97.649329 iter 20 value 89.215892 iter 30 value 85.864964 iter 40 value 85.255726 iter 50 value 82.629588 iter 60 value 81.694238 iter 70 value 81.094404 iter 80 value 78.986917 iter 90 value 78.621725 iter 100 value 78.418546 final value 78.418546 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.965304 iter 10 value 94.535843 iter 20 value 87.160597 iter 30 value 83.677984 iter 40 value 82.142715 iter 50 value 81.616971 iter 60 value 80.911716 iter 70 value 80.234519 iter 80 value 79.557319 iter 90 value 79.221807 iter 100 value 79.133346 final value 79.133346 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.832001 iter 10 value 94.486101 iter 20 value 94.484236 final value 94.484213 converged Fitting Repeat 2 # weights: 103 initial value 96.191818 final value 94.486003 converged Fitting Repeat 3 # weights: 103 initial value 110.351664 final value 94.485669 converged Fitting Repeat 4 # weights: 103 initial value 107.312021 final value 94.485663 converged Fitting Repeat 5 # weights: 103 initial value 105.710832 final value 94.486155 converged Fitting Repeat 1 # weights: 305 initial value 108.896880 iter 10 value 94.489095 iter 20 value 94.256231 iter 30 value 89.968960 iter 40 value 89.174388 iter 50 value 87.691230 iter 60 value 87.669896 final value 86.524710 converged Fitting Repeat 2 # weights: 305 initial value 96.194613 iter 10 value 93.929060 iter 20 value 93.677694 iter 30 value 91.717447 iter 40 value 91.338918 iter 50 value 91.336647 iter 60 value 91.173567 final value 91.051536 converged Fitting Repeat 3 # weights: 305 initial value 100.866595 iter 10 value 92.112908 iter 20 value 83.808981 iter 30 value 83.783148 iter 40 value 83.369172 iter 50 value 83.112864 iter 60 value 82.934208 iter 70 value 82.932727 iter 80 value 82.868317 iter 90 value 82.711166 iter 100 value 80.608866 final value 80.608866 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.804151 iter 10 value 94.488956 iter 20 value 94.416974 iter 30 value 93.386825 iter 40 value 83.771250 iter 50 value 81.871425 iter 60 value 81.506476 final value 81.504234 converged Fitting Repeat 5 # weights: 305 initial value 100.013151 iter 10 value 94.448140 iter 20 value 94.444270 iter 30 value 89.822017 iter 40 value 83.176934 iter 50 value 82.446338 iter 60 value 81.427487 iter 70 value 81.394684 iter 80 value 81.243902 iter 90 value 81.213849 iter 100 value 81.213796 final value 81.213796 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.435159 iter 10 value 94.451414 iter 20 value 91.439398 iter 30 value 85.306477 iter 40 value 84.937258 iter 50 value 82.870601 iter 60 value 81.225691 final value 81.198962 converged Fitting Repeat 2 # weights: 507 initial value 117.378648 iter 10 value 94.451382 iter 20 value 94.445133 iter 30 value 94.351546 iter 40 value 93.227435 iter 50 value 93.220605 final value 93.220591 converged Fitting Repeat 3 # weights: 507 initial value 107.482983 iter 10 value 94.492612 iter 20 value 94.484242 iter 30 value 93.839289 iter 40 value 92.730956 iter 50 value 85.886822 iter 60 value 82.582534 iter 70 value 82.527336 iter 80 value 81.966452 iter 90 value 81.949393 iter 100 value 81.863143 final value 81.863143 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.557083 iter 10 value 84.871035 iter 20 value 84.547573 iter 30 value 81.812664 iter 40 value 81.367553 iter 50 value 81.363367 iter 60 value 81.359010 iter 70 value 81.358222 iter 80 value 81.261798 iter 90 value 81.217023 iter 100 value 81.216757 final value 81.216757 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 101.710344 iter 10 value 94.452368 iter 20 value 94.445036 iter 30 value 85.059031 iter 40 value 84.910131 iter 50 value 84.834800 iter 60 value 82.578494 iter 70 value 81.946848 iter 80 value 81.873395 