Back to Multiple platform build/check report for BioC 3.11
ABCDEFGHIJKLMN[O]PQRSTUVWXYZ

CHECK report for OmicsMarkeR on machv2

This page was generated on 2020-10-17 11:59:06 -0400 (Sat, 17 Oct 2020).

TO THE DEVELOPERS/MAINTAINERS OF THE OmicsMarkeR PACKAGE: Please make sure to use the following settings in order to reproduce any error or warning you see on this page.
Package 1225/1905HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
OmicsMarkeR 1.20.0
Charles E. Determan Jr.
Snapshot Date: 2020-10-16 14:40:19 -0400 (Fri, 16 Oct 2020)
URL: https://git.bioconductor.org/packages/OmicsMarkeR
Branch: RELEASE_3_11
Last Commit: 2b71ef7
Last Changed Date: 2020-04-27 14:48:07 -0400 (Mon, 27 Apr 2020)
malbec2 Linux (Ubuntu 18.04.4 LTS) / x86_64  OK  OK  ERROR 
tokay2 Windows Server 2012 R2 Standard / x64  OK  OK  ERROR  OK 
machv2 macOS 10.14.6 Mojave / x86_64  OK  OK [ ERROR ] OK 

Summary

Package: OmicsMarkeR
Version: 1.20.0
Command: /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD check --install=check:OmicsMarkeR.install-out.txt --library=/Library/Frameworks/R.framework/Versions/Current/Resources/library --no-vignettes --timings OmicsMarkeR_1.20.0.tar.gz
StartedAt: 2020-10-17 03:37:36 -0400 (Sat, 17 Oct 2020)
EndedAt: 2020-10-17 03:40:35 -0400 (Sat, 17 Oct 2020)
EllapsedTime: 179.0 seconds
RetCode: 1
Status:  ERROR 
CheckDir: OmicsMarkeR.Rcheck
Warnings: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD check --install=check:OmicsMarkeR.install-out.txt --library=/Library/Frameworks/R.framework/Versions/Current/Resources/library --no-vignettes --timings OmicsMarkeR_1.20.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.11-bioc/meat/OmicsMarkeR.Rcheck’
* using R version 4.0.3 (2020-10-10)
* using platform: x86_64-apple-darwin17.0 (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘OmicsMarkeR/DESCRIPTION’ ... OK
* this is package ‘OmicsMarkeR’ version ‘1.20.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘OmicsMarkeR’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking installed files from ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... ERROR
Running examples in ‘OmicsMarkeR-Ex.R’ failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: fit.only.model
> ### Title: Fit Models without Feature Selection
> ### Aliases: fit.only.model
> 
> ### ** Examples
> 
> dat.discr <- create.discr.matrix(
+     create.corr.matrix(
+         create.random.matrix(nvar = 50, 
+                              nsamp = 100, 
+                              st.dev = 1, 
+                              perturb = 0.2)),
+     D = 10
+ )
solo last variable> 
> vars <- dat.discr$discr.mat
> groups <- dat.discr$classes
> 
> fit <- fit.only.model(X=vars, 
+                       Y=groups, 
+                       method="plsda", 
+                       p = 0.9)
randomForest 4.6-14
Type rfNews() to see new features/changes/bug fixes.
Loaded gbm 2.1.8
Loading required package: cluster
Loading required package: survival
Loading required package: Matrix
Loaded glmnet 4.0-2
Calculating Model Performance Statistics
 ----------- FAILURE REPORT -------------- 
 --- failure: the condition has length > 1 ---
 --- srcref --- 
: 
 --- package (from environment) --- 
OmicsMarkeR
 --- call from context --- 
prediction.metrics(finalModel = finalModel, method = method, 
    raw.data = raw.data, inTrain = inTrain, outTrain = outTrain, 
    features = NULL, bestTune = if (optimize) best.tunes else args.seq$parameters, 
    grp.levs = grp.levs, stability.metric = NULL)
 --- call from argument --- 
if (class(inTrain) == "list" & class(outTrain) == "list") {
    inTrain.list <- rep(inTrain, length(method))
    outTrain.list <- rep(outTrain, length(method))
} else {
    inTrain.list <- rep(list(inTrain), length(finalModel))
    outTrain.list <- rep(list(outTrain), length(finalModel))
}
 --- R stacktrace ---
where 1: prediction.metrics(finalModel = finalModel, method = method, 
    raw.data = raw.data, inTrain = inTrain, outTrain = outTrain, 
    features = NULL, bestTune = if (optimize) best.tunes else args.seq$parameters, 
    grp.levs = grp.levs, stability.metric = NULL)
where 2: fit.only.model(X = vars, Y = groups, method = "plsda", p = 0.9)

