Back to Multiple platform build/check report for BioC 3.15 |
|
This page was generated on 2022-10-19 13:21:38 -0400 (Wed, 19 Oct 2022).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 20.04.5 LTS) | x86_64 | 4.2.1 (2022-06-23) -- "Funny-Looking Kid" | 4386 |
palomino3 | Windows Server 2022 Datacenter | x64 | 4.2.1 (2022-06-23 ucrt) -- "Funny-Looking Kid" | 4138 |
merida1 | macOS 10.14.6 Mojave | x86_64 | 4.2.1 (2022-06-23) -- "Funny-Looking Kid" | 4205 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the HPiP package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 911/2140 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.2.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 20.04.5 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: HPiP |
Version: 1.2.0 |
Command: F:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.15-bioc\R\library --no-vignettes --timings HPiP_1.2.0.tar.gz |
StartedAt: 2022-10-19 01:02:38 -0400 (Wed, 19 Oct 2022) |
EndedAt: 2022-10-19 01:07:32 -0400 (Wed, 19 Oct 2022) |
EllapsedTime: 293.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.15-bioc\R\library --no-vignettes --timings HPiP_1.2.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck' * using R version 4.2.1 (2022-06-23 ucrt) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.2.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 30.58 1.28 31.95 corr_plot 30.61 1.16 31.77 var_imp 30.28 0.85 31.17 pred_ensembel 13.67 0.50 10.83 enrichfindP 0.41 0.08 11.87 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See 'F:/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.15-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.2.1 (2022-06-23 ucrt) -- "Funny-Looking Kid" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 96.080177 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.135603 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 99.105788 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.415718 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.697134 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 97.645000 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 104.555913 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 99.063900 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 116.646385 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 112.001370 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 98.211405 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 112.939452 final value 93.836066 converged Fitting Repeat 3 # weights: 507 initial value 111.021246 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 99.990164 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 105.814244 iter 10 value 93.971976 final value 93.900000 converged Fitting Repeat 1 # weights: 103 initial value 100.265740 iter 10 value 94.020557 iter 20 value 93.752299 iter 30 value 91.022795 iter 40 value 86.663074 iter 50 value 85.398301 iter 60 value 82.988722 iter 70 value 82.340173 iter 80 value 81.323810 iter 90 value 80.262114 iter 100 value 79.690586 final value 79.690586 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 111.228637 iter 10 value 94.054972 iter 20 value 94.033542 iter 30 value 91.024156 iter 40 value 86.565167 iter 50 value 83.178625 iter 60 value 80.406150 iter 70 value 79.967441 iter 80 value 79.928214 iter 90 value 79.926660 final value 79.926636 converged Fitting Repeat 3 # weights: 103 initial value 96.906334 iter 10 value 94.063965 iter 20 value 92.276934 iter 30 value 86.162059 iter 40 value 83.560379 iter 50 value 82.849376 iter 60 value 82.581036 iter 70 value 82.554160 final value 82.553308 converged Fitting Repeat 4 # weights: 103 initial value 98.040642 iter 10 value 93.761315 iter 20 value 85.219799 iter 30 value 81.813020 iter 40 value 80.772243 iter 50 value 80.583812 iter 60 value 80.371571 iter 70 value 79.786137 iter 80 value 79.749975 iter 90 value 79.599667 iter 100 value 79.559030 final value 79.559030 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.277581 iter 10 value 94.163038 iter 20 value 86.011429 iter 30 value 85.305937 iter 40 value 83.351918 iter 50 value 82.577432 iter 60 value 82.553463 final value 82.553308 converged Fitting Repeat 1 # weights: 305 initial value 103.387518 iter 10 value 94.185887 iter 20 value 93.790253 iter 30 value 93.096385 iter 40 value 92.656465 iter 50 value 87.384712 iter 60 value 85.122960 iter 70 value 83.525119 iter 80 value 82.385458 iter 90 value 81.764007 iter 100 value 80.595041 final value 80.595041 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 140.718942 iter 10 value 94.323052 iter 20 value 88.894844 iter 30 value 87.499639 iter 40 value 85.716687 iter 50 value 82.984616 iter 60 value 81.382449 iter 70 value 80.588575 iter 80 value 79.167181 iter 90 value 78.925692 iter 100 value 78.834388 final value 78.834388 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.807583 iter 10 value 94.088212 iter 20 value 93.715137 iter 30 value 84.406405 iter 40 value 83.061930 iter 50 value 82.620336 iter 60 value 82.562456 iter 70 value 82.552853 iter 80 value 82.511156 iter 90 value 82.432243 iter 100 value 82.249736 final value 82.249736 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.859421 iter 10 value 93.992640 iter 20 value 93.746535 iter 30 value 92.750278 iter 40 value 88.019774 iter 50 value 83.935044 iter 60 value 81.249103 iter 70 value 79.725086 iter 80 value 78.612975 iter 90 value 78.121776 iter 100 value 77.866708 final value 77.866708 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 119.530681 iter 10 value 94.099712 iter 20 value 89.881543 iter 30 value 88.204351 iter 40 value 84.220424 iter 50 value 83.301836 iter 60 value 82.416227 iter 70 value 81.728513 iter 80 value 81.506668 iter 90 value 81.384960 iter 100 value 81.311408 final value 81.311408 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 115.221871 iter 10 value 94.028594 iter 20 value 90.056096 iter 30 value 85.103435 iter 40 value 84.463312 iter 50 value 83.356042 iter 60 value 81.003244 iter 70 value 80.488546 iter 80 value 80.420352 iter 90 value 80.227297 iter 100 value 80.113876 final value 80.113876 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 132.266321 iter 10 value 95.573129 iter 20 value 94.332566 iter 30 value 93.471040 iter 40 