iter 90 value 81.667545 iter 100 value 81.638408 final value 81.638408 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.660712 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.710579 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.440596 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 110.069898 final value 94.032967 converged Fitting Repeat 5 # weights: 103 initial value 115.135290 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 112.409204 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 96.862884 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 97.073695 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 105.351845 iter 10 value 90.159962 iter 20 value 87.242745 iter 30 value 87.236617 final value 87.236597 converged Fitting Repeat 5 # weights: 305 initial value 108.804608 final value 94.032967 converged Fitting Repeat 1 # weights: 507 initial value 114.825134 final value 94.032967 converged Fitting Repeat 2 # weights: 507 initial value 107.170617 final value 94.050000 converged Fitting Repeat 3 # weights: 507 initial value 101.283945 final value 94.032967 converged Fitting Repeat 4 # weights: 507 initial value 107.962120 final value 94.050051 converged Fitting Repeat 5 # weights: 507 initial value 99.184434 iter 10 value 86.347288 iter 20 value 85.202844 iter 30 value 85.050655 iter 40 value 85.010386 iter 50 value 85.002977 iter 60 value 84.985052 iter 70 value 84.967993 iter 80 value 82.666420 iter 90 value 82.638558 final value 82.638405 converged Fitting Repeat 1 # weights: 103 initial value 100.366540 iter 10 value 94.056185 iter 20 value 92.933327 iter 30 value 92.595610 iter 40 value 92.552620 iter 50 value 92.342297 iter 60 value 92.234171 iter 70 value 89.572867 iter 80 value 86.045622 iter 90 value 85.899345 iter 100 value 85.212144 final value 85.212144 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.377953 iter 10 value 94.056185 iter 20 value 93.612814 iter 30 value 92.635465 iter 40 value 89.736627 iter 50 value 87.255333 iter 60 value 85.996058 iter 70 value 84.731644 iter 80 value 84.574055 iter 90 value 84.468537 iter 100 value 84.352793 final value 84.352793 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.864336 iter 10 value 94.042510 iter 20 value 91.394847 iter 30 value 90.544466 iter 40 value 86.277389 iter 50 value 84.856327 iter 60 value 84.696813 iter 70 value 84.448583 iter 80 value 84.406194 iter 90 value 84.293243 final value 84.282959 converged Fitting Repeat 4 # weights: 103 initial value 109.768140 iter 10 value 94.054355 iter 20 value 93.589481 iter 30 value 90.772386 iter 40 value 88.684541 iter 50 value 88.584392 iter 60 value 87.945205 iter 70 value 85.043103 iter 80 value 84.221826 iter 90 value 82.435971 iter 100 value 81.932873 final value 81.932873 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 105.100157 iter 10 value 94.051888 iter 20 value 93.574275 iter 30 value 90.378304 iter 40 value 89.061563 iter 50 value 87.763080 iter 60 value 86.192943 iter 70 value 85.871305 iter 80 value 85.787036 iter 90 value 85.658881 iter 100 value 85.482700 final value 85.482700 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.505552 iter 10 value 90.748303 iter 20 value 88.613691 iter 30 value 88.124804 iter 40 value 85.070817 iter 50 value 83.121512 iter 60 value 81.699855 iter 70 value 81.363954 iter 80 value 80.926143 iter 90 value 80.257326 iter 100 value 80.158693 final value 80.158693 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.848633 iter 10 value 92.502523 iter 20 value 85.648599 iter 30 value 84.332051 iter 40 value 83.869658 iter 50 value 83.341889 iter 60 value 81.235888 iter 70 value 80.583091 iter 80 value 80.535520 iter 90 value 80.505580 iter 100 value 80.431931 