| Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-04-22 13:19 -0400 (Tue, 22 Apr 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4831 |
| palomino7 | Windows Server 2022 Datacenter | x64 | 4.5.0 RC (2025-04-04 r88126 ucrt) -- "How About a Twenty-Six" | 4573 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4599 |
| kjohnson3 | macOS 13.7.1 Ventura | arm64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4553 |
| kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4570 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 2111/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| STATegRa 1.44.0 (landing page) David Gomez-Cabrero
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the STATegRa package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: STATegRa |
| Version: 1.44.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings STATegRa_1.44.0.tar.gz |
| StartedAt: 2025-04-21 21:57:55 -0400 (Mon, 21 Apr 2025) |
| EndedAt: 2025-04-21 21:59:12 -0400 (Mon, 21 Apr 2025) |
| EllapsedTime: 76.9 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: STATegRa.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings STATegRa_1.44.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/STATegRa.Rcheck’
* using R version 4.5.0 RC (2025-04-04 r88126)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘STATegRa/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘STATegRa’ version ‘1.44.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘STATegRa’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
modelSelection,list-numeric-character: no visible binding for global
variable ‘components’
modelSelection,list-numeric-character: no visible binding for global
variable ‘mylabel’
plotVAF,caClass: no visible binding for global variable ‘comp’
plotVAF,caClass: no visible binding for global variable ‘VAF’
plotVAF,caClass: no visible binding for global variable ‘block’
selectCommonComps,list-numeric: no visible binding for global variable
‘comps’
selectCommonComps,list-numeric: no visible binding for global variable
‘block’
selectCommonComps,list-numeric: no visible binding for global variable
‘comp’
selectCommonComps,list-numeric: no visible binding for global variable
‘ratio’
Undefined global functions or variables:
VAF block comp components comps mylabel ratio
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
modelSelection.Rd: ggplot
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘STATEgRa_Example.omicsCLUST.R’
Running ‘STATEgRa_Example.omicsPCA.R’
Running ‘STATegRa_Example.omicsNPC.R’
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/Users/biocbuild/bbs-3.21-bioc/meat/STATegRa.Rcheck/00check.log’
for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL STATegRa ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘STATegRa’ ... ** this is package ‘STATegRa’ version ‘1.44.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (STATegRa)
STATegRa.Rcheck/tests/runTests.Rout
R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2
Distinctive components
[[1]]
[1] 0
[[2]]
[1] 0
Common components
[1] 2
Distinctive components
[[1]]
[1] 1
[[2]]
[1] 1
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
RUNIT TEST PROTOCOL -- Mon Apr 21 21:59:08 2025
***********************************************
Number of test functions: 4
Number of errors: 0
Number of failures: 0
1 Test Suite :
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4
Number of errors: 0
Number of failures: 0
Warning messages:
1: In rownames(pData) == colnames(exprs) :
longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
>
> proc.time()
user system elapsed
1.248 0.079 1.325
STATegRa.Rcheck/tests/STATEgRa_Example.omicsCLUST.Rout
R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> ####### then the class is created.
>
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
>
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+ metadata = list(type_v1="Gene",type_v2="miRNA",
+ source_database="targetscan.Hs.eg.db",
+ data_extraction="July2014"),
+ map=mapdata)
>
>
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> ##### the profile of the main features is computed through the surrogate features.
>
> # Load Data
> data(STATegRa_S1)
> #load("../data/STATegRa.S1.Rdata")
>
> ## Create ExpressionSets
> # source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
>
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
+ reference = "Var1",
+ mapping = MAP.SYMBOL,
+ surrogateData = miRNA.ds, ### miRNA data
+ referenceData = mRNA.ds, ### mRNA data
+ maxitems=2,
+ selectionRule="sd",
+ expfac=NULL,
+ aggregation = "sum",
+ distance = "spearman",
+ noMappingDist = 0,
+ filtering = NULL,
+ name = "mRNAbymiRNA")
>
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: generics