value 87.506051 iter 50 value 85.727575 iter 60 value 85.219780 iter 70 value 84.984221 iter 80 value 84.335775 iter 90 value 83.321427 iter 100 value 80.150589 final value 80.150589 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.662248 iter 10 value 88.211306 iter 20 value 85.409406 iter 30 value 81.167676 iter 40 value 80.565239 iter 50 value 79.681592 iter 60 value 78.630241 iter 70 value 78.388212 iter 80 value 78.007127 iter 90 value 77.915574 iter 100 value 77.766400 final value 77.766400 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.430287 iter 10 value 94.272813 iter 20 value 92.234337 iter 30 value 85.684410 iter 40 value 81.809261 iter 50 value 80.368462 iter 60 value 79.918708 iter 70 value 79.161474 iter 80 value 78.808521 iter 90 value 78.177623 iter 100 value 78.089904 final value 78.089904 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 125.484574 iter 10 value 94.050436 iter 20 value 93.154726 iter 30 value 91.269327 iter 40 value 88.183996 iter 50 value 82.819420 iter 60 value 81.165762 iter 70 value 79.870969 iter 80 value 79.650672 iter 90 value 79.323540 iter 100 value 79.120493 final value 79.120493 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 109.984082 final value 94.054479 converged Fitting Repeat 2 # weights: 103 initial value 94.415378 iter 10 value 85.348049 iter 20 value 85.152756 iter 30 value 84.994064 iter 40 value 84.929946 iter 50 value 84.928409 iter 60 value 84.395163 iter 70 value 82.889286 iter 80 value 82.642725 iter 90 value 82.638394 iter 100 value 82.637415 final value 82.637415 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 95.452556 final value 94.054479 converged Fitting Repeat 4 # weights: 103 initial value 96.073709 final value 94.054767 converged Fitting Repeat 5 # weights: 103 initial value 104.652172 final value 94.054760 converged Fitting Repeat 1 # weights: 305 initial value 121.091037 iter 10 value 93.775493 iter 20 value 93.637530 iter 30 value 93.633376 iter 40 value 91.826119 iter 50 value 88.116961 iter 60 value 82.389449 iter 70 value 81.580793 iter 80 value 81.575357 final value 81.574708 converged Fitting Repeat 2 # weights: 305 initial value 102.104974 iter 10 value 94.057601 iter 20 value 88.143536 iter 30 value 82.868857 iter 40 value 82.307454 final value 82.304503 converged Fitting Repeat 3 # weights: 305 initial value 100.764634 iter 10 value 93.945091 iter 20 value 93.664278 iter 30 value 93.637230 iter 40 value 93.632451 iter 50 value 93.632367 iter 50 value 93.632367 final value 93.632367 converged Fitting Repeat 4 # weights: 305 initial value 98.218921 iter 10 value 94.055835 iter 20 value 93.669687 iter 30 value 93.634138 final value 93.632418 converged Fitting Repeat 5 # weights: 305 initial value 94.857406 iter 10 value 94.057604 iter 20 value 94.052928 final value 94.052923 converged Fitting Repeat 1 # weights: 507 initial value 105.618779 iter 10 value 94.061270 iter 20 value 94.002850 iter 30 value 89.361186 iter 40 value 85.164709 iter 50 value 84.908832 iter 60 value 84.897355 final value 84.897081 converged Fitting Repeat 2 # weights: 507 initial value 102.763467 iter 10 value 94.060802 iter 20 value 94.052924 final value 94.052913 converged Fitting Repeat 3 # weights: 507 initial value 107.000778 iter 10 value 93.654800 iter 20 value 93.640573 iter 30 value 93.633431 iter 40 value 89.166763 iter 50 value 84.704573 iter 60 value 77.776628 iter 70 value 77.386456 iter 80 value 77.210916 iter 90 value 77.143385 iter 100 value 77.142223 final value 77.142223 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 95.852541 iter 10 value 93.844549 iter 20 value 93.326682 iter 30 value 90.945765 iter 40 value 90.203397 iter 50 value 81.397286 iter 60 value 81.117600 final value 81.111815 converged Fitting Repeat 5 # weights: 507 initial value 94.904901 iter 10 value 93.844025 iter 20 value 93.792042 iter 30 value 93.602521 iter 40 value 93.198651 iter 50 value 85.427093 iter 60 value 83.653223 iter 70 value 83.638910 iter 80 value 83.631855 iter 90 value 83.630644 iter 100 value 79.726062 final value 79.726062 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.145200 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.458677 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 103.559632 iter 10 value 94.275368 final value 94.275362 converged Fitting Repeat 4 # weights: 103 initial value 97.163630 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.913223 iter 10 value 91.006339 final value 89.988316 converged Fitting Repeat 1 # weights: 305 initial value 96.462285 final value 94.467391 converged Fitting Repeat 2 # weights: 305 initial value 97.504751 final value 94.467391 converged Fitting Repeat 3 # weights: 305 initial value 102.042425 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.711643 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 99.021872 final value 94.315791 converged Fitting Repeat 1 # weights: 507 initial value 108.793442 iter 10 value 94.183441 iter 20 value 86.803968 iter 30 value 84.612725 iter 40 value 84.437609 final value 84.437607 converged Fitting Repeat 2 # weights: 507 initial value 105.828164 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 95.680817 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 100.157889 iter 10 value 94.470705 iter 20 value 94.467396 final value 94.467392 converged Fitting Repeat 5 # weights: 507 initial value 108.096838 iter 10 value 91.396256 iter 20 value 91.237556 iter 20 value 91.237555 iter 20 value 91.237555 final value 91.237555 converged Fitting Repeat 1 # weights: 103 initial value 97.327684 iter 10 value 94.371564 iter 20 value 91.202391 iter 30 value 88.824168 iter 40 value 85.488617 iter 50 value 84.857134 iter 60 value 84.355069 iter 70 value 83.742530 iter 80 value 83.448610 iter 90 value 83.433600 final value 83.433281 converged Fitting Repeat 2 # weights: 103 initial value 97.970524 iter 10 value 94.473342 iter 20 value 94.239130 iter 30 value 88.659975 iter 40 value 85.242659 iter 50 value 84.827482 iter 60 value 84.497347 iter 70 value 83.536086 iter 80 value 82.371627 iter 90 value 82.305354 iter 90 value 82.305354 iter 90 value 82.305354 final value 82.305354 converged Fitting Repeat 3 # weights: 103 initial value 97.914660 iter 10 value 94.452442 iter 20 value 86.411939 