Back to Multiple platform build/check report for BioC 3.15
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2022-10-19 13:21:38 -0400 (Wed, 19 Oct 2022).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 20.04.5 LTS)x86_644.2.1 (2022-06-23) -- "Funny-Looking Kid" 4386
palomino3Windows Server 2022 Datacenterx644.2.1 (2022-06-23 ucrt) -- "Funny-Looking Kid" 4138
merida1macOS 10.14.6 Mojavex86_644.2.1 (2022-06-23) -- "Funny-Looking Kid" 4205
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for HPiP on palomino3


To the developers/maintainers of the HPiP package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 911/2140HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.2.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2022-10-18 13:55:19 -0400 (Tue, 18 Oct 2022)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_15
git_last_commit: 06d853c
git_last_commit_date: 2022-04-26 12:18:17 -0400 (Tue, 26 Apr 2022)
nebbiolo1Linux (Ubuntu 20.04.5 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino3Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 10.14.6 Mojave / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published

Summary

Package: HPiP
Version: 1.2.0
Command: F:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.15-bioc\R\library --no-vignettes --timings HPiP_1.2.0.tar.gz
StartedAt: 2022-10-19 01:02:38 -0400 (Wed, 19 Oct 2022)
EndedAt: 2022-10-19 01:07:32 -0400 (Wed, 19 Oct 2022)
EllapsedTime: 293.4 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.15-bioc\R\library --no-vignettes --timings HPiP_1.2.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck'
* using R version 4.2.1 (2022-06-23 ucrt)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.2.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
FSmethod      30.58   1.28   31.95
corr_plot     30.61   1.16   31.77
var_imp       30.28   0.85   31.17
pred_ensembel 13.67   0.50   10.83
enrichfindP    0.41   0.08   11.87
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  'F:/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck/00check.log'
for details.



Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.15-bioc/R/library'
* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.2.1 (2022-06-23 ucrt) -- "Funny-Looking Kid"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 96.080177 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.135603 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.105788 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.415718 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.697134 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.645000 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 104.555913 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.063900 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 116.646385 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 112.001370 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.211405 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 112.939452 
final  value 93.836066 
converged
Fitting Repeat 3 

# weights:  507
initial  value 111.021246 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.990164 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.814244 
iter  10 value 93.971976
final  value 93.900000 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.265740 
iter  10 value 94.020557
iter  20 value 93.752299
iter  30 value 91.022795
iter  40 value 86.663074
iter  50 value 85.398301
iter  60 value 82.988722
iter  70 value 82.340173
iter  80 value 81.323810
iter  90 value 80.262114
iter 100 value 79.690586
final  value 79.690586 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 111.228637 
iter  10 value 94.054972
iter  20 value 94.033542
iter  30 value 91.024156
iter  40 value 86.565167
iter  50 value 83.178625
iter  60 value 80.406150
iter  70 value 79.967441
iter  80 value 79.928214
iter  90 value 79.926660
final  value 79.926636 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.906334 
iter  10 value 94.063965
iter  20 value 92.276934
iter  30 value 86.162059
iter  40 value 83.560379
iter  50 value 82.849376
iter  60 value 82.581036
iter  70 value 82.554160
final  value 82.553308 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.040642 
iter  10 value 93.761315
iter  20 value 85.219799
iter  30 value 81.813020
iter  40 value 80.772243
iter  50 value 80.583812
iter  60 value 80.371571
iter  70 value 79.786137
iter  80 value 79.749975
iter  90 value 79.599667
iter 100 value 79.559030
final  value 79.559030 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 98.277581 
iter  10 value 94.163038
iter  20 value 86.011429
iter  30 value 85.305937
iter  40 value 83.351918
iter  50 value 82.577432
iter  60 value 82.553463
final  value 82.553308 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.387518 
iter  10 value 94.185887
iter  20 value 93.790253
iter  30 value 93.096385
iter  40 value 92.656465
iter  50 value 87.384712
iter  60 value 85.122960
iter  70 value 83.525119
iter  80 value 82.385458
iter  90 value 81.764007
iter 100 value 80.595041
final  value 80.595041 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 140.718942 
iter  10 value 94.323052
iter  20 value 88.894844
iter  30 value 87.499639
iter  40 value 85.716687
iter  50 value 82.984616
iter  60 value 81.382449
iter  70 value 80.588575
iter  80 value 79.167181
iter  90 value 78.925692
iter 100 value 78.834388
final  value 78.834388 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 99.807583 
iter  10 value 94.088212
iter  20 value 93.715137
iter  30 value 84.406405
iter  40 value 83.061930
iter  50 value 82.620336
iter  60 value 82.562456
iter  70 value 82.552853
iter  80 value 82.511156
iter  90 value 82.432243
iter 100 value 82.249736
final  value 82.249736 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.859421 
iter  10 value 93.992640
iter  20 value 93.746535
iter  30 value 92.750278
iter  40 value 88.019774
iter  50 value 83.935044
iter  60 value 81.249103
iter  70 value 79.725086
iter  80 value 78.612975
iter  90 value 78.121776
iter 100 value 77.866708
final  value 77.866708 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 119.530681 
iter  10 value 94.099712
iter  20 value 89.881543
iter  30 value 88.204351
iter  40 value 84.220424
iter  50 value 83.301836
iter  60 value 82.416227
iter  70 value 81.728513
iter  80 value 81.506668
iter  90 value 81.384960
iter 100 value 81.311408
final  value 81.311408 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 115.221871 
iter  10 value 94.028594
iter  20 value 90.056096
iter  30 value 85.103435
iter  40 value 84.463312
iter  50 value 83.356042
iter  60 value 81.003244
iter  70 value 80.488546
iter  80 value 80.420352
iter  90 value 80.227297
iter 100 value 80.113876
final  value 80.113876 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 132.266321 
iter  10 value 95.573129
iter  20 value 94.332566
iter  30 value 93.471040
iter  40 value 87.506051
iter  50 value 85.727575
iter  60 value 85.219780
iter  70 value 84.984221
iter  80 value 84.335775
iter  90 value 83.321427
iter 100 value 80.150589
final  value 80.150589 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 119.662248 
iter  10 value 88.211306
iter  20 value 85.409406
iter  30 value 81.167676
iter  40 value 80.565239
iter  50 value 79.681592
iter  60 value 78.630241
iter  70 value 78.388212
iter  80 value 78.007127
iter  90 value 77.915574
iter 100 value 77.766400
final  value 77.766400 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 112.430287 
iter  10 value 94.272813
iter  20 value 92.234337
iter  30 value 85.684410
iter  40 value 81.809261
iter  50 value 80.368462
iter  60 value 79.918708
iter  70 value 79.161474
iter  80 value 78.808521
iter  90 value 78.177623
iter 100 value 78.089904
final  value 78.089904 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 125.484574 
iter  10 value 94.050436
iter  20 value 93.154726
iter  30 value 91.269327
iter  40 value 88.183996
iter  50 value 82.819420
iter  60 value 81.165762
iter  70 value 79.870969
iter  80 value 79.650672
iter  90 value 79.323540
iter 100 value 79.120493
final  value 79.120493 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 109.984082 
final  value 94.054479 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.415378 
iter  10 value 85.348049
iter  20 value 85.152756
iter  30 value 84.994064
iter  40 value 84.929946
iter  50 value 84.928409
iter  60 value 84.395163
iter  70 value 82.889286
iter  80 value 82.642725
iter  90 value 82.638394
iter 100 value 82.637415
final  value 82.637415 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 95.452556 
final  value 94.054479 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.073709 
final  value 94.054767 
converged
Fitting Repeat 5 