 --- value of length: 2 type: logical ---
[1] FALSE FALSE
 --- function from context --- 
function (finalModel, method, raw.data, inTrain, outTrain, features, 
    bestTune, grp.levs, stability.metric) 
{
    raw.data.vars <- raw.data[, !colnames(raw.data) %in% c(".classes")]
    raw.data.grps <- raw.data[, colnames(raw.data) %in% c(".classes")]
    if (class(inTrain) == "list" & class(outTrain) == "list") {
        inTrain.list <- rep(inTrain, length(method))
        outTrain.list <- rep(outTrain, length(method))
    }
    else {
        inTrain.list <- rep(list(inTrain), length(finalModel))
        outTrain.list <- rep(list(outTrain), length(finalModel))
    }
    if (length(bestTune) != length(finalModel)) {
        tmp.mult <- length(finalModel)/length(bestTune)
        bestTune <- rep(bestTune, tmp.mult)
        names(bestTune) <- names(finalModel)
    }
    method.names <- unlist(lapply(method, FUN = function(x) {
        c(rep(x, length(bestTune)/length(method)))
    }))
    bestTune <- bestTune[match(method.names, names(bestTune))]
    finalModel <- finalModel[match(method.names, names(finalModel))]
    if (is.null(features)) {
        features <- vector("list", length(finalModel))
        for (f in seq(length(finalModel))) {
            features[[f]] <- colnames(raw.data.vars)
        }
    }
    features <- features[match(method.names, names(features))]
    predicted <- vector("list", length(finalModel))
    names(predicted) <- names(finalModel)
    for (e in seq(along = finalModel)) {
        new.dat <- switch(names(finalModel[e]), svm = {
            if (stability.metric %in% c("spearman", "canberra")) {
                raw.data.vars[outTrain.list[[e]], , drop = FALSE]
            } else {
                raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in% 
                  features[[e]]), drop = FALSE]
            }
        }, glmnet = {
            if (stability.metric %in% c("spearman", "canberra")) {
                raw.data.vars[outTrain.list[[e]], , drop = FALSE]
            } else {
                raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in% 
                  features[[e]]), drop = FALSE]
            }
        }, pam = {
            if (stability.metric %in% c("spearman", "canberra")) {
                raw.data.vars[outTrain.list[[e]], , drop = FALSE]
            } else {
                raw.data.vars[outTrain.list[[e]], (names(raw.data.vars) %in% 
                  features[[e]]), drop = FALSE]
            }
        }, plsda = , gbm = , rf = {
            raw.data.vars[outTrain.list[[e]], , drop = FALSE]
        }, )
        predicted[[e]] <- predicting(method = names(finalModel)[e], 
            modelFit = finalModel[[e]], orig.data = raw.data, 
            indicies = inTrain.list[[e]], newdata = new.dat, 
            param = bestTune[[e]])
    }
    for (g in seq(along = finalModel)) {
        predicted[[g]] <- factor(as.character(unlist(predicted[[g]])), 
            levels = grp.levs)
        predicted[[g]] <- data.frame(pred = predicted[[g]], obs = raw.data.grps[outTrain.list[[g]]], 
            stringsAsFactors = FALSE)
    }
    method.vector <- rep(method, each = length(finalModel)/length(method))
    perf.metrics <- mapply(predicted, FUN = function(x, y) perf.calc(x, 
        lev = grp.levs, model = y), y = method.vector, SIMPLIFY = FALSE)
    cells <- lapply(predicted, function(x) flatTable(x$pred, 
        x$obs))
    for (ind in seq(along = cells)) {
        perf.metrics[[ind]] <- c(perf.metrics[[ind]], cells[[ind]])
    }
    final.metrics <- do.call("rbind", perf.metrics)
}
<bytecode: 0x7faf1df550b0>
<environment: namespace:OmicsMarkeR>
 --- function search by body ---
Function prediction.metrics in namespace OmicsMarkeR has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: the condition has length > 1
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘testthat.R’
 ERROR
Running the tests in ‘tests/testthat.R’ failed.
Last 13 lines of output:
      agg <- lapply(features.num, FUN = function(x) {
          aggregation(efs = x, metric = aggregation.metric, f = f)
      })
      ensemble.results <- list(Methods = method, ensemble.results = agg, 
          Number.Bags = bags, Agg.metric = aggregation.metric, 
          Number.features = f)
      out <- list(results = ensemble.results, bestTunes = resample.tunes)
      out
  }
  <bytecode: 0x7fac1bbbea08>
  <environment: namespace:OmicsMarkeR>
   --- function search by body ---
  Function bagging.wrapper in namespace OmicsMarkeR has this body.
   ----------- END OF FAILURE REPORT -------------- 
  Fatal error: the condition has length > 1
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 ERRORs
See
  ‘/Users/biocbuild/bbs-3.11-bioc/meat/OmicsMarkeR.Rcheck/00check.log’
for details.