Attaching package: 'generics'
The following objects are masked from 'package:base':
as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
setequal, union
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
unsplit, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
>
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+ distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+ map.name = "id",
+ map.metadata = list(),
+ params = list())
>
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
>
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
>
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+ bioDistList = bioDistList,
+ weights=weights)
> length(bioDistWList)
[1] 4
>
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
>
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+ listDistW = bioDistWList,
+ method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
>
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
>
> ## IDH1
>
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+ listDistW = bioDistWList,
+ threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
>
> ## PDGFRA
>
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
>
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
>
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
>
>
>
>
>
> proc.time()
user system elapsed
12.511 0.237 12.798
STATegRa.Rcheck/tests/STATegRa_Example.omicsNPC.Rout
R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
>
> proc.time()
user system elapsed
20.448 1.020 21.504
STATegRa.Rcheck/tests/STATEgRa_Example.omicsPCA.Rout
R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+ tmp <- ggplot_gtable(ggplot_build(a.gplot))
+ leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+ legend <- tmp$grobs[[leg]]
+ return(legend)}
>
> #########################
> ## PART 1. Load data
>
> ## Load data
> data(STATegRa_S3)
>
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend"
>
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
>
> #########################
> ## PART 2. Model Selection
>
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
>
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
>
>
> #########################
> ## PART 3. Component Analysis
>
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
>
> ## 3.2 Exploring scores structures
>
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
1 2
sample1 0.0781575623 0.0431550621
sample2 -0.1192221477 -0.0294019147
sample3 -0.0531408589 0.0746837454
sample4 0.0292971662 0.0006036964
sample5 0.0202090716 -0.0110454982
sample6 0.1226088453 -0.1053494308
sample7 0.1078931453 0.0322416764
sample8 0.1782891024 -0.1449329046
sample9 0.0468697248 0.0455171747
sample10 -0.0036032764 -0.0420076441
sample11 -0.0035566375 0.0566284932
sample12 0.1006129689 -0.0641394338
sample13 -0.1174412922 -0.0907474881
sample14 0.0981203587 -0.0617764680
sample15 0.0085337347 0.0086953919
sample16 0.0783146783 -0.1581335061
sample17 -0.1483610681 -0.0638580066
sample18 -0.0963084310 -0.0556690046
sample19 -0.0217243062 0.0720130296
sample20 -0.0635633857 0.0779608510
sample21 -0.0201844090 -0.1566381685
sample22 0.0218274007 0.0764053703
sample23 0.0852038923 0.0032768303
sample24 -0.1287181857 -0.1924421032
sample25 -0.0430575707 0.0456641617
sample26 -0.1453899895 -0.0541456394
sample27 -0.0197483444 0.1185590061
sample28 -0.1025339525 -0.0650653971
sample29 0.0706022565 0.0682930830
sample30 -0.1295622797 0.0066673507
sample31 0.1147449344 -0.1232729055
sample32 -0.0374308103 -0.0380252748
sample33 0.0599520945 -0.0136939248
sample34 -0.0984199247 -0.0375366484
sample35 -0.0543096326 0.0378032078
sample36 0.1403628193 0.0343633687
sample37 0.0228947939 0.0732682521
sample38 -0.0222072910 0.0962566160
sample39 -0.0941739253 -0.0215179681
sample40 0.0643807337 0.0687713036
sample41 -0.0327634896 0.1232187150
sample42 -0.0500431637 0.0292515427
sample43 -0.0184497119 -0.0233045932
sample44 0.1487889031 -0.1171203861
sample45 -0.1050778947 -0.1123137704
sample46 -0.1151191468 0.1093994300
sample47 -0.0962591449 0.0288416092
sample48 0.0004832422 0.0310383970
sample49 0.1135203774 -0.1213935201
sample50 -0.0123549876 0.1740764045
sample51 0.0550527389 -0.1258932685
sample52 0.0499118422 -0.0728582511
sample53 0.1119772666 -0.1588066474
sample54 -0.0360055706 -0.0228586184
sample55 0.0210418826 -0.0006751545
sample56 -0.0434171557 -0.0633131505
sample57 0.0197820593 -0.1150755648
sample58 0.0030440748 -0.0326128924
sample59 0.0500256903 -0.0129526273
sample60 0.0184280177 -0.0136223765
sample61 0.0150298932 -0.0635100006
sample62 -0.0304758560 0.0201232391
sample63 0.1102250035 -0.1285967763
sample64 0.1552586789 -0.0971185788
sample65 -0.0058503857 -0.0207102097