# weights:  103
initial  value 104.652172 
final  value 94.054760 
converged
Fitting Repeat 1 

# weights:  305
initial  value 121.091037 
iter  10 value 93.775493
iter  20 value 93.637530
iter  30 value 93.633376
iter  40 value 91.826119
iter  50 value 88.116961
iter  60 value 82.389449
iter  70 value 81.580793
iter  80 value 81.575357
final  value 81.574708 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.104974 
iter  10 value 94.057601
iter  20 value 88.143536
iter  30 value 82.868857
iter  40 value 82.307454
final  value 82.304503 
converged
Fitting Repeat 3 

# weights:  305
initial  value 100.764634 
iter  10 value 93.945091
iter  20 value 93.664278
iter  30 value 93.637230
iter  40 value 93.632451
iter  50 value 93.632367
iter  50 value 93.632367
final  value 93.632367 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.218921 
iter  10 value 94.055835
iter  20 value 93.669687
iter  30 value 93.634138
final  value 93.632418 
converged
Fitting Repeat 5 

# weights:  305
initial  value 94.857406 
iter  10 value 94.057604
iter  20 value 94.052928
final  value 94.052923 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.618779 
iter  10 value 94.061270
iter  20 value 94.002850
iter  30 value 89.361186
iter  40 value 85.164709
iter  50 value 84.908832
iter  60 value 84.897355
final  value 84.897081 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.763467 
iter  10 value 94.060802
iter  20 value 94.052924
final  value 94.052913 
converged
Fitting Repeat 3 

# weights:  507
initial  value 107.000778 
iter  10 value 93.654800
iter  20 value 93.640573
iter  30 value 93.633431
iter  40 value 89.166763
iter  50 value 84.704573
iter  60 value 77.776628
iter  70 value 77.386456
iter  80 value 77.210916
iter  90 value 77.143385
iter 100 value 77.142223
final  value 77.142223 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 95.852541 
iter  10 value 93.844549
iter  20 value 93.326682
iter  30 value 90.945765
iter  40 value 90.203397
iter  50 value 81.397286
iter  60 value 81.117600
final  value 81.111815 
converged
Fitting Repeat 5 

# weights:  507
initial  value 94.904901 
iter  10 value 93.844025
iter  20 value 93.792042
iter  30 value 93.602521
iter  40 value 93.198651
iter  50 value 85.427093
iter  60 value 83.653223
iter  70 value 83.638910
iter  80 value 83.631855
iter  90 value 83.630644
iter 100 value 79.726062
final  value 79.726062 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 108.145200 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.458677 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.559632 
iter  10 value 94.275368
final  value 94.275362 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.163630 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.913223 
iter  10 value 91.006339
final  value 89.988316 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.462285 
final  value 94.467391 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.504751 
final  value 94.467391 
converged
Fitting Repeat 3 

# weights:  305
initial  value 102.042425 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.711643 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.021872 
final  value 94.315791 
converged
Fitting Repeat 1 

# weights:  507
initial  value 108.793442 
iter  10 value 94.183441
iter  20 value 86.803968
iter  30 value 84.612725
iter  40 value 84.437609
final  value 84.437607 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.828164 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 95.680817 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 100.157889 
iter  10 value 94.470705
iter  20 value 94.467396
final  value 94.467392 
converged
Fitting Repeat 5 