Installation output

OmicsMarkeR.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD INSTALL OmicsMarkeR
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.0/Resources/library’
* installing *source* package ‘OmicsMarkeR’ ...
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (OmicsMarkeR)

Tests output

OmicsMarkeR.Rcheck/tests/testthat.Rout.fail


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(OmicsMarkeR)
> 
> test_check("OmicsMarkeR")
solo last variable ----------- FAILURE REPORT -------------- 
 --- failure: the condition has length > 1 ---
 --- srcref --- 
: 
 --- package (from environment) --- 
OmicsMarkeR
 --- call from context --- 
bagging.wrapper(X = trainX, Y = trainY, method = method, bags = bags, 
    f = f, aggregation.metric = aggregation.metric, k.folds = k.folds, 
    repeats = repeats, res = resolution, tuning.grid = tuning.grid, 
    optimize = optimize, optimize.resample = optimize.resample, 
    metric = metric, model.features = model.features, verbose = verbose, 
    allowParallel = allowParallel, theDots = theDots)
 --- call from argument --- 
if (class(features[[j]]) != "data.frame") {
    features[[j]] <- data.frame(features[[j]])
}
 --- R stacktrace ---
where 1: bagging.wrapper(X = trainX, Y = trainY, method = method, bags = bags, 
    f = f, aggregation.metric = aggregation.metric, k.folds = k.folds, 
    repeats = repeats, res = resolution, tuning.grid = tuning.grid, 
    optimize = optimize, optimize.resample = optimize.resample, 
    metric = metric, model.features = model.features, verbose = verbose, 
    allowParallel = allowParallel, theDots = theDots)
where 2: fs.ensembl.stability(vars, groups, method = c("svm", "plsda"), 
    f = 10, k = 3, bags = 3, stability.metric = "canberra", k.folds = 3, 
    verbose = "none")
where 3: withCallingHandlers(expr, warning = function(w) if (inherits(w, 
    classes)) tryInvokeRestart("muffleWarning"))
where 4 at testthat/test_fs.ensembl.stability.R#39: suppressWarnings(fs.ensembl.stability(vars, groups, method = c("svm", 
    "plsda"), f = 10, k = 3, bags = 3, stability.metric = "canberra", 
    k.folds = 3, verbose = "none"))
where 5: eval(code, test_env)
where 6: eval(code, test_env)
where 7: withCallingHandlers({
    eval(code, test_env)
    if (!handled && !is.null(test)) {
        skip_empty()
    }
}, expectation = handle_expectation, skip = handle_skip, warning = handle_warning, 
    message = handle_message, error = handle_error)
where 8: doTryCatch(return(expr), name, parentenv, handler)
where 9: tryCatchOne(expr, names, parentenv, handlers[[1L]])
where 10: tryCatchList(expr, names[-nh], parentenv, handlers[-nh])
where 11: doTryCatch(return(expr), name, parentenv, handler)
where 12: tryCatchOne(tryCatchList(expr, names[-nh], parentenv, handlers[-nh]), 
    names[nh], parentenv, handlers[[nh]])
where 13: tryCatchList(expr, classes, parentenv, handlers)
where 14: tryCatch(withCallingHandlers({
    eval(code, test_env)
    if (!handled && !is.null(test)) {
        skip_empty()
    }
}, expectation = handle_expectation, skip = handle_skip, warning = handle_warning, 
    message = handle_message, error = handle_error), error = handle_fatal, 
    skip = function(e) {
    })
where 15: test_code(NULL, exprs, env)
where 16: source_file(path, new.env(parent = env), chdir = TRUE, wrap = wrap)
where 17: force(code)
where 18: doWithOneRestart(return(expr), restart)
where 19: withOneRestart(expr, restarts[[1L]])
where 20: withRestarts(testthat_abort_reporter = function() NULL, force(code))
where 21: with_reporter(reporter = reporter, start_end_reporter = start_end_reporter, 
    {
        reporter$start_file(basename(path))
        lister$start_file(basename(path))
        source_file(path, new.env(parent = env), chdir = TRUE, 
            wrap = wrap)
        reporter$.end_context()
        reporter$end_file()
    })
where 22: FUN(X[[i]], ...)
where 23: lapply(paths, test_file, env = env, reporter = current_reporter, 
    start_end_reporter = FALSE, load_helpers = FALSE, wrap = wrap)
where 24: force(code)
where 25: doWithOneRestart(return(expr), restart)
where 26: withOneRestart(expr, restarts[[1L]])
where 27: withRestarts(testthat_abort_reporter = function() NULL, force(code))
where 28: with_reporter(reporter = current_reporter, results <- lapply(paths, 
    test_file, env = env, reporter = current_reporter, start_end_reporter = FALSE, 
    load_helpers = FALSE, wrap = wrap))
where 29: test_files(paths, reporter = reporter, env = env, stop_on_failure = stop_on_failure, 
    stop_on_warning = stop_on_warning, wrap = wrap)
where 30: test_dir(path = test_path, reporter = reporter, env = env, filter = filter, 
    ..., stop_on_failure = stop_on_failure, stop_on_warning = stop_on_warning, 
    wrap = wrap)
where 31: test_package_dir(package = package, test_path = test_path, filter = filter, 
    reporter = reporter, ..., stop_on_failure = stop_on_failure, 
    stop_on_warning = stop_on_warning, wrap = wrap)
where 32: test_check("OmicsMarkeR")