final value 80.431931 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.757308 iter 10 value 93.933353 iter 20 value 89.100601 iter 30 value 87.032982 iter 40 value 83.579169 iter 50 value 81.497920 iter 60 value 81.240725 iter 70 value 80.633866 iter 80 value 80.536301 iter 90 value 80.401005 iter 100 value 80.036365 final value 80.036365 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.213170 iter 10 value 93.857947 iter 20 value 89.484609 iter 30 value 88.052976 iter 40 value 87.025595 iter 50 value 86.756418 iter 60 value 86.594301 iter 70 value 86.226485 iter 80 value 85.465441 iter 90 value 84.365259 iter 100 value 81.800453 final value 81.800453 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.168686 iter 10 value 94.042173 iter 20 value 89.391800 iter 30 value 86.168791 iter 40 value 84.909583 iter 50 value 84.511281 iter 60 value 82.657243 iter 70 value 81.869065 iter 80 value 81.285830 iter 90 value 80.920040 iter 100 value 80.802941 final value 80.802941 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.722855 iter 10 value 94.342607 iter 20 value 93.526061 iter 30 value 90.027838 iter 40 value 86.512404 iter 50 value 84.617351 iter 60 value 83.920599 iter 70 value 83.649415 iter 80 value 83.271882 iter 90 value 83.230934 iter 100 value 83.123638 final value 83.123638 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.370007 iter 10 value 95.189816 iter 20 value 94.541970 iter 30 value 87.823345 iter 40 value 86.346557 iter 50 value 85.854911 iter 60 value 84.740823 iter 70 value 84.281524 iter 80 value 84.092789 iter 90 value 83.086904 iter 100 value 82.600162 final value 82.600162 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.070495 iter 10 value 94.230321 iter 20 value 90.095014 iter 30 value 86.653635 iter 40 value 86.249094 iter 50 value 82.728353 iter 60 value 82.052209 iter 70 value 80.935160 iter 80 value 80.190422 iter 90 value 80.024599 iter 100 value 79.971919 final value 79.971919 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.321943 iter 10 value 93.715001 iter 20 value 87.896823 iter 30 value 84.383544 iter 40 value 81.185261 iter 50 value 80.583480 iter 60 value 80.503449 iter 70 value 80.205314 iter 80 value 79.954441 iter 90 value 79.871677 iter 100 value 79.772554 final value 79.772554 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.690522 iter 10 value 94.045979 iter 20 value 89.949500 iter 30 value 88.460673 iter 40 value 85.193480 iter 50 value 82.059446 iter 60 value 80.951379 iter 70 value 80.562323 iter 80 value 80.457811 iter 90 value 80.166921 iter 100 value 79.751371 final value 79.751371 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 106.456290 iter 10 value 94.054524 iter 20 value 94.052712 iter 30 value 93.918579 iter 40 value 89.687338 iter 50 value 88.591058 iter 60 value 87.283949 iter 70 value 87.281500 final value 87.281343 converged Fitting Repeat 2 # weights: 103 initial value 98.607008 iter 10 value 92.498483 iter 20 value 92.497134 iter 30 value 92.496764 iter 40 value 92.495761 final value 92.495759 converged Fitting Repeat 3 # weights: 103 initial value 104.044839 iter 10 value 94.034804 iter 20 value 93.688987 iter 30 value 92.668722 iter 40 value 92.667634 iter 50 value 92.412605 iter 60 value 92.411085 final value 92.411072 converged Fitting Repeat 4 # weights: 103 initial value 100.411412 iter 10 value 94.043588 iter 20 value 94.034350 final value 94.033018 converged Fitting Repeat 5 # weights: 103 initial value 95.486024 iter 10 value 94.054702 final value 94.052914 converged Fitting Repeat 1 # weights: 305 initial value 99.574251 iter 10 value 89.288841 iter 20 value 89.014208 iter 30 value 87.525041 iter 40 value 86.937545 iter 50 value 86.841051 iter 60 value 86.840049 iter 70 value 