iter 30 value 84.614756 iter 40 value 84.453811 iter 50 value 84.232114 iter 60 value 83.690435 iter 70 value 83.537157 iter 80 value 83.473545 iter 90 value 83.433338 final value 83.433281 converged Fitting Repeat 4 # weights: 103 initial value 99.805435 iter 10 value 94.489099 iter 20 value 89.984812 iter 30 value 89.470673 iter 40 value 86.103069 iter 50 value 84.969304 iter 60 value 83.208231 iter 70 value 82.227614 iter 80 value 82.143037 iter 90 value 82.070787 iter 90 value 82.070787 iter 90 value 82.070787 final value 82.070787 converged Fitting Repeat 5 # weights: 103 initial value 97.704053 iter 10 value 94.487766 iter 20 value 92.677665 iter 30 value 91.789481 iter 40 value 91.167936 iter 50 value 90.788758 iter 60 value 90.708768 iter 70 value 84.391623 iter 80 value 83.889264 iter 90 value 83.098628 iter 100 value 82.522187 final value 82.522187 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.037146 iter 10 value 94.231919 iter 20 value 90.296694 iter 30 value 85.970650 iter 40 value 83.992886 iter 50 value 83.657730 iter 60 value 82.920623 iter 70 value 81.787271 iter 80 value 81.259562 iter 90 value 81.235106 iter 100 value 81.189551 final value 81.189551 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.085112 iter 10 value 94.610266 iter 20 value 89.833704 iter 30 value 86.315959 iter 40 value 85.941407 iter 50 value 85.594867 iter 60 value 84.285946 iter 70 value 83.732934 iter 80 value 82.989377 iter 90 value 82.456648 iter 100 value 81.924199 final value 81.924199 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 117.782074 iter 10 value 94.285340 iter 20 value 87.381164 iter 30 value 86.406982 iter 40 value 85.082431 iter 50 value 84.705480 iter 60 value 84.186238 iter 70 value 83.908132 iter 80 value 83.272140 iter 90 value 82.989694 iter 100 value 82.598933 final value 82.598933 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.447664 iter 10 value 93.711859 iter 20 value 86.484012 iter 30 value 85.143136 iter 40 value 84.808494 iter 50 value 84.019887 iter 60 value 82.492371 iter 70 value 82.216808 iter 80 value 81.514279 iter 90 value 81.119473 iter 100 value 80.845552 final value 80.845552 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.221401 iter 10 value 90.603833 iter 20 value 85.444147 iter 30 value 84.298043 iter 40 value 83.946029 iter 50 value 83.547804 iter 60 value 83.341511 iter 70 value 83.330052 iter 80 value 82.911187 iter 90 value 82.209245 iter 100 value 82.152359 final value 82.152359 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.064430 iter 10 value 94.520198 iter 20 value 87.428340 iter 30 value 86.713445 iter 40 value 86.263150 iter 50 value 84.632048 iter 60 value 84.375545 iter 70 value 83.946331 iter 80 value 81.498618 iter 90 value 81.133247 iter 100 value 80.970770 final value 80.970770 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.244291 iter 10 value 94.090515 iter 20 value 92.761478 iter 30 value 88.706532 iter 40 value 85.873468 iter 50 value 84.296580 iter 60 value 83.344347 iter 70 value 81.787874 iter 80 value 81.272102 iter 90 value 81.028882 iter 100 value 80.946085 final value 80.946085 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.518735 iter 10 value 93.158103 iter 20 value 86.539689 iter 30 value 84.917534 iter 40 value 84.343776 iter 50 value 84.005854 iter 60 value 83.294468 iter 70 value 82.343729 iter 80 value 81.491227 iter 90 value 81.248629 iter 100 value 80.914438 final value 80.914438 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.874515 iter 10 value 91.906221 iter 20 value 88.434676 iter 30 value 86.750893 iter 40 value 86.285812 iter 50 value 84.913562 iter 60 value 81.750417 iter 70 value 81.443895 iter 80 value 81.304526 iter 90 value 81.174206 iter 100 value 81.111376 final value 81.111376 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 122.664784 iter 10 value 94.961804 iter 20 value 92.026523 iter 30 value 90.890499 iter 40 value 85.864147 iter 50 value 84.556381 iter 60 value 84.318765 iter 70 value 84.075483 iter 80 value 83.644204 iter 90 value 83.244436 iter 100 value 83.043664 final value 83.043664 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.816670 final value 94.485884 converged Fitting Repeat 2 # weights: 103 initial value 101.861710 final value 94.485826 converged Fitting Repeat 3 # weights: 103 initial value 102.824034 final value 94.469276 converged Fitting Repeat 4 # weights: 103 initial value 108.103506 final value 94.485990 converged Fitting Repeat 5 # weights: 103 initial value 97.155682 final value 94.485824 converged Fitting Repeat 1 # weights: 305 initial value 119.425492 iter 10 value 94.488708 iter 20 value 94.416165 iter 30 value 87.067914 iter 40 value 85.973678 iter 50 value 85.929753 final value 85.929577 converged Fitting Repeat 2 # weights: 305 initial value 103.186611 iter 10 value 94.490116 iter 20 value 94.459206 iter 30 value 90.098292 iter 40 value 89.757190 iter 50 value 89.751562 iter 60 value 89.743430 iter 70 value 89.742262 iter 80 value 89.738793 final value 89.736575 converged Fitting Repeat 3 # weights: 305 initial value 103.989973 iter 10 value 91.735962 iter 20 value 89.889241 iter 30 value 89.886566 iter 40 value 89.883648 iter 50 value 85.820399 iter 60 value 85.515223 iter 70 value 85.487074 final value 85.485983 converged Fitting Repeat 4 # weights: 305 initial value 99.759552 iter 10 value 94.489741 iter 20 value 94.484382 iter 30 value 93.601986 iter 40 value 92.279736 final value 92.277870 converged Fitting Repeat 5 # weights: 305 initial value 121.080249 iter 10 value 94.479840 iter 20 value 94.471994 iter 30 value 94.467637 iter 40 value 92.281429 iter 50 value 85.785203 iter 60 value 84.425980 iter 70 value 84.423867 final value 84.423698 converged Fitting Repeat 1 # weights: 507 initial value 99.542924 iter 10 value 94.492774 iter 20 value 94.469964 iter 30 value 91.972736 iter 40 value 91.920740 iter 50 value 91.920653 final value 91.920578 converged Fitting Repeat 2 # weights: 507 initial value 102.145212 iter 10 value 94.492727 iter 20 value 94.150969 iter 30 value 93.911267 iter 40 value 91.393620 iter 50 value 91.167404 iter 60 value 91.055903 iter 70 value 91.055801 iter 80 value 91.007489 iter 90 value 90.971846 final value 90.971843 converged Fitting Repeat 3 # weights: 507 initial value 97.250142 iter 10 value 94.283571 final value 94.283422 converged Fitting Repeat 4 # weights: 507 initial value 114.507834 iter 10 value 94.332005 iter 20 value 91.649471 iter 30 value 89.849227 iter 40 value 89.145103 iter 50 value 88.339604 iter 60 value 87.534919 iter 70 value 87.409248 iter 80 value 87.200728 iter 90 value 87.199439 iter 100 value 87.197811 final value 87.197811 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.774099 iter 10 value 94.492348 iter 20 value 94.331253 iter 30 value 94.326336 iter 40 value 94.153183 iter 50 value 92.472688 iter 60 value 91.088495 iter 70 value 91.079021 iter 80 value 91.077308 iter 90 value 90.953667 iter 100 value 90.523561 final value 90.523561 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.796485 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.716205 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.643145 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 100.146532 final value 93.892857 converged Fitting Repeat 5 # weights: 103 initial value 97.317333 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 94.792427 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 95.477616 final value 93.836066 converged Fitting Repeat 3 # weights: 305 initial value 97.121680 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 97.448403 iter 10 value 93.089757 final value 93.086891 converged Fitting Repeat 5 # weights: 305 initial value 99.249585 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 108.573690 iter 10 value 92.911401 iter 20 value 92.847524 final value 92.844789 converged Fitting Repeat 2 # weights: 507 initial value 124.437921 iter 10 value 89.641762 iter 20 value 85.863380 iter 30 value 85.753421 iter 40 value 85.656434 final value 85.655649 converged Fitting Repeat 3 # weights: 507 initial value 96.804967 final value 94.011561 converged Fitting Repeat 4 # weights: 507 initial value 95.058948 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 97.471391 final value 93.836066 converged Fitting Repeat 1 # weights: 103 initial value 99.032693 iter 10 value 94.052558 iter 20 value 93.916374 iter 30 value 92.968135 iter 40 value 85.614953 iter 50 value 84.849016 iter 60 value 84.637422 iter 70 value 84.611765 final value 84.611687 converged Fitting Repeat 2 # weights: 103 initial value 96.903702 iter 10 value 93.997341 iter 20 value 92.252335 iter 30 value 91.828296 iter 40 value 91.430704 iter 50 value 91.247612 final value 91.226030 converged Fitting Repeat 3 # weights: 103 initial value 97.446681 iter 10 value 94.056712 iter 20 value 93.943780 iter 30 value 93.357335 iter 40 value 87.426397 iter 50 value 86.369964 iter 60 value 85.035301 iter 70 value 83.857905 iter 80 value 83.173544 iter 90 value 82.948103 iter 100 value 82.902200 final value 82.902200 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.818532 iter 10 value 94.055078 iter 20 value 93.470102 iter 30 value 93.322926 iter 40 value 93.299771 iter 50 value 85.112697 iter 60 value 84.721264 iter 70 value 84.616136 final value 84.611686 converged Fitting Repeat 5 # weights: 103 initial value 99.952636 iter 10 value 94.056706 iter 20 value 93.799342 iter 30 value 93.478086 iter 40 value 93.431356 iter 50 value 93.329637 iter 60 value 92.609470 iter 70 value 86.818086 iter 80 value 86.692655 iter 90 value 84.956759 iter 100 value 84.093575 final value 84.093575 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 114.062389 iter 10 value 92.456896 iter 20 value 88.236556 iter 30 value 85.520061 iter 40 value 83.362346 iter 50 value 82.329650 iter 60 value 82.019827 iter 70 value 81.958512 iter 80 value 81.917743 iter 90 value 81.886523 iter 100 value 81.842990 final value 81.842990 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.874315 iter 10 value 94.002010 iter 20 value 89.148353 iter 30 value 84.904989 iter 40 value 84.353082 iter 50 value 83.051038 iter 60 value 82.776968 iter 70 value 82.550828 iter 80 value 82.305458 iter 90 value 82.180503 iter 100 value 82.141437 final value 82.141437 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.431735 iter 10 value 94.006254 iter 20 value 88.033479 iter 30 value 85.396497 iter 40 value 84.093599 iter 50 value 83.966680 iter 60 value 83.862710 iter 70 value 83.549974 iter 80 value 82.623021 iter 90 value 82.042645 iter 100 value 81.822143 final value 81.822143 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.285598 iter 10 value 94.101612 iter 20 value 93.868462 iter 30 value 92.816318 iter 40 value 87.388215 iter 50 value 84.265974 iter 60 value 82.440682 iter 70 value 82.130600 iter 80 value 81.998599 iter 90 value 81.883733 iter 100 value 81.802909 final value 81.802909 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.337983 iter 10 value 93.995400 iter 20 value 93.444490 iter 30 value 89.700902 iter 40 value 87.549960 iter 50 value 86.707067 iter 60 value 83.752393 iter 70 value 82.836820 iter 80 value 82.666547 iter 90 value 82.449591 iter 100 value 82.207921 final value 82.207921 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 129.336744 iter 10 value 94.095649 iter 20 value 93.170702 iter 30 value 90.821361 iter 40 value 85.848946 iter 50 value 84.980368 iter 60 value 83.529326 iter 70 value 83.343673 iter 80 value 83.332533 iter 90 value 83.319304 iter 100 value 82.948134 final value 82.948134 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 147.564392 iter 10 value 94.167537 iter 20 value 86.535096 iter 30 value 84.743324 iter 40 value 83.011423 iter 50 value 82.624400 iter 60 value 82.287108 iter 70 value 82.100794 iter 80 value 81.816785 iter 90 value 81.676678 iter 100 value 81.565780 final value 81.565780 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.920840 iter 10 value 93.629232 iter 20 value 87.859624 iter 30 value 86.073849 iter 40 value 83.980714 iter 50 value 83.510349 iter 60 value 83.398068 iter 70 value 83.355727 iter 80 value 83.239046 iter 90 value 82.654341 iter 100 value 82.163867 final value 82.163867 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.829866 iter 10 value 94.867298 iter 20 value 88.733760 iter 30 value 88.042877 iter 40 value 86.685955 iter 50 value 84.216901 iter 60 value 83.369485 iter 70 value 82.581476 iter 80 value 82.180115 iter 90 value 82.111302 iter 100 