pyspark.sql.functions.asc#
- pyspark.sql.functions.asc(col)[source]#
- Returns a sort expression for the target column in ascending order. This function is used in sort and orderBy functions. - New in version 1.3.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- colColumnor column name
- Target column to sort by in the ascending order. 
 
- col
- Returns
- Column
- The column specifying the sort order. 
 
 - Examples - Example 1: Sort DataFrame by ‘id’ column in ascending order. - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(4, 'B'), (3, 'A'), (2, 'C')], ['id', 'value']) >>> df.sort(sf.asc("id")).show() +---+-----+ | id|value| +---+-----+ | 2| C| | 3| A| | 4| B| +---+-----+ - Example 2: Use asc in orderBy function to sort the DataFrame. - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame([(4, 'B'), (3, 'A'), (2, 'C')], ['id', 'value']) >>> df.orderBy(sf.asc("value")).show() +---+-----+ | id|value| +---+-----+ | 3| A| | 4| B| | 2| C| +---+-----+ - Example 3: Combine asc with desc to sort by multiple columns. - >>> from pyspark.sql import functions as sf >>> df = spark.createDataFrame( ... [(2, 'A', 4), (1, 'B', 3), (3, 'A', 2)], ... ['id', 'group', 'value']) >>> df.sort(sf.asc("group"), sf.desc("value")).show() +---+-----+-----+ | id|group|value| +---+-----+-----+ | 2| A| 4| | 3| A| 2| | 1| B| 3| +---+-----+-----+ - Example 4: Implement asc from column expression. - >>> df = spark.createDataFrame([(4, 'B'), (3, 'A'), (2, 'C')], ['id', 'value']) >>> df.sort(df.id.asc()).show() +---+-----+ | id|value| +---+-----+ | 2| C| | 3| A| | 4| B| +---+-----+