pyspark.pandas.DataFrame.swapaxes#
- DataFrame.swapaxes(i, j, copy=True)[source]#
- Interchange axes and swap values axes appropriately. - Note - This method is based on an expensive operation due to the nature of big data. Internally it needs to generate each row for each value, and then group twice - it is a huge operation. To prevent misuse, this method has the ‘compute.max_rows’ default limit of input length and raises a ValueError. - >>> from pyspark.pandas.config import option_context >>> with option_context('compute.max_rows', 1000): ... ps.DataFrame({'a': range(1001)}).swapaxes(i=0, j=1) Traceback (most recent call last): ... ValueError: Current DataFrame's length exceeds the given limit of 1000 rows. Please set 'compute.max_rows' by using 'pyspark.pandas.config.set_option' to retrieve more than 1000 rows. Note that, before changing the 'compute.max_rows', this operation is considerably expensive. - Parameters
- i: {0 or ‘index’, 1 or ‘columns’}. The axis to swap.
- j: {0 or ‘index’, 1 or ‘columns’}. The axis to swap.
- copybool, default True.
 
- Returns
- DataFrame
 
 - Examples - >>> psdf = ps.DataFrame( ... [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['x', 'y', 'z'], columns=['a', 'b', 'c'] ... ) >>> psdf a b c x 1 2 3 y 4 5 6 z 7 8 9 >>> psdf.swapaxes(i=1, j=0) x y z a 1 4 7 b 2 5 8 c 3 6 9 >>> psdf.swapaxes(i=1, j=1) a b c x 1 2 3 y 4 5 6 z 7 8 9