value 81.970704 final value 81.970704 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.751550 iter 10 value 93.883816 iter 20 value 89.925781 iter 30 value 84.837606 iter 40 value 83.528272 iter 50 value 82.454503 iter 60 value 82.024503 iter 70 value 81.768119 iter 80 value 81.626360 iter 90 value 81.513615 iter 100 value 81.371384 final value 81.371384 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 112.659752 final value 94.013194 converged Fitting Repeat 2 # weights: 103 initial value 112.627776 final value 94.054563 converged Fitting Repeat 3 # weights: 103 initial value 101.575964 final value 94.051683 converged Fitting Repeat 4 # weights: 103 initial value 94.757280 final value 94.054507 converged Fitting Repeat 5 # weights: 103 initial value 97.751805 iter 10 value 94.054500 iter 20 value 94.052971 final value 94.052916 converged Fitting Repeat 1 # weights: 305 initial value 98.052452 iter 10 value 94.057560 iter 20 value 92.756302 iter 30 value 83.964170 iter 40 value 83.836699 iter 50 value 83.821062 iter 50 value 83.821062 iter 50 value 83.821062 final value 83.821062 converged Fitting Repeat 2 # weights: 305 initial value 113.583219 iter 10 value 94.057066 iter 20 value 94.018994 iter 30 value 93.448312 iter 40 value 92.693167 final value 92.693090 converged Fitting Repeat 3 # weights: 305 initial value 95.917849 iter 10 value 94.057797 iter 20 value 94.053022 iter 30 value 93.964748 iter 40 value 90.649763 iter 50 value 89.163498 iter 60 value 87.844604 iter 70 value 87.785306 iter 80 value 86.472374 iter 90 value 84.412977 iter 100 value 83.623465 final value 83.623465 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.598283 iter 10 value 89.888314 iter 20 value 83.957968 iter 30 value 83.125397 iter 40 value 83.123736 iter 50 value 83.116847 final value 83.116538 converged Fitting Repeat 5 # weights: 305 initial value 98.202847 iter 10 value 94.057867 iter 20 value 94.050686 iter 30 value 87.132505 iter 40 value 86.206097 iter 50 value 84.771707 iter 60 value 83.122527 iter 70 value 81.774285 iter 80 value 81.729429 iter 90 value 81.717000 final value 81.682424 converged Fitting Repeat 1 # weights: 507 initial value 101.858761 iter 10 value 93.844649 iter 20 value 93.272905 iter 30 value 93.087441 iter 40 value 93.068351 final value 93.068304 converged Fitting Repeat 2 # weights: 507 initial value 98.886392 iter 10 value 93.330319 iter 20 value 92.388925 iter 30 value 92.382084 iter 40 value 86.413329 iter 50 value 85.117971 iter 60 value 83.931069 iter 70 value 81.254545 iter 80 value 81.000625 iter 90 value 80.993777 iter 100 value 80.954812 final value 80.954812 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.331815 iter 10 value 93.838882 iter 20 value 93.833497 iter 30 value 93.832563 iter 40 value 93.832400 iter 50 value 93.468491 iter 60 value 93.173611 iter 70 value 93.172852 iter 80 value 92.231626 iter 90 value 91.912802 final value 91.912458 converged Fitting Repeat 4 # weights: 507 initial value 118.146022 iter 10 value 93.844061 iter 20 value 93.834483 iter 30 value 90.630980 iter 40 value 84.564655 iter 50 value 83.625559 iter 60 value 80.835917 iter 70 value 80.534159 iter 80 value 80.490998 iter 90 value 80.481409 final value 80.481206 converged Fitting Repeat 5 # weights: 507 initial value 96.183855 iter 10 value 93.543845 iter 20 value 93.507126 iter 30 value 93.472580 iter 40 value 93.302553 iter 50 value 87.416806 iter 60 value 84.698240 iter 70 value 84.436382 iter 80 value 81.243279 iter 90 value 80.861960 iter 100 value 80.860081 final value 80.860081 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.762166 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.913190 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.598304 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.955612 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.594125 iter 10 value 94.275374 final value 94.275363 converged Fitting Repeat 1 # weights: 305 initial value 117.447340 final value 94.354286 converged Fitting Repeat 2 # weights: 305 initial value 97.905482 final value 94.443182 converged Fitting Repeat 3 # weights: 305 initial value 99.985040 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.056063 final value 94.275362 converged Fitting Repeat 5 # weights: 305 initial value 104.489315 iter 10 value 94.270312 final value 94.046703 converged Fitting Repeat 1 # weights: 507 initial value 103.015766 iter 10 value 93.860001 final value 93.859849 converged Fitting Repeat 2 # weights: 507 initial value 95.018383 iter 10 value 93.123997 iter 20 value 93.075714 iter 20 value 93.075714 iter 20 value 93.075714 final value 93.075714 converged Fitting Repeat 3 # weights: 507 initial value 101.788151 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 96.873224 iter 10 value 87.121529 final value 86.875143 converged Fitting Repeat 5 # weights: 507 initial value 96.800637 iter 10 value 94.484942 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 97.086863 iter 10 value 94.491329 iter 20 value 94.409038 iter 30 value 93.749325 iter 40 value 92.338454 iter 50 value 84.806463 iter 60 value 84.222813 iter 70 value 83.475486 iter 80 value 82.432149 iter 90 value 82.298400 iter 100 value 82.192090 final value 82.192090 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 110.703661 iter 10 value 94.450599 iter 20 value 94.167537 iter 30 value 94.076421 iter 40 value 94.069737 iter 50 value 94.069494 iter 50 value 94.069493 iter 50 value 94.069493 final value 94.069493 converged Fitting Repeat 3 # weights: 103 initial value 98.884092 iter 10 value 94.441416 iter 20 value 88.941207 iter 30 value 86.315253 iter 40 value 84.761789 iter 50 value 84.123297 iter 60 value 84.023723 final value 84.012817 converged Fitting Repeat 4 # weights: 103 initial value 97.376753 iter 10 value 89.210588 iter 20 value 86.150164 iter 30 value 84.887996 iter 40 value 84.203133 iter 50 value 83.565639 iter 60 value 83.560264 final value 83.560084 converged Fitting Repeat 5 # weights: 103 initial value 97.482410 iter 10 value 94.480827 iter 20 value 93.901133 iter 30 value 86.897357 iter 40 value 85.166502 iter 50 value 84.323174 iter 60 value 84.219790 iter 70 value 84.014688 final value 84.012817 converged Fitting Repeat 1 # weights: 305 initial value 