public class RobustScaler extends Estimator<RobustScalerModel> implements RobustScalerParams, DefaultParamsWritable
| Constructor and Description |
|---|
RobustScaler() |
RobustScaler(String uid) |
| Modifier and Type | Method and Description |
|---|---|
RobustScaler |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
RobustScalerModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
Param<String> |
inputCol()
Param for input column name.
|
static RobustScaler |
load(String path) |
DoubleParam |
lower()
Lower quantile to calculate quantile range, shared by all features
Default: 0.25
|
Param<String> |
outputCol()
Param for output column name.
|
static MLReader<T> |
read() |
DoubleParam |
relativeError()
Param for the relative target precision for the approximate quantile algorithm.
|
RobustScaler |
setInputCol(String value) |
RobustScaler |
setLower(double value) |
RobustScaler |
setOutputCol(String value) |
RobustScaler |
setRelativeError(double value) |
RobustScaler |
setUpper(double value) |
RobustScaler |
setWithCentering(boolean value) |
RobustScaler |
setWithScaling(boolean value) |
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
DoubleParam |
upper()
Upper quantile to calculate quantile range, shared by all features
Default: 0.75
|
BooleanParam |
withCentering()
Whether to center the data with median before scaling.
|
BooleanParam |
withScaling()
Whether to scale the data to quantile range.
|
paramsequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetLower, getUpper, getWithCentering, getWithScaling, validateAndTransformSchemagetInputColgetOutputColgetRelativeErrorclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringwritesave$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic static RobustScaler load(String path)
public static MLReader<T> read()
public DoubleParam lower()
RobustScalerParamslower in interface RobustScalerParamspublic DoubleParam upper()
RobustScalerParamsupper in interface RobustScalerParamspublic BooleanParam withCentering()
RobustScalerParamswithCentering in interface RobustScalerParamspublic BooleanParam withScaling()
RobustScalerParamswithScaling in interface RobustScalerParamspublic final DoubleParam relativeError()
HasRelativeErrorrelativeError in interface HasRelativeErrorpublic final Param<String> outputCol()
HasOutputColoutputCol in interface HasOutputColpublic final Param<String> inputCol()
HasInputColinputCol in interface HasInputColpublic String uid()
Identifiableuid in interface Identifiablepublic RobustScaler setInputCol(String value)
public RobustScaler setOutputCol(String value)
public RobustScaler setLower(double value)
public RobustScaler setUpper(double value)
public RobustScaler setWithCentering(boolean value)
public RobustScaler setWithScaling(boolean value)
public RobustScaler setRelativeError(double value)
public RobustScalerModel fit(Dataset<?> dataset)
Estimatorfit in class Estimator<RobustScalerModel>dataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public RobustScaler copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Estimator<RobustScalerModel>extra - (undocumented)