# weights:  507
initial  value 108.096838 
iter  10 value 91.396256
iter  20 value 91.237556
iter  20 value 91.237555
iter  20 value 91.237555
final  value 91.237555 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.327684 
iter  10 value 94.371564
iter  20 value 91.202391
iter  30 value 88.824168
iter  40 value 85.488617
iter  50 value 84.857134
iter  60 value 84.355069
iter  70 value 83.742530
iter  80 value 83.448610
iter  90 value 83.433600
final  value 83.433281 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.970524 
iter  10 value 94.473342
iter  20 value 94.239130
iter  30 value 88.659975
iter  40 value 85.242659
iter  50 value 84.827482
iter  60 value 84.497347
iter  70 value 83.536086
iter  80 value 82.371627
iter  90 value 82.305354
iter  90 value 82.305354
iter  90 value 82.305354
final  value 82.305354 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.914660 
iter  10 value 94.452442
iter  20 value 86.411939
iter  30 value 84.614756
iter  40 value 84.453811
iter  50 value 84.232114
iter  60 value 83.690435
iter  70 value 83.537157
iter  80 value 83.473545
iter  90 value 83.433338
final  value 83.433281 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.805435 
iter  10 value 94.489099
iter  20 value 89.984812
iter  30 value 89.470673
iter  40 value 86.103069
iter  50 value 84.969304
iter  60 value 83.208231
iter  70 value 82.227614
iter  80 value 82.143037
iter  90 value 82.070787
iter  90 value 82.070787
iter  90 value 82.070787
final  value 82.070787 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.704053 
iter  10 value 94.487766
iter  20 value 92.677665
iter  30 value 91.789481
iter  40 value 91.167936
iter  50 value 90.788758
iter  60 value 90.708768
iter  70 value 84.391623
iter  80 value 83.889264
iter  90 value 83.098628
iter 100 value 82.522187
final  value 82.522187 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 102.037146 
iter  10 value 94.231919
iter  20 value 90.296694
iter  30 value 85.970650
iter  40 value 83.992886
iter  50 value 83.657730
iter  60 value 82.920623
iter  70 value 81.787271
iter  80 value 81.259562
iter  90 value 81.235106
iter 100 value 81.189551
final  value 81.189551 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 108.085112 
iter  10 value 94.610266
iter  20 value 89.833704
iter  30 value 86.315959
iter  40 value 85.941407
iter  50 value 85.594867
iter  60 value 84.285946
iter  70 value 83.732934
iter  80 value 82.989377
iter  90 value 82.456648
iter 100 value 81.924199
final  value 81.924199 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 117.782074 
iter  10 value 94.285340
iter  20 value 87.381164
iter  30 value 86.406982
iter  40 value 85.082431
iter  50 value 84.705480
iter  60 value 84.186238
iter  70 value 83.908132
iter  80 value 83.272140
iter  90 value 82.989694
iter 100 value 82.598933
final  value 82.598933 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.447664 
iter  10 value 93.711859
iter  20 value 86.484012
iter  30 value 85.143136
iter  40 value 84.808494
iter  50 value 84.019887
iter  60 value 82.492371
iter  70 value 82.216808
iter  80 value 81.514279
iter  90 value 81.119473
iter 100 value 80.845552
final  value 80.845552 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 100.221401 
iter  10 value 90.603833
iter  20 value 85.444147
iter  30 value 84.298043
iter  40 value 83.946029
iter  50 value 83.547804
iter  60 value 83.341511
iter  70 value 83.330052
iter  80 value 82.911187
iter  90 value 82.209245
iter 100 value 82.152359
final  value 82.152359 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 109.064430 
iter  10 value 94.520198
iter  20 value 87.428340
iter  30 value 86.713445
iter  40 value 86.263150
iter  50 value 84.632048
iter  60 value 84.375545
iter  70 value 83.946331
iter  80 value 81.498618
iter  90 value 81.133247
iter 100 value 80.970770
final  value 80.970770 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 109.244291 
iter  10 value 94.090515
iter  20 value 92.761478
iter  30 value 88.706532
iter  40 value 85.873468
iter  50 value 84.296580
iter  60 value 83.344347
iter  70 value 81.787874
iter  80 value 81.272102
iter  90 value 81.028882
iter 100 value 80.946085
final  value 80.946085 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 114.518735 
iter  10 value 93.158103
iter  20 value 86.539689
iter  30 value 84.917534
iter  40 value 84.343776
iter  50 value 84.005854
iter  60 value 83.294468
iter  70 value 82.343729
iter  80 value 81.491227
iter  90 value 81.248629
iter 100 value 80.914438
final  value 80.914438 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 112.874515 
iter  10 value 91.906221
iter  20 value 88.434676
iter  30 value 86.750893
iter  40 value 86.285812
iter  50 value 84.913562
iter  60 value 81.750417
iter  70 value 81.443895
iter  80 value 81.304526
iter  90 value 81.174206
iter 100 value 81.111376
final  value 81.111376 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 122.664784 
iter  10 value 94.961804
iter  20 value 92.026523
iter  30 value 90.890499
iter  40 value 85.864147
iter  50 value 84.556381
iter  60 value 84.318765
iter  70 value 84.075483
iter  80 value 83.644204
iter  90 value 83.244436
iter 100 value 83.043664
final  value 83.043664 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 108.816670 
final  value 94.485884 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.861710 
final  value 94.485826 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.824034 
final  value 94.469276 
converged
Fitting Repeat 4 

# weights:  103
initial  value 108.103506 
final  value 94.485990 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.155682 
final  value 94.485824 
converged
Fitting Repeat 1 

# weights:  305
initial  value 119.425492 
iter  10 value 94.488708
iter  20 value 94.416165
iter  30 value 87.067914
iter  40 value 85.973678
iter  50 value 85.929753
final  value 85.929577 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.186611 
iter  10 value 94.490116
iter  20 value 94.459206
iter  30 value 90.098292
iter  40 value 89.757190
iter  50 value 89.751562
iter  60 value 89.743430
iter  70 value 89.742262
iter  80 value 89.738793
final  value 89.736575 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.989973 
iter  10 value 91.735962
iter  20 value 89.889241
iter  30 value 89.886566
iter  40 value 89.883648
iter  50 value 85.820399
iter  60 value 85.515223
iter  70 value 85.487074
final  value 85.485983 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.759552 
iter  10 value 94.489741
iter  20 value 94.484382
iter  30 value 93.601986
iter  40 value 92.279736
final  value 92.277870 
converged
Fitting Repeat 5 

# weights:  305
initial  value 121.080249 
iter  10 value 94.479840
iter  20 value 94.471994
iter  30 value 94.467637
iter  40 value 92.281429
iter  50 value 85.785203
iter  60 value 84.425980
iter  70 value 84.423867
final  value 84.423698 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.542924 
iter  10 value 94.492774
iter  20 value 94.469964
iter  30 value 91.972736
iter  40 value 91.920740
iter  50 value 91.920653
final  value 91.920578 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.145212 
iter  10 value 94.492727
iter  20 value 94.150969
iter  30 value 93.911267
iter  40 value 91.393620
iter  50 value 91.167404
iter  60 value 91.055903
iter  70 value 91.055801
iter  80 value 91.007489
iter  90 value 90.971846
final  value 90.971843 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.250142 
iter  10 value 94.283571
final  value 94.283422 
converged
Fitting Repeat 4 