102.596761 iter 10 value 94.340673 iter 20 value 90.478097 iter 30 value 88.836604 iter 40 value 87.594185 iter 50 value 84.118756 iter 60 value 82.798245 iter 70 value 82.558977 iter 80 value 82.482457 iter 90 value 82.292562 iter 100 value 82.149699 final value 82.149699 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.907245 iter 10 value 94.669612 iter 20 value 89.311087 iter 30 value 87.378238 iter 40 value 83.030587 iter 50 value 81.686451 iter 60 value 80.993157 iter 70 value 80.898294 iter 80 value 80.671457 iter 90 value 80.602014 iter 100 value 80.597706 final value 80.597706 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.521834 iter 10 value 94.489097 iter 20 value 94.419388 iter 30 value 93.685248 iter 40 value 85.960817 iter 50 value 85.048839 iter 60 value 84.617393 iter 70 value 84.390550 iter 80 value 83.781394 iter 90 value 82.654816 iter 100 value 81.369558 final value 81.369558 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.930556 iter 10 value 95.270215 iter 20 value 93.846111 iter 30 value 89.818400 iter 40 value 85.780906 iter 50 value 84.181923 iter 60 value 83.913929 iter 70 value 83.765019 iter 80 value 83.720453 iter 90 value 83.512952 iter 100 value 83.331954 final value 83.331954 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.154786 iter 10 value 94.631915 iter 20 value 87.624758 iter 30 value 85.214954 iter 40 value 84.945519 iter 50 value 84.477788 iter 60 value 84.227239 iter 70 value 83.961469 iter 80 value 83.842105 iter 90 value 83.812989 iter 100 value 83.773403 final value 83.773403 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.308287 iter 10 value 95.549222 iter 20 value 87.464718 iter 30 value 85.221665 iter 40 value 83.979563 iter 50 value 83.518174 iter 60 value 82.675297 iter 70 value 82.101633 iter 80 value 81.374744 iter 90 value 81.275838 iter 100 value 81.069152 final value 81.069152 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.020192 iter 10 value 94.798340 iter 20 value 92.661563 iter 30 value 87.003671 iter 40 value 85.083916 iter 50 value 82.859840 iter 60 value 81.703247 iter 70 value 81.230347 iter 80 value 81.095001 iter 90 value 80.899897 iter 100 value 80.802008 final value 80.802008 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.026218 iter 10 value 93.486896 iter 20 value 84.894573 iter 30 value 83.693172 iter 40 value 82.608373 iter 50 value 82.540103 iter 60 value 82.522008 iter 70 value 82.489672 iter 80 value 82.421719 iter 90 value 81.616373 iter 100 value 81.235107 final value 81.235107 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.390402 iter 10 value 94.227990 iter 20 value 88.258656 iter 30 value 85.042926 iter 40 value 84.292740 iter 50 value 83.187943 iter 60 value 83.057725 iter 70 value 83.007223 iter 80 value 82.980425 iter 90 value 82.640845 iter 100 value 81.880315 final value 81.880315 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 120.523126 iter 10 value 89.701560 iter 20 value 85.974665 iter 30 value 85.688879 iter 40 value 84.760031 iter 50 value 83.124080 iter 60 value 82.820565 iter 70 value 82.596989 iter 80 value 82.428054 iter 90 value 82.325839 iter 100 value 82.153014 final value 82.153014 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.360283 iter 10 value 94.485714 iter 20 value 94.450695 iter 30 value 86.930748 iter 40 value 85.292486 iter 50 value 85.289699 iter 60 value 85.283978 iter 70 value 85.282516 iter 80 value 85.280879 iter 90 value 85.275169 iter 100 value 84.911851 final value 84.911851 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.023350 final value 94.486089 converged Fitting Repeat 3 # weights: 103 initial value 94.519766 iter 10 value 94.356110 final value 94.356075 converged Fitting Repeat 4 # weights: 103 initial value 100.266116 final value 94.485753 converged Fitting Repeat 5 # weights: 103 initial value 98.876589 final value 94.486170 converged Fitting Repeat 1 # weights: 305 initial value 95.713680 iter 10 value 93.061636 iter 20 value 92.901302 iter 30 value 92.898928 iter 40 value 92.895829 final value 92.895185 converged Fitting Repeat 2 # weights: 305 initial value 96.642964 iter 10 value 94.282344 iter 20 value 94.279998 iter 30 value 94.274323 iter 40 value 92.131648 iter 50 value 85.131401 iter 60 value 84.857977 iter 70 value 84.634946 iter 80 value 84.457123 iter 90 value 84.350736 iter 100 value 84.281241 final value 84.281241 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.215669 iter 10 value 94.280112 iter 20 value 94.178007 iter 30 value 94.166254 final value 94.166129 converged Fitting Repeat 4 # weights: 305 initial value 101.459426 iter 10 value 94.280182 iter 20 value 94.226636 iter 30 value 93.964721 iter 40 value 86.247874 iter 50 value 84.913609 iter 60 value 84.910304 iter 70 value 84.907891 final value 84.907839 converged Fitting Repeat 5 # weights: 305 initial value 99.311968 iter 10 value 94.493032 iter 20 value 94.488123 final value 94.488068 converged Fitting Repeat 1 # weights: 507 initial value 102.234230 iter 10 value 94.284153 iter 20 value 93.887226 iter 30 value 86.713854 iter 40 value 84.735685 iter 50 value 83.604948 iter 60 value 81.837064 iter 70 value 81.253510 iter 80 value 81.242580 iter 90 value 81.236896 iter 100 value 81.226993 final value 81.226993 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.978852 iter 10 value 94.491516 iter 20 value 94.255876 iter 30 value 84.760145 iter 40 value 84.303644 iter 50 value 82.991621 iter 60 value 82.835030 final value 82.834908 converged Fitting Repeat 3 # weights: 507 initial value 100.421347 iter 10 value 94.206568 iter 20 value 93.725741 iter 30 value 93.287956 iter 40 value 93.280170 final value 93.280082 converged Fitting Repeat 4 # weights: 507 initial value 94.644994 iter 10 value 86.219115 iter 20 value 84.446291 iter 30 value 83.877259 iter 40 value 83.874277 iter 50 value 83.866865 iter 60 value 83.820889 iter 70 value 83.715923 iter 80 value 83.504902 iter 90 value 83.496086 iter 100 value 83.495851 final value 83.495851 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 100.033266 iter 10 value 94.283499 iter 20 value 94.278793 iter 30 value 94.277799 iter 40 value 94.275724 iter 50 value 94.057617 iter 60 value 93.723804 iter 70 value 85.758289 iter 80 value 82.053029 iter 90 value 