 --- value of length: 2 type: logical ---
[1] TRUE TRUE
 --- function from context --- 
function (X, Y, method, bags, f, aggregation.metric, k.folds, 
    repeats, res, tuning.grid, optimize, optimize.resample, metric, 
    model.features, allowParallel, verbose, theDots) 
{
    rownames(X) <- NULL
    var.names <- colnames(X)
    nr <- nrow(X)
    nc <- ncol(X)
    num.group = nlevels(Y)
    grp.levs <- levels(Y)
    trainVars.list <- vector("list", bags)
    trainGroup.list <- vector("list", bags)
    if (optimize == TRUE & optimize.resample == TRUE) {
        resample.tunes <- vector("list", bags)
        names(resample.tunes) <- paste("Bag", 1:bags, sep = ".")
    }
    else {
        resample.tunes <- NULL
    }
    for (i in 1:bags) {
        boot = sample(nr, nr, replace = TRUE)
        trainVars <- X[boot, ]
        trainGroup <- Y[boot]
        trainVars.list[[i]] <- trainVars
        trainGroup.list[[i]] <- trainGroup
        trainData <- as.data.frame(trainVars)
        trainData$.classes <- trainGroup
        rownames(trainData) <- NULL
        if (optimize == TRUE) {
            if (optimize.resample == TRUE) {
                tuned.methods <- optimize.model(trainVars = trainVars, 
                  trainGroup = trainGroup, method = method, k.folds = k.folds, 
                  repeats = repeats, res = res, grid = tuning.grid, 
                  metric = metric, allowParallel = allowParallel, 
                  verbose = verbose, theDots = theDots)
                if (i == 1) {
                  finalModel <- tuned.methods$finalModel
                }
                else {
                  finalModel <- append(finalModel, tuned.methods$finalModel)
                }
                names(tuned.methods$bestTune) = method
                resample.tunes[[i]] <- tuned.methods$bestTune
            }
            else {
                if (i == 1) {
                  tuned.methods <- optimize.model(trainVars = trainVars, 
                    trainGroup = trainGroup, method = method, 
                    k.folds = k.folds, repeats = repeats, res = res, 
                    grid = tuning.grid, metric = metric, allowParallel = allowParallel, 
                    verbose = verbose, theDots = theDots)
                  finalModel <- tuned.methods$finalModel
                  names(tuned.methods$bestTune) <- method
                }
                else {
                  tmp <- vector("list", length(method))
                  names(tmp) <- method
                  for (d in seq(along = method)) {
                    tmp[[d]] <- training(data = trainData, method = method[d], 
                      tuneValue = tuned.methods$bestTune[[d]], 
                      obsLevels = grp.levs, theDots = theDots)$fit
                  }
                  finalModel <- append(finalModel, tmp)
                }
            }
        }
        else {
            names(theDots) <- paste(".", names(theDots), sep = "")
            args.seq <- sequester(theDots, method)
            names(theDots) <- sub(".", "", names(theDots))
            moreDots <- theDots[!names(theDots) %in% args.seq$pnames]
            if (length(moreDots) == 0) {
                moreDots <- NULL
            }
            finalModel <- vector("list", length(method))
            for (q in seq(along = method)) {
                finalModel[[q]] <- training(data = trainData, 
                  method = method[q], tuneValue = args.seq$parameters[[q]], 
                  obsLevels = grp.levs, theDots = moreDots)
            }
        }
    }
    method.names <- unlist(lapply(method, FUN = function(x) paste(c(rep(x, 
        bags)), seq(bags), sep = ".")))
    names(finalModel) <- paste(method, rep(seq(bags), each = length(method)), 
        sep = ".")
