Node.js v9.0.0-nightly20170901dd52cad044 Documentation


Modules#

Stability: 2 - Stable

Node.js has a simple module loading system. In Node.js, files and modules are in one-to-one correspondence (each file is treated as a separate module).

As an example, consider a file named foo.js:

const circle = require('./circle.js');
console.log(`The area of a circle of radius 4 is ${circle.area(4)}`);

On the first line, foo.js loads the module circle.js that is in the same directory as foo.js.

Here are the contents of circle.js:

const { PI } = Math;

exports.area = (r) => PI * r ** 2;

exports.circumference = (r) => 2 * PI * r;

The module circle.js has exported the functions area() and circumference(). Functions and objects are added to the root of a module by specifying additional properties on the special exports object.

Variables local to the module will be private, because the module is wrapped in a function by Node.js (see module wrapper). In this example, the variable PI is private to circle.js.

The module.exports property can be assigned a new value (such as a function or object).

Below, bar.js makes use of the square module, which exports a constructor:

const square = require('./square.js');
const mySquare = square(2);
console.log(`The area of my square is ${mySquare.area()}`);

The square module is defined in square.js:

// assigning to exports will not modify module, must use module.exports
module.exports = (width) => {
  return {
    area: () => width ** 2
  };
};

The module system is implemented in the require('module') module.

Accessing the main module#

When a file is run directly from Node.js, require.main is set to its module. That means that it is possible to determine whether a file has been run directly by testing require.main === module.

For a file foo.js, this will be true if run via node foo.js, but false if run by require('./foo').

Because module provides a filename property (normally equivalent to __filename), the entry point of the current application can be obtained by checking require.main.filename.

Addenda: Package Manager Tips#

The semantics of Node.js's require() function were designed to be general enough to support a number of reasonable directory structures. Package manager programs such as dpkg, rpm, and npm will hopefully find it possible to build native packages from Node.js modules without modification.

Below we give a suggested directory structure that could work:

Let's say that we wanted to have the folder at /usr/lib/node/<some-package>/<some-version> hold the contents of a specific version of a package.

Packages can depend on one another. In order to install package foo, it may be necessary to install a specific version of package bar. The bar package may itself have dependencies, and in some cases, these may even collide or form cyclic dependencies.

Since Node.js looks up the realpath of any modules it loads (that is, resolves symlinks), and then looks for their dependencies in the node_modules folders as described here, this situation is very simple to resolve with the following architecture:

  • /usr/lib/node/foo/1.2.3/ - Contents of the foo package, version 1.2.3.
  • /usr/lib/node/bar/4.3.2/ - Contents of the bar package that foo depends on.
  • /usr/lib/node/foo/1.2.3/node_modules/bar - Symbolic link to /usr/lib/node/bar/4.3.2/.
  • /usr/lib/node/bar/4.3.2/node_modules/* - Symbolic links to the packages that bar depends on.

Thus, even if a cycle is encountered, or if there are dependency conflicts, every module will be able to get a version of its dependency that it can use.

When the code in the foo package does require('bar'), it will get the version that is symlinked into /usr/lib/node/foo/1.2.3/node_modules/bar. Then, when the code in the bar package calls require('quux'), it'll get the version that is symlinked into /usr/lib/node/bar/4.3.2/node_modules/quux.

Furthermore, to make the module lookup process even more optimal, rather than putting packages directly in /usr/lib/node, we could put them in /usr/lib/node_modules/<name>/<version>. Then Node.js will not bother looking for missing dependencies in /usr/node_modules or /node_modules.

In order to make modules available to the Node.js REPL, it might be useful to also add the /usr/lib/node_modules folder to the $NODE_PATH environment variable. Since the module lookups using node_modules folders are all relative, and based on the real path of the files making the calls to require(), the packages themselves can be anywhere.

All Together...#

To get the exact filename that will be loaded when require() is called, use the require.resolve() function.