86.839070 iter 80 value 86.593697 iter 90 value 84.626486 iter 100 value 83.721387 final value 83.721387 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.553085 iter 10 value 94.038299 iter 20 value 94.033132 final value 94.033033 converged Fitting Repeat 3 # weights: 305 initial value 103.277630 iter 10 value 94.037778 iter 20 value 94.033748 iter 30 value 87.754177 iter 40 value 87.249966 iter 50 value 85.535453 iter 60 value 85.424733 iter 60 value 85.424733 iter 60 value 85.424733 final value 85.424733 converged Fitting Repeat 4 # weights: 305 initial value 109.392007 iter 10 value 94.084234 iter 20 value 94.047019 iter 30 value 93.023432 iter 40 value 93.010254 iter 50 value 92.859412 iter 60 value 92.804468 iter 70 value 92.767042 iter 80 value 92.762338 final value 92.762336 converged Fitting Repeat 5 # weights: 305 initial value 108.332044 iter 10 value 94.057331 iter 20 value 93.858699 iter 30 value 86.890019 iter 40 value 84.818165 iter 50 value 80.880938 iter 60 value 79.980231 iter 70 value 79.943028 iter 80 value 79.888080 iter 90 value 79.878828 iter 100 value 79.859997 final value 79.859997 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.335162 iter 10 value 94.058382 iter 20 value 94.056272 iter 30 value 94.003889 iter 40 value 93.555996 iter 50 value 85.224108 iter 60 value 82.488550 iter 70 value 82.189504 iter 80 value 81.858123 iter 90 value 81.629426 iter 100 value 81.448090 final value 81.448090 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.911335 iter 10 value 94.063178 iter 20 value 88.433899 iter 30 value 86.337000 iter 40 value 85.127682 iter 50 value 84.847884 iter 60 value 84.512513 iter 70 value 84.510737 iter 80 value 84.510224 iter 80 value 84.510224 final value 84.510222 converged Fitting Repeat 3 # weights: 507 initial value 99.419196 iter 10 value 94.041705 iter 20 value 94.034151 iter 30 value 94.032157 iter 40 value 93.095303 iter 50 value 92.670498 iter 60 value 92.465867 iter 70 value 92.425130 iter 80 value 92.389074 iter 90 value 92.388832 iter 100 value 92.387675 final value 92.387675 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.295234 iter 10 value 93.892891 iter 20 value 93.887903 iter 30 value 93.423060 iter 40 value 92.280750 final value 92.181123 converged Fitting Repeat 5 # weights: 507 initial value 95.457974 iter 10 value 94.040406 iter 20 value 93.423677 iter 30 value 85.307568 iter 40 value 84.185359 iter 50 value 83.824724 iter 60 value 83.824616 final value 83.824473 converged Fitting Repeat 1 # weights: 103 initial value 98.488670 iter 10 value 87.922197 iter 20 value 85.412582 iter 20 value 85.412581 iter 20 value 85.412581 final value 85.412581 converged Fitting Repeat 2 # weights: 103 initial value 99.254457 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.955581 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.406685 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 109.512950 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 103.213067 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 97.308480 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 94.622337 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 97.979092 iter 10 value 87.431233 iter 20 value 83.574205 iter 30 value 83.414990 iter 40 value 82.559197 final value 82.279001 converged Fitting Repeat 5 # weights: 305 initial value 100.262171 final value 94.484210 converged Fitting Repeat 1 # weights: 507 initial value 107.299353 iter 10 value 94.467011 final value 94.466823 converged Fitting Repeat 2 # weights: 507 initial value 102.329182 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 96.551674 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 94.601512 iter 10 value 86.344017 iter 20 value 84.072511 iter 