80.702599 iter 100 value 79.661590 final value 79.661590 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.931199 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.982732 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 106.672111 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 108.219723 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.042822 final value 94.484210 converged Fitting Repeat 1 # weights: 305 initial value 99.711295 iter 10 value 94.289235 final value 94.289216 converged Fitting Repeat 2 # weights: 305 initial value 96.519235 iter 10 value 91.791132 iter 20 value 91.654570 final value 91.651099 converged Fitting Repeat 3 # weights: 305 initial value 99.653854 iter 10 value 93.318986 iter 20 value 93.314524 final value 93.314521 converged Fitting Repeat 4 # weights: 305 initial value 98.238351 iter 10 value 89.441140 iter 20 value 84.556105 iter 30 value 84.530662 final value 84.530400 converged Fitting Repeat 5 # weights: 305 initial value 127.960567 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 106.987923 iter 10 value 93.033816 iter 20 value 91.753346 iter 30 value 91.752301 iter 40 value 91.731678 iter 50 value 91.630395 final value 91.630392 converged Fitting Repeat 2 # weights: 507 initial value 114.313240 iter 10 value 93.376072 iter 20 value 93.140780 final value 93.107521 converged Fitting Repeat 3 # weights: 507 initial value 111.789594 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 99.299160 iter 10 value 92.605904 iter 20 value 89.554563 iter 30 value 89.539131 iter 40 value 89.538848 final value 89.538826 converged Fitting Repeat 5 # weights: 507 initial value 96.915778 iter 10 value 94.275363 iter 10 value 94.275363 iter 10 value 94.275363 final value 94.275363 converged Fitting Repeat 1 # weights: 103 initial value 98.355725 iter 10 value 94.533838 iter 20 value 94.491343 iter 30 value 94.488745 iter 40 value 86.110089 iter 50 value 85.474827 iter 60 value 83.727636 iter 70 value 83.645929 iter 80 value 83.509071 iter 90 value 83.439708 final value 83.439702 converged Fitting Repeat 2 # weights: 103 initial value 104.416081 iter 10 value 94.135397 iter 20 value 87.766052 iter 30 value 84.092978 iter 40 value 82.964041 iter 50 value 80.963673 iter 60 value 78.935035 iter 70 value 78.731065 iter 80 value 78.486856 iter 90 value 78.287174 final value 78.268938 converged Fitting Repeat 3 # weights: 103 initial value 101.287930 iter 10 value 94.490615 iter 20 value 92.599087 iter 30 value 84.953499 iter 40 value 84.313707 iter 50 value 84.145916 iter 60 value 83.982346 iter 70 value 83.841002 final value 83.840596 converged Fitting Repeat 4 # weights: 103 initial value 98.389757 iter 10 value 94.489055 iter 20 value 88.749179 iter 30 value 84.317070 iter 40 value 84.098576 iter 50 value 83.984352 iter 60 value 83.849263 final value 83.840596 converged Fitting Repeat 5 # weights: 103 initial value 102.067031 iter 10 value 94.460057 iter 20 value 93.418700 iter 30 value 91.231599 iter 40 value 83.950032 iter 50 value 82.696622 iter 60 value 81.737449 iter 70 value 81.229769 final value 81.227877 converged Fitting Repeat 1 # weights: 305 initial value 107.146077 iter 10 value 91.084554 iter 20 value 86.374148 iter 30 value 85.932833 iter 40 value 82.205348 iter 50 value 80.749033 iter 60 value 80.180624 iter 70 value 79.195038 iter 80 value 77.864881 iter 90 value 77.648986 iter 100 value 77.310778 final value 77.310778 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.643548 iter 10 value 93.640840 iter 20 value 85.468970 iter 30 value 83.771465 iter 40 value 83.675104 iter 50 value 83.507020 iter 60 value 82.839997 iter 70 value 79.826172 iter 80 value 78.711334 iter 90 value 78.371896 iter 100 value 78.330045 final value 78.330045 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.313970 iter 10 value 94.471729 iter 20 value 93.474276 iter 30 value 92.842269 iter 40 value 90.682745 iter 50 value 83.309193 iter 60 value 81.874359 iter 70 value 79.962263 iter 80 value 79.613463 iter 90 value 79.358519 iter 100 value 79.131031 final value 79.131031 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.221719 iter 10 value 94.906476 iter 20 value 86.888337 iter 30 value 84.600037 iter 40 value 84.373456 iter 50 value 83.874122 iter 60 value 82.206547 iter 70 value 79.839996 iter 80 value 78.712342 iter 90 value 78.349239 iter 100 value 78.077228 final value 78.077228 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.105681 iter 10 value 94.718889 iter 20 value 94.340608 iter 30 value 93.300943 iter 40 value 88.459092 iter 50 value 81.011779 iter 60 value 80.538215 iter 70 value 79.975808 iter 80 value 79.152324 iter 90 value 79.064076 iter 100 value 78.931299 final value 78.931299 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.318219 iter 10 value 93.751744 iter 20 value 87.335469 iter 30 value 86.486131 iter 40 value 83.548306 iter 50 value 80.528799 iter 60 value 79.487360 iter 70 value 78.895100 iter 80 value 78.616708 iter 90 value 78.012583 iter 100 value 77.268459 final value 77.268459 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 114.355010 iter 10 value 92.808352 iter 20 value 83.233182 iter 30 value 81.895949 iter 40 value 79.942185 iter 50 value 78.489601 iter 60 value 78.227428 iter 70 value 78.018660 iter 80 value 77.661087 iter 90 value 77.396870 iter 100 value 77.387579 final value 77.387579 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.680851 iter 10 value 94.577383 iter 20 value 86.032704 iter 30 value 83.782594 iter 40 value 82.054317 iter 50 value 80.749263 iter 60 value 80.281839 iter 70 value 80.093769 iter 80 value 79.686533 iter 90 value 79.334302 iter 100 value 78.435651 final value 78.435651 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 129.726420 iter 10 value 92.983753 iter 20 value 92.566489 iter 30 value 87.994894 iter 40 value 80.791027 iter 50 value 78.527098 iter 60 value 77.906814 iter 70 value 77.466844 iter 80 value 76.933505 iter 90 value 76.855406 iter 100 value 76.805733 final value 76.805733 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.087288 iter 10 value 94.665494 iter 20 value 94.075181 iter 30 value 91.440559 iter 40 value 82.329086 iter 50 value 80.106282 iter 60 value 79.186722 iter 70 value 78.114920 iter 80 value 