# weights:  507
initial  value 114.507834 
iter  10 value 94.332005
iter  20 value 91.649471
iter  30 value 89.849227
iter  40 value 89.145103
iter  50 value 88.339604
iter  60 value 87.534919
iter  70 value 87.409248
iter  80 value 87.200728
iter  90 value 87.199439
iter 100 value 87.197811
final  value 87.197811 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 110.774099 
iter  10 value 94.492348
iter  20 value 94.331253
iter  30 value 94.326336
iter  40 value 94.153183
iter  50 value 92.472688
iter  60 value 91.088495
iter  70 value 91.079021
iter  80 value 91.077308
iter  90 value 90.953667
iter 100 value 90.523561
final  value 90.523561 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.796485 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.716205 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.643145 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.146532 
final  value 93.892857 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.317333 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.792427 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.477616 
final  value 93.836066 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.121680 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.448403 
iter  10 value 93.089757
final  value 93.086891 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.249585 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 108.573690 
iter  10 value 92.911401
iter  20 value 92.847524
final  value 92.844789 
converged
Fitting Repeat 2 

# weights:  507
initial  value 124.437921 
iter  10 value 89.641762
iter  20 value 85.863380
iter  30 value 85.753421
iter  40 value 85.656434
final  value 85.655649 
converged
Fitting Repeat 3 

# weights:  507
initial  value 96.804967 
final  value 94.011561 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.058948 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 97.471391 
final  value 93.836066 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.032693 
iter  10 value 94.052558
iter  20 value 93.916374
iter  30 value 92.968135
iter  40 value 85.614953
iter  50 value 84.849016
iter  60 value 84.637422
iter  70 value 84.611765
final  value 84.611687 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.903702 
iter  10 value 93.997341
iter  20 value 92.252335
iter  30 value 91.828296
iter  40 value 91.430704
iter  50 value 91.247612
final  value 91.226030 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.446681 
iter  10 value 94.056712
iter  20 value 93.943780
iter  30 value 93.357335
iter  40 value 87.426397
iter  50 value 86.369964
iter  60 value 85.035301
iter  70 value 83.857905
iter  80 value 83.173544
iter  90 value 82.948103
iter 100 value 82.902200
final  value 82.902200 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 100.818532 
iter  10 value 94.055078
iter  20 value 93.470102
iter  30 value 93.322926
iter  40 value 93.299771
iter  50 value 85.112697
iter  60 value 84.721264
iter  70 value 84.616136
final  value 84.611686 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.952636 
iter  10 value 94.056706
iter  20 value 93.799342
iter  30 value 93.478086
iter  40 value 93.431356
iter  50 value 93.329637
iter  60 value 92.609470
iter  70 value 86.818086
iter  80 value 86.692655
iter  90 value 84.956759
iter 100 value 84.093575
final  value 84.093575 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 114.062389 
iter  10 value 92.456896
iter  20 value 88.236556
iter  30 value 85.520061
iter  40 value 83.362346
iter  50 value 82.329650
iter  60 value 82.019827
iter  70 value 81.958512
iter  80 value 81.917743
iter  90 value 81.886523
iter 100 value 81.842990
final  value 81.842990 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 106.874315 
iter  10 value 94.002010
iter  20 value 89.148353
iter  30 value 84.904989
iter  40 value 84.353082
iter  50 value 83.051038
iter  60 value 82.776968
iter  70 value 82.550828
iter  80 value 82.305458
iter  90 value 82.180503
iter 100 value 82.141437
final  value 82.141437 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.431735 
iter  10 value 94.006254
iter  20 value 88.033479
iter  30 value 85.396497
iter  40 value 84.093599
iter  50 value 83.966680
iter  60 value 83.862710
iter  70 value 83.549974
iter  80 value 82.623021
iter  90 value 82.042645
iter 100 value 81.822143
final  value 81.822143 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 106.285598 
iter  10 value 94.101612
iter  20 value 93.868462
iter  30 value 92.816318
iter  40 value 87.388215
iter  50 value 84.265974
iter  60 value 82.440682
iter  70 value 82.130600
iter  80 value 81.998599
iter  90 value 81.883733
iter 100 value 81.802909
final  value 81.802909 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.337983 
iter  10 value 93.995400
iter  20 value 93.444490
iter  30 value 89.700902
iter  40 value 87.549960
iter  50 value 86.707067
iter  60 value 83.752393
iter  70 value 82.836820
iter  80 value 82.666547
iter  90 value 82.449591
iter 100 value 82.207921
final  value 82.207921 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 129.336744 
iter  10 value 94.095649
iter  20 value 93.170702
iter  30 value 90.821361
iter  40 value 85.848946
iter  50 value 84.980368
iter  60 value 83.529326
iter  70 value 83.343673
iter  80 value 83.332533
iter  90 value 83.319304
iter 100 value 82.948134
final  value 82.948134 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 147.564392 
iter  10 value 94.167537
iter  20 value 86.535096
iter  30 value 84.743324
iter  40 value 83.011423
iter  50 value 82.624400
iter  60 value 82.287108
iter  70 value 82.100794
iter  80 value 81.816785
iter  90 value 81.676678
iter 100 value 81.565780
final  value 81.565780 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 111.920840 
iter  10 value 93.629232
iter  20 value 87.859624
iter  30 value 86.073849
iter  40 value 83.980714
iter  50 value 83.510349
iter  60 value 83.398068
iter  70 value 83.355727
iter  80 value 83.239046
iter  90 value 82.654341
iter 100 value 82.163867
final  value 82.163867 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 115.829866 
iter  10 value 94.867298
iter  20 value 88.733760
iter  30 value 88.042877
iter  40 value 86.685955
iter  50 value 84.216901
iter  60 value 83.369485
iter  70 value 82.581476
iter  80 value 82.180115
iter  90 value 82.111302
iter 100 value 81.970704
final  value 81.970704 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.751550 
iter  10 value 93.883816
iter  20 value 89.925781
iter  30 value 84.837606
iter  40 value 83.528272
iter  50 value 82.454503
iter  60 value 82.024503
iter  70 value 81.768119
iter  80 value 81.626360
iter  90 value 81.513615
iter 100 value 81.371384
final  value 81.371384 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 112.659752 
final  value 94.013194 
converged
Fitting Repeat 2 