Putting together all of the above, here is the high-level algorithm in pseudocode of what require.resolve() does:

require(X) from module at path Y
1. If X is a core module,
   a. return the core module
   b. STOP
2. If X begins with '/'
   a. set Y to be the filesystem root
3. If X begins with './' or '/' or '../'
   a. LOAD_AS_FILE(Y + X)
   b. LOAD_AS_DIRECTORY(Y + X)
4. LOAD_NODE_MODULES(X, dirname(Y))
5. THROW "not found"

LOAD_AS_FILE(X)
1. If X is a file, load X as JavaScript text.  STOP
2. If X.js is a file, load X.js as JavaScript text.  STOP
3. If X.json is a file, parse X.json to a JavaScript Object.  STOP
4. If X.node is a file, load X.node as binary addon.  STOP

LOAD_INDEX(X)
1. If X/index.js is a file, load X/index.js as JavaScript text.  STOP
2. If X/index.json is a file, parse X/index.json to a JavaScript object. STOP
3. If X/index.node is a file, load X/index.node as binary addon.  STOP

LOAD_AS_DIRECTORY(X)
1. If X/package.json is a file,
   a. Parse X/package.json, and look for "main" field.
   b. let M = X + (json main field)
   c. LOAD_AS_FILE(M)
   d. LOAD_INDEX(M)
2. LOAD_INDEX(X)

LOAD_NODE_MODULES(X, START)
1. let DIRS=NODE_MODULES_PATHS(START)
2. for each DIR in DIRS:
   a. LOAD_AS_FILE(DIR/X)
   b. LOAD_AS_DIRECTORY(DIR/X)

NODE_MODULES_PATHS(START)
1. let PARTS = path split(START)
2. let I = count of PARTS - 1
3. let DIRS = []
4. while I >= 0,
   a. if PARTS[I] = "node_modules" CONTINUE
   b. DIR = path join(PARTS[0 .. I] + "node_modules")
   c. DIRS = DIRS + DIR
   d. let I = I - 1
5. return DIRS

Caching#

Modules are cached after the first time they are loaded. This means (among other things) that every call to require('foo') will get exactly the same object returned, if it would resolve to the same file.

Multiple calls to require('foo') may not cause the module code to be executed multiple times. This is an important feature. With it, "partially done" objects can be returned, thus allowing transitive dependencies to be loaded even when they would cause cycles.

To have a module execute code multiple times, export a function, and call that function.

Module Caching Caveats#

Modules are cached based on their resolved filename. Since modules may resolve to a different filename based on the location of the calling module (loading from node_modules folders), it is not a guarantee that require('foo') will always return the exact same object, if it would resolve to different files.

Additionally, on case-insensitive file systems or operating systems, different resolved filenames can point to the same file, but the cache will still treat them as different modules and will reload the file multiple times. For example, require('./foo') and require('./FOO') return two different objects, irrespective of whether or not ./foo and ./FOO are the same file.

Core Modules#

Node.js has several modules compiled into the binary. These modules are described in greater detail elsewhere in this documentation.

The core modules are defined within Node.js's source and are located in the lib/ folder.

Core modules are always preferentially loaded if their identifier is passed to require(). For instance, require('http') will always return the built in HTTP module, even if there is a file by that name.

Cycles#

When there are circular require() calls, a module might not have finished executing when it is returned.

Consider this situation:

a.js:

console.log('a starting');
exports.done = false;
const b = require('./b.js');
console.log('in a, b.done = %j', b.done);
exports.done = true;
console.log('a done');

b.js:

console.log('b starting');
exports.done = false;
const a = require('./a.js');
console.log('in b, a.done = %j', a.done);
exports.done = true;
console.log('b done');

main.js:

console.log('main starting');
const a = require('./a.js');
const b = require('./b.js');
console.log('in main, a.done=%j, b.done=%j', a.done, b.done);

When main.js loads a.js, then a.js in turn loads b.js. At that point, b.js tries to load a.js. In order to prevent an infinite loop, an unfinished copy of the a.js exports object is returned to the b.js module. b.js then finishes loading, and its exports object is provided to the a.js module.

By the time main.js has loaded both modules, they're both finished. The output of this program would thus be:

$ node main.js
main starting
a starting
b starting
in b, a.done = false
b done
in a, b.done = true
a done
in main, a.done=true, b.done=true

Careful planning is required to allow cyclic module dependencies to work correctly within an application.

File Modules#

If the exact filename is not found, then Node.js will attempt to load the required filename with the added extensions: .js, .json, and finally .node.

.js files are interpreted as JavaScript text files, and .json files are parsed as JSON text files. .node files are interpreted as compiled addon modules loaded with dlopen.

A required module prefixed with '/' is an absolute path to the file. For example, require('/home/marco/foo.js') will load the file at /home/marco/foo.js.