76.988138 iter 90 value 76.757210 iter 100 value 76.678650 final value 76.678650 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.010425 final value 94.485637 converged Fitting Repeat 2 # weights: 103 initial value 101.311970 final value 94.485810 converged Fitting Repeat 3 # weights: 103 initial value 94.737892 final value 94.485890 converged Fitting Repeat 4 # weights: 103 initial value 103.495085 final value 94.485788 converged Fitting Repeat 5 # weights: 103 initial value 100.742001 final value 94.485983 converged Fitting Repeat 1 # weights: 305 initial value 94.967673 iter 10 value 94.486928 iter 20 value 92.534165 iter 30 value 82.837866 final value 82.587965 converged Fitting Repeat 2 # weights: 305 initial value 103.651969 iter 10 value 94.489118 iter 20 value 91.572222 iter 30 value 90.225761 iter 40 value 90.224230 iter 50 value 90.210052 iter 60 value 90.172284 iter 70 value 84.837078 iter 80 value 84.594388 iter 90 value 84.592376 iter 100 value 84.590709 final value 84.590709 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.691555 iter 10 value 94.433468 iter 20 value 94.345743 iter 30 value 94.103485 iter 40 value 89.129782 iter 50 value 89.037413 iter 60 value 88.987186 final value 88.986543 converged Fitting Repeat 4 # weights: 305 initial value 96.254611 iter 10 value 94.149567 iter 20 value 94.070880 iter 30 value 94.069555 iter 40 value 94.066911 final value 94.066815 converged Fitting Repeat 5 # weights: 305 initial value 110.075687 iter 10 value 94.489417 iter 20 value 94.362677 iter 30 value 92.382291 iter 40 value 92.276968 iter 50 value 92.276501 iter 60 value 92.275802 iter 70 value 92.154284 iter 80 value 90.689554 iter 90 value 81.677239 iter 100 value 78.756230 final value 78.756230 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.337832 iter 10 value 94.172974 iter 20 value 93.647430 iter 30 value 93.436926 iter 40 value 93.410234 iter 50 value 93.394098 iter 60 value 88.988424 iter 70 value 87.983707 iter 80 value 84.054330 iter 90 value 80.412818 iter 100 value 79.830925 final value 79.830925 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 101.314728 iter 10 value 94.283577 iter 20 value 94.276459 iter 30 value 92.314508 iter 40 value 90.249830 iter 50 value 86.909328 iter 60 value 79.429701 iter 70 value 78.544347 iter 80 value 78.530011 iter 90 value 78.205444 iter 100 value 78.099202 final value 78.099202 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.973866 iter 10 value 94.492227 iter 20 value 94.478853 iter 30 value 94.082818 final value 94.067210 converged Fitting Repeat 4 # weights: 507 initial value 106.678963 iter 10 value 94.492449 iter 20 value 94.274808 iter 30 value 87.867316 iter 40 value 87.818662 iter 50 value 87.818344 iter 60 value 87.817712 iter 70 value 87.806338 iter 80 value 86.995038 iter 90 value 83.949503 iter 100 value 83.912643 final value 83.912643 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 100.526948 iter 10 value 92.166916 iter 20 value 90.197525 iter 30 value 90.082099 iter 40 value 90.080138 iter 50 value 90.077808 iter 60 value 88.608460 iter 70 value 87.722217 iter 80 value 79.912862 iter 90 value 79.045866 iter 100 value 78.733314 final value 78.733314 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 127.345456 iter 10 value 117.522894 iter 20 value 117.517906 iter 30 value 117.507449 iter 40 value 117.455151 iter 50 value 109.563245 iter 60 value 105.317274 iter 70 value 105.309273 iter 80 value 105.289470 iter 90 value 104.798347 iter 100 value 103.953639 final value 103.953639 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 142.963101 iter 10 value 117.899149 iter 20 value 117.737145 iter 30 value 107.024677 iter 40 value 107.013098 iter 50 value 107.007378 iter 60 value 104.920791 iter 70 value 104.429691 iter 80 value 102.947472 iter 90 value 101.248602 iter 100 value 101.175695 final value 101.175695 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 123.105496 iter 10 value 117.564094 iter 20 value 117.554595 iter 30 value 117.503688 iter 40 value 115.256120 final value 115.126225 converged Fitting Repeat 4 # weights: 507 initial value 139.032742 iter 10 value 117.899320 iter 20 value 117.282011 iter 30 value 107.677571 iter 40 value 106.948698 iter 50 value 105.587825 iter 60 value 104.805209 iter 70 value 104.781678 iter 80 value 104.780515 iter 90 value 104.778439 iter 100 value 104.776180 final value 104.776180 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 122.249536 iter 10 value 117.898337 iter 20 value 117.879597 iter 30 value 117.529415 iter 40 value 117.462964 iter 50 value 107.360444 final value 106.832566 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Wed Oct 19 01:07:20 2022 *********************************************** Number of test functions: 8 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures Number of test functions: 8 Number of errors: 0 Number of failures: 0 Warning messages: 1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0. ℹ Use `.name_repair = "minimal"`. ℹ The deprecated feature was likely used in the tibble package. Please report the issue at <https://github.com/tidyverse/tibble/issues>. 2: `repeats` has no meaning for this resampling method. 3: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 43.40 2.20 50.42
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 30.58 | 1.28 | 31.95 | |
FreqInteractors | 0.20 | 0.02 | 0.24 | |
calculateAAC | 0.08 | 0.00 | 0.08 | |
calculateAutocor | 0.31 | 0.11 | 0.42 | |
calculateBE | 0.19 | 0.00 | 0.19 | |
calculateCTDC | 0.11 | 0.00 | 0.11 | |
calculateCTDD | 0.73 | 0.06 | 0.80 | |
calculateCTDT | 0.27 | 0.00 | 0.26 | |
calculateCTriad | 0.39 | 0.00 | 0.39 | |
calculateDC | 0.07 | 0.03 | 0.11 | |
calculateF | 0.35 | 0.00 | 0.35 | |
calculateKSAAP | 0.06 | 0.03 | 0.09 | |
calculateQD_Sm | 1.92 | 0.09 | 2.02 | |
calculateTC | 1.75 | 0.05 | 1.79 | |
calculateTC_Sm | 0.39 | 0.03 | 0.42 | |
corr_plot | 30.61 | 1.16 | 31.77 | |
enrichfindP | 0.41 | 0.08 | 11.87 | |
enrichfind_hp | 0.06 | 0.00 | 0.80 | |
enrichplot | 0.20 | 0.01 | 0.22 | |
filter_missing_values | 0.02 | 0.00 | 0.02 | |
getFASTA | 0.03 | 0.03 | 2.50 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.05 | 0.02 | 0.11 | |
pred_ensembel | 13.67 | 0.50 | 10.83 | |
var_imp | 30.28 | 0.85 | 31.17 | |