# weights:  103
initial  value 112.627776 
final  value 94.054563 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.575964 
final  value 94.051683 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.757280 
final  value 94.054507 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.751805 
iter  10 value 94.054500
iter  20 value 94.052971
final  value 94.052916 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.052452 
iter  10 value 94.057560
iter  20 value 92.756302
iter  30 value 83.964170
iter  40 value 83.836699
iter  50 value 83.821062
iter  50 value 83.821062
iter  50 value 83.821062
final  value 83.821062 
converged
Fitting Repeat 2 

# weights:  305
initial  value 113.583219 
iter  10 value 94.057066
iter  20 value 94.018994
iter  30 value 93.448312
iter  40 value 92.693167
final  value 92.693090 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.917849 
iter  10 value 94.057797
iter  20 value 94.053022
iter  30 value 93.964748
iter  40 value 90.649763
iter  50 value 89.163498
iter  60 value 87.844604
iter  70 value 87.785306
iter  80 value 86.472374
iter  90 value 84.412977
iter 100 value 83.623465
final  value 83.623465 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.598283 
iter  10 value 89.888314
iter  20 value 83.957968
iter  30 value 83.125397
iter  40 value 83.123736
iter  50 value 83.116847
final  value 83.116538 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.202847 
iter  10 value 94.057867
iter  20 value 94.050686
iter  30 value 87.132505
iter  40 value 86.206097
iter  50 value 84.771707
iter  60 value 83.122527
iter  70 value 81.774285
iter  80 value 81.729429
iter  90 value 81.717000
final  value 81.682424 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.858761 
iter  10 value 93.844649
iter  20 value 93.272905
iter  30 value 93.087441
iter  40 value 93.068351
final  value 93.068304 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.886392 
iter  10 value 93.330319
iter  20 value 92.388925
iter  30 value 92.382084
iter  40 value 86.413329
iter  50 value 85.117971
iter  60 value 83.931069
iter  70 value 81.254545
iter  80 value 81.000625
iter  90 value 80.993777
iter 100 value 80.954812
final  value 80.954812 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 99.331815 
iter  10 value 93.838882
iter  20 value 93.833497
iter  30 value 93.832563
iter  40 value 93.832400
iter  50 value 93.468491
iter  60 value 93.173611
iter  70 value 93.172852
iter  80 value 92.231626
iter  90 value 91.912802
final  value 91.912458 
converged
Fitting Repeat 4 

# weights:  507
initial  value 118.146022 
iter  10 value 93.844061
iter  20 value 93.834483
iter  30 value 90.630980
iter  40 value 84.564655
iter  50 value 83.625559
iter  60 value 80.835917
iter  70 value 80.534159
iter  80 value 80.490998
iter  90 value 80.481409
final  value 80.481206 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.183855 
iter  10 value 93.543845
iter  20 value 93.507126
iter  30 value 93.472580
iter  40 value 93.302553
iter  50 value 87.416806
iter  60 value 84.698240
iter  70 value 84.436382
iter  80 value 81.243279
iter  90 value 80.861960
iter 100 value 80.860081
final  value 80.860081 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.762166 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.913190 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.598304 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.955612 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.594125 
iter  10 value 94.275374
final  value 94.275363 
converged
Fitting Repeat 1 

# weights:  305
initial  value 117.447340 
final  value 94.354286 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.905482 
final  value 94.443182 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.985040 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.056063 
final  value 94.275362 
converged
Fitting Repeat 5 