A required module prefixed with './' is relative to the file calling require(). That is, circle.js must be in the same directory as foo.js for require('./circle') to find it.

Without a leading '/', './', or '../' to indicate a file, the module must either be a core module or is loaded from a node_modules folder.

If the given path does not exist, require() will throw an Error with its code property set to 'MODULE_NOT_FOUND'.

Folders as Modules#

It is convenient to organize programs and libraries into self-contained directories, and then provide a single entry point to that library. There are three ways in which a folder may be passed to require() as an argument.

The first is to create a package.json file in the root of the folder, which specifies a main module. An example package.json file might look like this:

{ "name" : "some-library",
  "main" : "./lib/some-library.js" }

If this was in a folder at ./some-library, then require('./some-library') would attempt to load ./some-library/lib/some-library.js.

This is the extent of Node.js's awareness of package.json files.

Note: If the file specified by the "main" entry of package.json is missing and can not be resolved, Node.js will report the entire module as missing with the default error:

Error: Cannot find module 'some-library'

If there is no package.json file present in the directory, then Node.js will attempt to load an index.js or index.node file out of that directory. For example, if there was no package.json file in the above example, then require('./some-library') would attempt to load:

  • ./some-library/index.js
  • ./some-library/index.node

Loading from node_modules Folders#

If the module identifier passed to require() is not a core module, and does not begin with '/', '../', or './', then Node.js starts at the parent directory of the current module, and adds /node_modules, and attempts to load the module from that location. Node will not append node_modules to a path already ending in node_modules.

If it is not found there, then it moves to the parent directory, and so on, until the root of the file system is reached.

For example, if the file at '/home/ry/projects/foo.js' called require('bar.js'), then Node.js would look in the following locations, in this order:

  • /home/ry/projects/node_modules/bar.js
  • /home/ry/node_modules/bar.js
  • /home/node_modules/bar.js
  • /node_modules/bar.js

This allows programs to localize their dependencies, so that they do not clash.

It is possible to require specific files or sub modules distributed with a module by including a path suffix after the module name. For instance require('example-module/path/to/file') would resolve path/to/file relative to where example-module is located. The suffixed path follows the same module resolution semantics.

Loading from the global folders#

If the NODE_PATH environment variable is set to a colon-delimited list of absolute paths, then Node.js will search those paths for modules if they are not found elsewhere.

Note: On Windows, NODE_PATH is delimited by semicolons instead of colons.

NODE_PATH was originally created to support loading modules from varying paths before the current module resolution algorithm was frozen.

NODE_PATH is still supported, but is less necessary now that the Node.js ecosystem has settled on a convention for locating dependent modules. Sometimes deployments that rely on NODE_PATH show surprising behavior when people are unaware that NODE_PATH must be set. Sometimes a module's dependencies change, causing a different version (or even a different module) to be loaded as the NODE_PATH is searched.

Additionally, Node.js will search in the following locations:

  • 1: $HOME/.node_modules
  • 2: $HOME/.node_libraries
  • 3: $PREFIX/lib/node

Where $HOME is the user's home directory, and $PREFIX is Node.js's configured node_prefix.

These are mostly for historic reasons.

Note: It is strongly encouraged to place dependencies in the local node_modules folder. These will be loaded faster, and more reliably.

The module wrapper#

Before a module's code is executed, Node.js will wrap it with a function wrapper that looks like the following:

(function(exports, require, module, __filename, __dirname) {
// Module code actually lives in here
});

By doing this, Node.js achieves a few things:

  • It keeps top-level variables (defined with var, const or let) scoped to the module rather than the global object.
  • It helps to provide some global-looking variables that are actually specific to the module, such as:
    • The module and exports objects that the implementor can use to export values from the module.
    • The convenience variables __filename and __dirname, containing the module's absolute filename and directory path.

The module scope#

__dirname#

The directory name of the current module. This the same as the path.dirname() of the __filename.

Example: running node example.js from /Users/mjr

console.log(__dirname);
// Prints: /Users/mjr
console.log(path.dirname(__filename));
// Prints: /Users/mjr

__filename#

The file name of the current module. This is the resolved absolute path of the current module file.

For a main program this is not necessarily the same as the file name used in the command line.

See __dirname for the directory name of the current module.