30 value 84.043878 final value 84.042678 converged Fitting Repeat 5 # weights: 507 initial value 100.023988 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 99.050836 iter 10 value 94.540308 iter 20 value 94.488566 iter 30 value 94.195349 iter 40 value 87.272542 iter 50 value 86.110127 iter 60 value 85.879162 iter 70 value 85.396234 iter 80 value 83.692211 final value 83.685163 converged Fitting Repeat 2 # weights: 103 initial value 100.676514 iter 10 value 94.409279 iter 20 value 92.757144 iter 30 value 86.813390 iter 40 value 86.617978 iter 50 value 85.744846 iter 60 value 84.764869 final value 84.754153 converged Fitting Repeat 3 # weights: 103 initial value 98.520514 iter 10 value 94.488316 iter 20 value 94.271225 iter 30 value 94.157128 iter 40 value 94.142419 iter 50 value 93.669876 iter 60 value 88.692324 iter 70 value 87.282426 iter 80 value 86.671858 iter 90 value 82.766518 iter 100 value 81.637934 final value 81.637934 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 104.737498 iter 10 value 94.302166 iter 20 value 87.792175 iter 30 value 83.863716 iter 40 value 83.702279 iter 50 value 83.653761 iter 60 value 83.643458 final value 83.643055 converged Fitting Repeat 5 # weights: 103 initial value 108.338052 iter 10 value 93.981389 iter 20 value 87.289380 iter 30 value 85.557658 iter 40 value 85.283257 iter 50 value 84.351359 iter 60 value 83.879265 iter 70 value 83.648247 iter 80 value 83.646890 iter 80 value 83.646890 final value 83.646890 converged Fitting Repeat 1 # weights: 305 initial value 100.492427 iter 10 value 95.384048 iter 20 value 93.418221 iter 30 value 93.285935 iter 40 value 91.606931 iter 50 value 85.922863 iter 60 value 85.415947 iter 70 value 85.058881 iter 80 value 84.986972 iter 90 value 84.935781 iter 100 value 84.858483 final value 84.858483 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 117.129454 iter 10 value 94.817607 iter 20 value 94.199843 iter 30 value 86.876227 iter 40 value 86.352795 iter 50 value 83.012980 iter 60 value 82.362309 iter 70 value 81.703509 iter 80 value 81.315415 iter 90 value 80.805027 iter 100 value 80.750309 final value 80.750309 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.876133 iter 10 value 94.521485 iter 20 value 86.339857 iter 30 value 85.673236 iter 40 value 84.937936 iter 50 value 83.707287 iter 60 value 83.408850 iter 70 value 83.341766 iter 80 value 82.921854 iter 90 value 81.994773 iter 100 value 80.293972 final value 80.293972 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.104993 iter 10 value 94.267523 iter 20 value 89.988061 iter 30 value 88.760486 iter 40 value 84.090904 iter 50 value 81.312481 iter 60 value 81.089479 iter 70 value 80.685890 iter 80 value 80.570163 iter 90 value 80.345061 iter 100 value 80.168014 final value 80.168014 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.423339 iter 10 value 94.485353 iter 20 value 94.174490 iter 30 value 94.129931 iter 40 value 93.469629 iter 50 value 86.969695 iter 60 value 83.131249 iter 70 value 82.513275 iter 80 value 82.353567 iter 90 value 82.182028 iter 100 value 81.330224 final value 81.330224 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.484729 iter 10 value 94.282040 iter 20 value 85.790820 iter 30 value 83.559583 iter 40 value 82.789083 iter 50 value 82.653814 iter 60 value 81.752176 iter 70 value 81.166171 iter 80 value 80.973814 iter 90 value 80.500537 iter 100 value 80.405894 final value 80.405894 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.681359 iter 10 value 100.700720 iter 20 value 87.194481 iter 30 value 82.253254 iter 40 value 81.494964 iter 50 value 80.307442 iter 60 value 80.182647 iter 70 value 80.042609 iter 80 value 79.725540 iter 90 value 79.521841 iter 100 value 79.390159 final value 