    finalModel <- finalModel[match(method.names, names(finalModel))]
    features <- vector("list", length(method))
    names(features) <- tolower(method)
    for (j in seq(along = method)) {
        mydata <- vector("list", bags)
        if (method[j] == "pam") {
            for (t in 1:bags) {
                mydata[[t]] <- list(x = t(trainVars.list[[t]]), 
                  y = factor(trainGroup.list[[t]]), geneid = as.character(colnames(trainVars.list[[t]])))
            }
        }
        else {
            for (t in 1:bags) {
                mydata[[t]] <- trainVars.list[[t]]
            }
        }
        if (j == 1) {
            start <- 1
            end <- bags
        }
        if (method[j] == "svm" | method[j] == "pam" | method[j] == 
            "glmnet") {
            bt <- vector("list", bags)
            for (l in seq(bags)) {
                if (optimize == TRUE) {
                  if (optimize.resample == FALSE) {
                    bt[[l]] <- tuned.methods$bestTune[[j]]
                  }
                  else {
                    bt[[l]] <- tuned.methods$bestTune[[l]]
                  }
                }
            }
        }
        else {
            bt <- vector("list", bags)
        }
        if (method[j] == "plsda") {
            cc <- vector("list", bags)
            for (c in seq(bags)) {
                if (optimize == TRUE) {
                  if (optimize.resample == FALSE) {
                    cc[[c]] <- tuned.methods$bestTune[[j]]
                  }
                  else {
                    cc[[c]] <- tuned.methods$bestTune[[c]]
                  }
                }
            }
        }
        finalModel.bag <- finalModel[start:end]
        tmp <- vector("list", bags)
        for (s in seq(bags)) {
            tmp[[s]] <- extract.features(x = finalModel.bag[s], 
                dat = mydata[[s]], grp = trainGroup.list[[s]], 
                bestTune = bt[[s]], model.features = FALSE, method = method[j], 
                f = NULL, comp.catch = cc)
        }
        if (method[j] == "glmnet") {
            features[[j]] <- data.frame(do.call("cbind", unlist(unlist(tmp, 
                recursive = FALSE), recursive = FALSE)))
        }
        else {
            features[[j]] <- do.call("cbind", unlist(tmp, recursive = FALSE))
            if (class(features[[j]]) != "data.frame") {
                features[[j]] <- data.frame(features[[j]])
            }
        }
        rownames(features[[j]]) <- colnames(X)
        start <- start + bags
        end <- end + bags
    }
    features.num <- lapply(features, FUN = function(z) {
        sapply(z, FUN = function(x) as.numeric(as.character(x)))
    })
    features.num <- lapply(features.num, function(x) {
        rownames(x) <- var.names
        return(x)
    })
    agg <- lapply(features.num, FUN = function(x) {
        aggregation(efs = x, metric = aggregation.metric, f = f)
    })
    ensemble.results <- list(Methods = method, ensemble.results = agg, 
        Number.Bags = bags, Agg.metric = aggregation.metric, 
        Number.features = f)
    out <- list(results = ensemble.results, bestTunes = resample.tunes)
    out
}
<bytecode: 0x7fac1bbbea08>
<environment: namespace:OmicsMarkeR>
 --- function search by body ---
Function bagging.wrapper in namespace OmicsMarkeR has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: the condition has length > 1

Example timings

OmicsMarkeR.Rcheck/OmicsMarkeR-Ex.timings

nameusersystemelapsed
RPT0.0050.0020.007
aggregation0.0080.0020.010
canberra0.0020.0000.003
canberra_stability0.0020.0000.002
create.corr.matrix0.0100.0010.010
create.discr.matrix0.0080.0020.009
create.random.matrix0.0050.0020.006
denovo.grid0.0170.0030.020
feature.table14.659 0.48315.171