# weights:  305
initial  value 104.489315 
iter  10 value 94.270312
final  value 94.046703 
converged
Fitting Repeat 1 

# weights:  507
initial  value 103.015766 
iter  10 value 93.860001
final  value 93.859849 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.018383 
iter  10 value 93.123997
iter  20 value 93.075714
iter  20 value 93.075714
iter  20 value 93.075714
final  value 93.075714 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.788151 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.873224 
iter  10 value 87.121529
final  value 86.875143 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.800637 
iter  10 value 94.484942
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.086863 
iter  10 value 94.491329
iter  20 value 94.409038
iter  30 value 93.749325
iter  40 value 92.338454
iter  50 value 84.806463
iter  60 value 84.222813
iter  70 value 83.475486
iter  80 value 82.432149
iter  90 value 82.298400
iter 100 value 82.192090
final  value 82.192090 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 110.703661 
iter  10 value 94.450599
iter  20 value 94.167537
iter  30 value 94.076421
iter  40 value 94.069737
iter  50 value 94.069494
iter  50 value 94.069493
iter  50 value 94.069493
final  value 94.069493 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.884092 
iter  10 value 94.441416
iter  20 value 88.941207
iter  30 value 86.315253
iter  40 value 84.761789
iter  50 value 84.123297
iter  60 value 84.023723
final  value 84.012817 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.376753 
iter  10 value 89.210588
iter  20 value 86.150164
iter  30 value 84.887996
iter  40 value 84.203133
iter  50 value 83.565639
iter  60 value 83.560264
final  value 83.560084 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.482410 
iter  10 value 94.480827
iter  20 value 93.901133
iter  30 value 86.897357
iter  40 value 85.166502
iter  50 value 84.323174
iter  60 value 84.219790
iter  70 value 84.014688
final  value 84.012817 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.596761 
iter  10 value 94.340673
iter  20 value 90.478097
iter  30 value 88.836604
iter  40 value 87.594185
iter  50 value 84.118756
iter  60 value 82.798245
iter  70 value 82.558977
iter  80 value 82.482457
iter  90 value 82.292562
iter 100 value 82.149699
final  value 82.149699 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.907245 
iter  10 value 94.669612
iter  20 value 89.311087
iter  30 value 87.378238
iter  40 value 83.030587
iter  50 value 81.686451
iter  60 value 80.993157
iter  70 value 80.898294
iter  80 value 80.671457
iter  90 value 80.602014
iter 100 value 80.597706
final  value 80.597706 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 103.521834 
iter  10 value 94.489097
iter  20 value 94.419388
iter  30 value 93.685248
iter  40 value 85.960817
iter  50 value 85.048839
iter  60 value 84.617393
iter  70 value 84.390550
iter  80 value 83.781394
iter  90 value 82.654816
iter 100 value 81.369558
final  value 81.369558 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.930556 
iter  10 value 95.270215
iter  20 value 93.846111
iter  30 value 89.818400
iter  40 value 85.780906
iter  50 value 84.181923
iter  60 value 83.913929
iter  70 value 83.765019
iter  80 value 83.720453
iter  90 value 83.512952
iter 100 value 83.331954
final  value 83.331954 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.154786 
iter  10 value 94.631915
iter  20 value 87.624758
iter  30 value 85.214954
iter  40 value 84.945519
iter  50 value 84.477788
iter  60 value 84.227239
iter  70 value 83.961469
iter  80 value 83.842105
iter  90 value 83.812989
iter 100 value 83.773403
final  value 83.773403 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 120.308287 
iter  10 value 95.549222
iter  20 value 87.464718
iter  30 value 85.221665
iter  40 value 83.979563
iter  50 value 83.518174
iter  60 value 82.675297
iter  70 value 82.101633
iter  80 value 81.374744
iter  90 value 81.275838
iter 100 value 81.069152
final  value 81.069152 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 108.020192 
iter  10 value 94.798340
iter  20 value 92.661563
iter  30 value 87.003671
iter  40 value 85.083916
iter  50 value 82.859840
iter  60 value 81.703247
iter  70 value 81.230347
iter  80 value 81.095001
iter  90 value 80.899897
iter 100 value 80.802008
final  value 80.802008 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 105.026218 
iter  10 value 93.486896
iter  20 value 84.894573
iter  30 value 83.693172
iter  40 value 82.608373
iter  50 value 82.540103
iter  60 value 82.522008
iter  70 value 82.489672
iter  80 value 82.421719
iter  90 value 81.616373
iter 100 value 81.235107
final  value 81.235107 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 108.390402 
iter  10 value 94.227990
iter  20 value 88.258656
iter  30 value 85.042926
iter  40 value 84.292740
iter  50 value 83.187943
iter  60 value 83.057725
iter  70 value 83.007223
iter  80 value 82.980425
iter  90 value 82.640845
iter 100 value 81.880315
final  value 81.880315 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 120.523126 
iter  10 value 89.701560
iter  20 value 85.974665
iter  30 value 85.688879
iter  40 value 84.760031
iter  50 value 83.124080
iter  60 value 82.820565
iter  70 value 82.596989
iter  80 value 82.428054
iter  90 value 82.325839
iter 100 value 82.153014
final  value 82.153014 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.360283 
iter  10 value 94.485714
iter  20 value 94.450695
iter  30 value 86.930748
iter  40 value 85.292486
iter  50 value 85.289699
iter  60 value 85.283978
iter  70 value 85.282516
iter  80 value 85.280879
iter  90 value 85.275169
iter 100 value 84.911851
final  value 84.911851 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 97.023350 
final  value 94.486089 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.519766 
iter  10 value 94.356110
final  value 94.356075 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.266116 
final  value 94.485753 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.876589 
final  value 94.486170 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.713680 
iter  10 value 93.061636
iter  20 value 92.901302
iter  30 value 92.898928
iter  40 value 92.895829
final  value 92.895185 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.642964 
iter  10 value 94.282344
iter  20 value 94.279998
iter  30 value 94.274323
iter  40 value 92.131648
iter  50 value 85.131401
iter  60 value 84.857977
iter  70 value 84.634946
iter  80 value 84.457123
iter  90 value 84.350736
iter 100 value 84.281241
final  value 84.281241 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 96.215669 
iter  10 value 94.280112
iter  20 value 94.178007
iter  30 value 94.166254
final  value 94.166129 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.459426 
iter  10 value 94.280182
iter  20 value 94.226636
iter  30 value 93.964721
iter  40 value 86.247874
iter  50 value 84.913609
iter  60 value 84.910304
iter  70 value 84.907891
final  value 84.907839 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.311968 
iter  10 value 94.493032
iter  20 value 94.488123
final  value 94.488068 
converged
Fitting Repeat 1 

# weights:  507
initial  value 102.234230 
iter  10 value 94.284153
iter  20 value 93.887226
iter  30 value 86.713854
iter  40 value 84.735685
iter  50 value 83.604948
iter  60 value 81.837064
iter  70 value 81.253510
iter  80 value 81.242580
iter  90 value 81.236896
iter 100 value 81.226993
final  value 81.226993 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 102.978852 
iter  10 value 94.491516
iter  20 value 94.255876
iter  30 value 84.760145
iter  40 value 84.303644
iter  50 value 82.991621
iter  60 value 82.835030
final  value 82.834908 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.421347 
iter  10 value 94.206568
iter  20 value 93.725741
iter  30 value 93.287956
iter  40 value 93.280170
final  value 93.280082 
converged
Fitting Repeat 4 