79.390159 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.552096 iter 10 value 94.434079 iter 20 value 87.785631 iter 30 value 85.907199 iter 40 value 84.747382 iter 50 value 83.618834 iter 60 value 81.380185 iter 70 value 80.365040 iter 80 value 80.300337 iter 90 value 80.176973 iter 100 value 79.889707 final value 79.889707 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.927507 iter 10 value 94.794402 iter 20 value 94.603886 iter 30 value 86.442357 iter 40 value 85.581228 iter 50 value 84.880592 iter 60 value 82.795149 iter 70 value 80.618272 iter 80 value 80.194828 iter 90 value 79.731104 iter 100 value 79.486275 final value 79.486275 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.483974 iter 10 value 95.068612 iter 20 value 88.559939 iter 30 value 86.052518 iter 40 value 84.122114 iter 50 value 83.224838 iter 60 value 82.828533 iter 70 value 81.431708 iter 80 value 81.158364 iter 90 value 81.063749 iter 100 value 80.996839 final value 80.996839 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.346894 final value 94.485839 converged Fitting Repeat 2 # weights: 103 initial value 94.809866 final value 94.485948 converged Fitting Repeat 3 # weights: 103 initial value 108.919840 iter 10 value 93.112090 iter 20 value 93.103665 iter 30 value 84.738574 iter 40 value 84.586966 iter 50 value 84.586857 iter 60 value 84.571554 iter 70 value 84.030819 iter 80 value 84.030752 final value 84.030750 converged Fitting Repeat 4 # weights: 103 initial value 98.824441 final value 94.485896 converged Fitting Repeat 5 # weights: 103 initial value 105.335994 final value 94.485619 converged Fitting Repeat 1 # weights: 305 initial value 95.741455 iter 10 value 94.488195 iter 20 value 94.374049 iter 30 value 85.138042 iter 40 value 84.564716 iter 50 value 83.307547 final value 83.300616 converged Fitting Repeat 2 # weights: 305 initial value 102.154751 iter 10 value 94.489510 iter 20 value 94.237007 iter 30 value 90.551150 iter 40 value 90.314803 iter 50 value 90.302988 iter 60 value 90.111187 iter 60 value 90.111186 iter 60 value 90.111186 final value 90.111186 converged Fitting Repeat 3 # weights: 305 initial value 107.546107 iter 10 value 94.472180 iter 20 value 94.280680 final value 94.113151 converged Fitting Repeat 4 # weights: 305 initial value 100.204511 iter 10 value 94.489229 iter 20 value 94.484701 iter 30 value 87.752175 iter 40 value 84.269800 iter 50 value 83.160492 iter 60 value 80.960314 iter 70 value 80.611580 iter 80 value 80.595037 iter 90 value 80.590989 iter 100 value 80.586049 final value 80.586049 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 94.949869 iter 10 value 94.489123 iter 20 value 94.342225 iter 30 value 88.927226 iter 40 value 87.046656 iter 50 value 85.900452 iter 60 value 85.741279 iter 70 value 85.737900 iter 80 value 85.737455 iter 80 value 85.737454 iter 80 value 85.737454 final value 85.737454 converged Fitting Repeat 1 # weights: 507 initial value 113.433063 iter 10 value 93.118623 iter 20 value 88.858329 iter 30 value 83.870149 iter 40 value 83.832127 iter 50 value 83.831946 iter 60 value 82.909637 iter 70 value 82.249865 final value 82.231683 converged Fitting Repeat 2 # weights: 507 initial value 104.447256 iter 10 value 94.474567 iter 20 value 94.242448 iter 30 value 89.144561 iter 40 value 82.784290 iter 50 value 82.619131 iter 60 value 82.616395 iter 70 value 82.615199 iter 80 value 82.605356 iter 90 value 82.388460 iter 100 value 82.042098 final value 82.042098 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.595636 iter 10 value 94.492124 iter 20 value 88.223639 iter 30 value 83.091348 iter 40 value 83.038238 final value 83.038051 converged Fitting Repeat 4 # weights: 507 initial value 109.587704 iter 10 value 94.319461 