Class KMeansModel
source code
object --+
         |
        KMeansModel
A clustering model derived from the k-means method.
>>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4,2)
>>> model = KMeans.train(
...     sc.parallelize(data), 2, maxIterations=10, runs=30, initializationMode="random")
>>> model.predict(array([0.0, 0.0])) == model.predict(array([1.0, 1.0]))
True
>>> model.predict(array([8.0, 9.0])) == model.predict(array([9.0, 8.0]))
True
>>> model = KMeans.train(sc.parallelize(data), 2)
>>> sparse_data = [
...     SparseVector(3, {1: 1.0}),
...     SparseVector(3, {1: 1.1}),
...     SparseVector(3, {2: 1.0}),
...     SparseVector(3, {2: 1.1})
... ]
>>> model = KMeans.train(sc.parallelize(sparse_data), 2, initializationMode="k-means||")
>>> model.predict(array([0., 1., 0.])) == model.predict(array([0, 1.1, 0.]))
True
>>> model.predict(array([0., 0., 1.])) == model.predict(array([0, 0, 1.1]))
True
>>> model.predict(sparse_data[0]) == model.predict(sparse_data[1])
True
>>> model.predict(sparse_data[2]) == model.predict(sparse_data[3])
True
>>> type(model.clusterCenters)
<type 'list'>
    |  | 
        
          | __init__(self,
        centers) x.__init__(...) initializes x; see help(type(x)) for signature
 | source code |  | 
    |  |  | 
    |  | 
        
          | predict(self,
        x) Find the cluster to which x belongs in this model.
 | source code |  | 
  
    | Inherited from object:__delattr__,__format__,__getattribute__,__hash__,__new__,__reduce__,__reduce_ex__,__repr__,__setattr__,__sizeof__,__str__,__subclasshook__ | 
  
    | Inherited from object:__class__ | 
| x.__init__(...) initializes x; see help(type(x)) for signature 
    Overrides:
        object.__init__
        (inherited documentation) | 
 
| Get the cluster centers, represented as a list of NumPy arrays. 
    Decorators: |