# weights:  507
initial  value 94.644994 
iter  10 value 86.219115
iter  20 value 84.446291
iter  30 value 83.877259
iter  40 value 83.874277
iter  50 value 83.866865
iter  60 value 83.820889
iter  70 value 83.715923
iter  80 value 83.504902
iter  90 value 83.496086
iter 100 value 83.495851
final  value 83.495851 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 100.033266 
iter  10 value 94.283499
iter  20 value 94.278793
iter  30 value 94.277799
iter  40 value 94.275724
iter  50 value 94.057617
iter  60 value 93.723804
iter  70 value 85.758289
iter  80 value 82.053029
iter  90 value 80.702599
iter 100 value 79.661590
final  value 79.661590 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.931199 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.982732 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 106.672111 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 108.219723 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.042822 
final  value 94.484210 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.711295 
iter  10 value 94.289235
final  value 94.289216 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.519235 
iter  10 value 91.791132
iter  20 value 91.654570
final  value 91.651099 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.653854 
iter  10 value 93.318986
iter  20 value 93.314524
final  value 93.314521 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.238351 
iter  10 value 89.441140
iter  20 value 84.556105
iter  30 value 84.530662
final  value 84.530400 
converged
Fitting Repeat 5 

# weights:  305
initial  value 127.960567 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 106.987923 
iter  10 value 93.033816
iter  20 value 91.753346
iter  30 value 91.752301
iter  40 value 91.731678
iter  50 value 91.630395
final  value 91.630392 
converged
Fitting Repeat 2 

# weights:  507
initial  value 114.313240 
iter  10 value 93.376072
iter  20 value 93.140780
final  value 93.107521 
converged
Fitting Repeat 3 

# weights:  507
initial  value 111.789594 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.299160 
iter  10 value 92.605904
iter  20 value 89.554563
iter  30 value 89.539131
iter  40 value 89.538848
final  value 89.538826 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.915778 
iter  10 value 94.275363
iter  10 value 94.275363
iter  10 value 94.275363
final  value 94.275363 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.355725 
iter  10 value 94.533838
iter  20 value 94.491343
iter  30 value 94.488745
iter  40 value 86.110089
iter  50 value 85.474827
iter  60 value 83.727636
iter  70 value 83.645929
iter  80 value 83.509071
iter  90 value 83.439708
final  value 83.439702 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.416081 
iter  10 value 94.135397
iter  20 value 87.766052
iter  30 value 84.092978
iter  40 value 82.964041
iter  50 value 80.963673
iter  60 value 78.935035
iter  70 value 78.731065
iter  80 value 78.486856
iter  90 value 78.287174
final  value 78.268938 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.287930 
iter  10 value 94.490615
iter  20 value 92.599087
iter  30 value 84.953499
iter  40 value 84.313707
iter  50 value 84.145916
iter  60 value 83.982346
iter  70 value 83.841002
final  value 83.840596 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.389757 
iter  10 value 94.489055
iter  20 value 88.749179
iter  30 value 84.317070
iter  40 value 84.098576
iter  50 value 83.984352
iter  60 value 83.849263
final  value 83.840596 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.067031 
iter  10 value 94.460057
iter  20 value 93.418700
iter  30 value 91.231599
iter  40 value 83.950032
iter  50 value 82.696622
iter  60 value 81.737449
iter  70 value 81.229769
final  value 81.227877 
converged
Fitting Repeat 1 

# weights:  305
initial  value 107.146077 
iter  10 value 91.084554
iter  20 value 86.374148
iter  30 value 85.932833
iter  40 value 82.205348
iter  50 value 80.749033
iter  60 value 80.180624
iter  70 value 79.195038
iter  80 value 77.864881
iter  90 value 77.648986
iter 100 value 77.310778
final  value 77.310778 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 105.643548 
iter  10 value 93.640840
iter  20 value 85.468970
iter  30 value 83.771465
iter  40 value 83.675104
iter  50 value 83.507020
iter  60 value 82.839997
iter  70 value 79.826172
iter  80 value 78.711334
iter  90 value 78.371896
iter 100 value 78.330045
final  value 78.330045 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 103.313970 
iter  10 value 94.471729
iter  20 value 93.474276
iter  30 value 92.842269
iter  40 value 90.682745
iter  50 value 83.309193
iter  60 value 81.874359
iter  70 value 79.962263
iter  80 value 79.613463
iter  90 value 79.358519
iter 100 value 79.131031
final  value 79.131031 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.221719 
iter  10 value 94.906476
iter  20 value 86.888337
iter  30 value 84.600037
iter  40 value 84.373456
iter  50 value 83.874122
iter  60 value 82.206547
iter  70 value 79.839996
iter  80 value 78.712342
iter  90 value 78.349239
iter 100 value 78.077228
final  value 78.077228 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.105681 
iter  10 value 94.718889
iter  20 value 94.340608
iter  30 value 93.300943
iter  40 value 88.459092
iter  50 value 81.011779
iter  60 value 80.538215
iter  70 value 79.975808
iter  80 value 79.152324
iter  90 value 79.064076
iter 100 value 78.931299
final  value 78.931299 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 107.318219 
iter  10 value 93.751744
iter  20 value 87.335469
iter  30 value 86.486131
iter  40 value 83.548306
iter  50 value 80.528799
iter  60 value 79.487360
iter  70 value 78.895100
iter  80 value 78.616708
iter  90 value 78.012583
iter 100 value 77.268459
final  value 77.268459 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 114.355010 
iter  10 value 92.808352
iter  20 value 83.233182
iter  30 value 81.895949
iter  40 value 79.942185
iter  50 value 78.489601
iter  60 value 78.227428
iter  70 value 78.018660
iter  80 value 77.661087
iter  90 value 77.396870
iter 100 value 77.387579
final  value 77.387579 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 115.680851 
iter  10 value 94.577383
iter  20 value 86.032704
iter  30 value 83.782594
iter  40 value 82.054317
iter  50 value 80.749263
iter  60 value 80.281839
iter  70 value 80.093769
iter  80 value 79.686533
iter  90 value 79.334302
iter 100 value 78.435651
final  value 78.435651 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 129.726420 
iter  10 value 92.983753
iter  20 value 92.566489
iter  30 value 87.994894
iter  40 value 80.791027
iter  50 value 78.527098
iter  60 value 77.906814
iter  70 value 77.466844
iter  80 value 76.933505
iter  90 value 76.855406
iter 100 value 76.805733
final  value 76.805733 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 111.087288 
iter  10 value 94.665494
iter  20 value 94.075181
iter  30 value 91.440559
iter  40 value 82.329086
iter  50 value 80.106282
iter  60 value 79.186722
iter  70 value 78.114920
iter  80 value 76.988138
iter  90 value 76.757210
iter 100 value 76.678650
final  value 76.678650 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.010425 
final  value 94.485637 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.311970 
final  value 94.485810 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.737892 
final  value 94.485890 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.495085 
final  value 94.485788 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.742001 
final  value 94.485983 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.967673 
iter  10 value 94.486928
iter  20 value 92.534165
iter  30 value 82.837866
final  value 82.587965 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.651969 
iter  10 value 94.489118
iter  20 value 91.572222
iter  30 value 90.225761
iter  40 value 90.224230
iter  50 value 90.210052
iter  60 value 90.172284
iter  70 value 84.837078
iter  80 value 84.594388
iter  90 value 84.592376
iter 100 value 84.590709
final  value 84.590709 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 105.691555 
iter  10 value 94.433468
iter  20 value 94.345743
iter  30 value 94.103485
iter  40 value 89.129782
iter  50 value 89.037413
iter  60 value 88.987186
final  value 88.986543 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.254611 
iter  10 value 94.149567
iter  20 value 94.070880
iter  30 value 94.069555
iter  40 value 94.066911
final  value 94.066815 
converged
Fitting Repeat 5 