iter 20 value 94.300601 iter 30 value 93.567125 iter 40 value 86.842974 iter 50 value 86.332771 iter 60 value 84.529281 iter 70 value 83.855051 iter 80 value 83.851748 iter 90 value 83.851209 iter 100 value 83.608126 final value 83.608126 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 101.676790 iter 10 value 94.488533 iter 20 value 94.471409 iter 30 value 85.140379 iter 40 value 84.053053 iter 50 value 84.034509 final value 84.033762 converged Fitting Repeat 1 # weights: 507 initial value 149.602672 iter 10 value 118.106556 iter 20 value 117.526906 iter 30 value 114.051172 iter 40 value 106.702551 iter 50 value 102.626098 iter 60 value 101.125037 iter 70 value 100.845466 iter 80 value 100.718319 iter 90 value 100.398531 iter 100 value 100.350609 final value 100.350609 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 143.683342 iter 10 value 120.130155 iter 20 value 117.962516 iter 30 value 107.486789 iter 40 value 107.273492 iter 50 value 107.162413 iter 60 value 104.908022 iter 70 value 104.016293 iter 80 value 102.430125 iter 90 value 101.623504 iter 100 value 101.530706 final value 101.530706 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 141.258006 iter 10 value 118.013794 iter 20 value 117.737575 iter 30 value 108.899930 iter 40 value 107.850811 iter 50 value 104.874037 iter 60 value 103.777779 iter 70 value 103.056083 iter 80 value 102.725384 iter 90 value 102.548823 iter 100 value 101.599546 final value 101.599546 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 124.590304 iter 10 value 117.190938 iter 20 value 106.383775 iter 30 value 105.577581 iter 40 value 104.844812 iter 50 value 104.187986 iter 60 value 103.540653 iter 70 value 103.049226 iter 80 value 102.416892 iter 90 value 102.021231 iter 100 value 101.303336 final value 101.303336 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 129.574044 iter 10 value 117.835087 iter 20 value 108.024012 iter 30 value 107.785902 iter 40 value 107.276762 iter 50 value 104.973832 iter 60 value 103.417890 iter 70 value 103.092874 iter 80 value 102.491724 iter 90 value 102.192074 iter 100 value 101.943758 final value 101.943758 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Thu Mar 17 19:24:23 2022 *********************************************** Number of test functions: 8 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures Number of test functions: 8 Number of errors: 0 Number of failures: 0 Warning messages: 1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0. Use `.name_repair = "minimal"`. This warning is displayed once every 8 hours. Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated. 2: `repeats` has no meaning for this resampling method. 3: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 75.15 2.34 47.34
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 26.36 | 4.49 | 30.84 | |
FreqInteractors | 0.19 | 0.00 | 0.19 | |
calculateAAC | 0.04 | 0.01 | 0.06 | |
calculateAutocor | 0.18 | 0.19 | 0.36 | |
calculateBE | 0.04 | 0.02 | 0.06 | |
calculateCTDC | 0.06 | 0.03 | 0.10 | |
calculateCTDD | 0.60 | 0.12 | 0.72 | |
calculateCTDT | 0.36 | 0.00 | 0.35 | |
calculateCTriad | 0.29 | 0.03 | 0.33 | |
calculateDC | 0.08 | 0.00 | 0.08 | |
calculateF | 0.36 | 0.00 | 0.36 | |
calculateKSAAP | 0.10 | 0.00 | 0.09 | |
calculateQD_Sm | 1.37 | 0.10 | 1.47 | |
calculateTC | 2.67 | 0.23 | 2.91 | |
calculateTC_Sm | 0.17 | 0.00 | 0.17 | |
corr_plot | 28.08 | 3.28 | 31.94 | |
enrichfindP | 0.27 | 0.02 | 8.69 | |
enrichfind_hp | 0.01 | 0.01 | 0.75 | |
enrichplot | 0.19 | 0.00 | 0.19 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.01 | 0.00 | 1.92 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.05 | 0.00 | 0.05 | |
pred_ensembel | 18.12 | 0.35 | 9.40 | |
var_imp | 27.36 | 3.83 | 33.21 | |