Examples:

Running node example.js from /Users/mjr

console.log(__filename);
// Prints: /Users/mjr/example.js
console.log(__dirname);
// Prints: /Users/mjr

Given two modules: a and b, where b is a dependency of a and there is a directory structure of:

  • /Users/mjr/app/a.js
  • /Users/mjr/app/node_modules/b/b.js

References to __filename within b.js will return /Users/mjr/app/node_modules/b/b.js while references to __filename within a.js will return /Users/mjr/app/a.js.

exports#

A reference to the module.exports that is shorter to type. See the section about the exports shortcut for details on when to use exports and when to use module.exports.

module#

A reference to the current module, see the section about the module object. In particular, module.exports is used for defining what a module exports and makes available through require().

require()#

To require modules.

require.cache#

Modules are cached in this object when they are required. By deleting a key value from this object, the next require will reload the module. Note that this does not apply to native addons, for which reloading will result in an Error.

require.extensions#

Stability: 0 - Deprecated

Instruct require on how to handle certain file extensions.

Process files with the extension .sjs as .js:

require.extensions['.sjs'] = require.extensions['.js'];

Deprecated In the past, this list has been used to load non-JavaScript modules into Node.js by compiling them on-demand. However, in practice, there are much better ways to do this, such as loading modules via some other Node.js program, or compiling them to JavaScript ahead of time.

Since the module system is locked, this feature will probably never go away. However, it may have subtle bugs and complexities that are best left untouched.

Note that the number of file system operations that the module system has to perform in order to resolve a require(...) statement to a filename scales linearly with the number of registered extensions.

In other words, adding extensions slows down the module loader and should be discouraged.

require.resolve()#

Use the internal require() machinery to look up the location of a module, but rather than loading the module, just return the resolved filename.

The module Object#

In each module, the module free variable is a reference to the object representing the current module. For convenience, module.exports is also accessible via the exports module-global. module is not actually a global but rather local to each module.

module.children#

The module objects required by this one.

module.exports#

The module.exports object is created by the Module system. Sometimes this is not acceptable; many want their module to be an instance of some class. To do this, assign the desired export object to module.exports. Note that assigning the desired object to exports will simply rebind the local exports variable, which is probably not what is desired.

For example suppose we were making a module called a.js

const EventEmitter = require('events');

module.exports = new EventEmitter();

// Do some work, and after some time emit
// the 'ready' event from the module itself.
setTimeout(() => {
  module.exports.emit('ready');
}, 1000);

Then in another file we could do

const a = require('./a');
a.on('ready', () => {
  console.log('module a is ready');
});

Note that assignment to module.exports must be done immediately. It cannot be done in any callbacks. This does not work:

x.js:

setTimeout(() => {
  module.exports = { a: 'hello' };
}, 0);

y.js:

const x = require('./x');
console.log(x.a);

exports shortcut#

The exports variable is available within a module's file-level scope, and is assigned the value of module.exports before the module is evaluated.

It allows a shortcut, so that module.exports.f = ... can be written more succinctly as exports.f = .... However, be aware that like any variable, if a new value is assigned to exports, it is no longer bound to module.exports:

module.exports.hello = true; // Exported from require of module
exports = { hello: false };  // Not exported, only available in the module

When the module.exports property is being completely replaced by a new object, it is common to also reassign exports, for example:

module.exports = exports = function Constructor() {
  // ... etc.
};

To illustrate the behavior, imagine this hypothetical implementation of require(), which is quite similar to what is actually done by require():

function require(/* ... */) {
  const module = { exports: {} };
  ((module, exports) => {
    // Module code here. In this example, define a function.
    function someFunc() {}
    exports = someFunc;
    // At this point, exports is no longer a shortcut to module.exports, and
    // this module will still export an empty default object.
    module.exports = someFunc;
    // At this point, the module will now export someFunc, instead of the
    // default object.
  })(module, module.exports);
  return module.exports;
}

module.filename#

The fully resolved filename to the module.

module.id#

The identifier for the module. Typically this is the fully resolved filename.

module.loaded#

Whether or not the module is done loading, or is in the process of loading.

module.parent#

The module that first required this one.

module.paths#

The search paths for the module.

module.require(id)#

The module.require method provides a way to load a module as if require() was called from the original module.

Note: In order to do this, it is necessary to get a reference to the module object. Since require() returns the module.exports, and the module is typically only available within a specific module's code, it must be explicitly exported in order to be used.