# weights:  305
initial  value 110.075687 
iter  10 value 94.489417
iter  20 value 94.362677
iter  30 value 92.382291
iter  40 value 92.276968
iter  50 value 92.276501
iter  60 value 92.275802
iter  70 value 92.154284
iter  80 value 90.689554
iter  90 value 81.677239
iter 100 value 78.756230
final  value 78.756230 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 102.337832 
iter  10 value 94.172974
iter  20 value 93.647430
iter  30 value 93.436926
iter  40 value 93.410234
iter  50 value 93.394098
iter  60 value 88.988424
iter  70 value 87.983707
iter  80 value 84.054330
iter  90 value 80.412818
iter 100 value 79.830925
final  value 79.830925 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 101.314728 
iter  10 value 94.283577
iter  20 value 94.276459
iter  30 value 92.314508
iter  40 value 90.249830
iter  50 value 86.909328
iter  60 value 79.429701
iter  70 value 78.544347
iter  80 value 78.530011
iter  90 value 78.205444
iter 100 value 78.099202
final  value 78.099202 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 102.973866 
iter  10 value 94.492227
iter  20 value 94.478853
iter  30 value 94.082818
final  value 94.067210 
converged
Fitting Repeat 4 

# weights:  507
initial  value 106.678963 
iter  10 value 94.492449
iter  20 value 94.274808
iter  30 value 87.867316
iter  40 value 87.818662
iter  50 value 87.818344
iter  60 value 87.817712
iter  70 value 87.806338
iter  80 value 86.995038
iter  90 value 83.949503
iter 100 value 83.912643
final  value 83.912643 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 100.526948 
iter  10 value 92.166916
iter  20 value 90.197525
iter  30 value 90.082099
iter  40 value 90.080138
iter  50 value 90.077808
iter  60 value 88.608460
iter  70 value 87.722217
iter  80 value 79.912862
iter  90 value 79.045866
iter 100 value 78.733314
final  value 78.733314 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 127.345456 
iter  10 value 117.522894
iter  20 value 117.517906
iter  30 value 117.507449
iter  40 value 117.455151
iter  50 value 109.563245
iter  60 value 105.317274
iter  70 value 105.309273
iter  80 value 105.289470
iter  90 value 104.798347
iter 100 value 103.953639
final  value 103.953639 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 142.963101 
iter  10 value 117.899149
iter  20 value 117.737145
iter  30 value 107.024677
iter  40 value 107.013098
iter  50 value 107.007378
iter  60 value 104.920791
iter  70 value 104.429691
iter  80 value 102.947472
iter  90 value 101.248602
iter 100 value 101.175695
final  value 101.175695 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 123.105496 
iter  10 value 117.564094
iter  20 value 117.554595
iter  30 value 117.503688
iter  40 value 115.256120
final  value 115.126225 
converged
Fitting Repeat 4 

# weights:  507
initial  value 139.032742 
iter  10 value 117.899320
iter  20 value 117.282011
iter  30 value 107.677571
iter  40 value 106.948698
iter  50 value 105.587825
iter  60 value 104.805209
iter  70 value 104.781678
iter  80 value 104.780515
iter  90 value 104.778439
iter 100 value 104.776180
final  value 104.776180 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 122.249536 
iter  10 value 117.898337
iter  20 value 117.879597
iter  30 value 117.529415
iter  40 value 117.462964
iter  50 value 107.360444
final  value 106.832566 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Wed Oct 19 01:07:20 2022 
*********************************************** 
Number of test functions: 8 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures
Number of test functions: 8 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: The `.data` argument of `add_column()` must have unique names as of tibble
3.0.0.
ℹ Use `.name_repair = "minimal"`.
ℹ The deprecated feature was likely used in the tibble package.
  Please report the issue at <https://github.com/tidyverse/tibble/issues>. 
2: `repeats` has no meaning for this resampling method. 
3: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  43.40    2.20   50.42 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod30.58 1.2831.95
FreqInteractors0.200.020.24
calculateAAC0.080.000.08
calculateAutocor0.310.110.42
calculateBE0.190.000.19
calculateCTDC0.110.000.11
calculateCTDD0.730.060.80
calculateCTDT0.270.000.26
calculateCTriad0.390.000.39
calculateDC0.070.030.11
calculateF0.350.000.35
calculateKSAAP0.060.030.09
calculateQD_Sm1.920.092.02
calculateTC1.750.051.79
calculateTC_Sm0.390.030.42
corr_plot30.61 1.1631.77
enrichfindP 0.41 0.0811.87
enrichfind_hp0.060.000.80
enrichplot0.200.010.22
filter_missing_values0.020.000.02
getFASTA0.030.032.50
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.050.020.11
pred_ensembel13.67 0.5010.83
var_imp30.28 0.8531.17