sample66 -0.0025607539 -0.0424283152
sample67 0.1546638858 0.0661572005
sample68 0.0536374440 0.0923600468
sample69 0.0640333082 -0.0082004770
sample70 0.0163521847 0.0663227112
sample71 -0.0102536096 0.1345966822
sample72 -0.0654191583 0.0196032386
sample73 -0.1048553139 -0.0221002743
sample74 0.0123800550 -0.0586158758
sample75 0.0392079794 0.0209724934
sample76 0.0648954638 0.0524759012
sample77 0.1172922690 0.0201200648
sample78 -0.1463072771 -0.0708396376
sample79 0.0265208710 0.1603430625
sample80 0.0279739275 0.0214151263
sample81 0.0079212150 0.0738497426
sample82 -0.1544234521 0.0361449715
sample83 -0.0494205182 0.0049933905
sample84 -0.0259039789 0.0346593375
sample85 0.1116487599 0.0031399838
sample86 -0.1306478900 0.0377153247
sample87 -0.0554777836 0.0459739062
sample88 -0.0301626582 -0.0382207296
sample89 -0.1016866147 -0.0694080263
sample90 0.0086821706 0.0201323814
sample91 0.1578629865 0.2097791181
sample92 0.0170933349 0.1655942139
sample93 -0.0979805051 0.0121500020
sample94 0.0131486273 0.0114929429
sample95 0.0315682426 0.0758919712
sample96 0.0024125822 0.0470187347
sample97 0.0634545801 -0.0270302437
sample98 -0.0359372493 0.0135465602
sample99 -0.1009167761 -0.1124709717
sample100 0.0551754133 -0.0246502667
sample101 -0.0080115951 0.1627409146
sample102 -0.0046451454 -0.0095466072
sample103 -0.0472520804 0.0940383135
sample104 0.0198157369 0.0591149609
sample105 -0.0400239027 0.0160950503
sample106 -0.0923810190 -0.0369003293
sample107 -0.1019372321 -0.0224967846
sample108 -0.0877091519 0.0128850412
sample109 0.0864820078 0.0901087165
sample110 -0.1223116512 0.0096109455
sample111 0.0257352305 0.0936286059
sample112 -0.0765285883 -0.0270380753
sample113 0.0258799716 -0.0377435824
sample114 0.0021141143 0.0882041193
sample115 0.0303455068 0.0723741779
sample116 0.0780504309 0.0685166446
sample117 0.0536893910 0.0912030218
sample118 0.0666649845 0.0236262387
sample119 0.1021872527 0.2325007082
sample120 0.0750216312 -0.0243344216
sample121 -0.0756937933 -0.0942971067
sample122 -0.0259632206 -0.0731918434
sample123 -0.1037844622 0.0369177823
sample124 0.0611205054 -0.0421643757
sample125 -0.0738472604 -0.0066944229
sample126 0.0972919222 -0.0762701155
sample127 0.0824699484 0.0096645043
sample128 -0.1249411675 -0.0929251141
sample129 -0.0734063549 0.0434311354
sample130 -0.0003500194 0.0309857278
sample131 0.0930184098 -0.0155971458
sample132 0.0736220516 -0.0732969682
sample133 -0.0498398377 0.0462456651
sample134 0.1644872618 -0.0720048589
sample135 -0.0752294963 -0.0003871747
sample136 0.0227150108 0.0495467880
sample137 0.0564721866 0.0288858189
sample138 0.0255986407 0.0610933626
sample139 0.0621218856 -0.0235860144
sample140 -0.0604148827 0.0435529892
sample141 0.0246743016 -0.0532629660
sample142 -0.0409563987 -0.0316232411
sample143 -0.0077356426 0.0476909299
sample144 0.0173241001 0.0156786215
sample145 0.0485467494 -0.1202736483
sample146 0.0419650125 0.0811239216
sample147 -0.0977304490 0.0274768165
sample148 0.0368253204 -0.0803969184
sample149 -0.0072864855 0.1533018203
sample150 0.1020825547 -0.0624824581
sample151 0.0305397079 0.0289339485
sample152 -0.0533595254 0.0638336363
sample153 -0.0891639851 -0.1799447587
sample154 -0.0727554294 0.0834128070
sample155 -0.0880665720 0.0220768266
sample156 -0.0276558792 0.0326600963
sample157 -0.1155031540 -0.0183636259
sample158 -0.0281506672 0.0104910857
sample159 0.0663233724 -0.0443808710
sample160 -0.0302643998 -0.0404302861
sample161 0.0114712859 0.0591085474
sample162 -0.1337091127 -0.1398131041
sample163 0.1330120631 -0.1688768665
sample164 -0.0150338221 -0.0028373759
sample165 0.0076518786 0.0164146518
sample166 0.0367791398 -0.0630612261
sample167 0.1111989848 -0.0030066764
sample168 -0.0672983010 -0.0446266331
sample169 -0.0413003573 -0.0224449291
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
1 2
sample1 -0.0420461344 0.0867866179
sample2 -0.0820850197 -0.0410968410
sample3 0.0155967536 -0.0195186630
sample4 -0.1001342972 -0.0410775920
sample5 -0.0153480054 -0.0253257627
sample6 0.0340237222 -0.0408223254
sample7 0.0722602852 0.0002323537
sample8 -0.0457622040 -0.0370006354
sample9 -0.0086215864 0.0820184452
sample10 -0.0423631889 -0.0083917356
sample11 0.0022594535 0.0787763984
sample12 0.0322075815 0.1479823403
sample13 -0.0293971909 -0.0306742538
sample14 0.0337429746 -0.0367508351
sample15 0.0815560879 0.1275613459
sample16 0.0508329624 0.0540604515
sample17 0.0062554404 0.0041024963
sample18 0.0705600012 -0.0351053564
sample19 -0.0476782607 -0.0509595419
sample20 0.0523028624 0.0715513647
sample21 -0.0119253652 -0.0376086662
sample22 0.0724459313 -0.0095635434
sample23 -0.0992529476 0.0134299414
sample24 -0.1595268401 0.0728685394
sample25 -0.0920660556 -0.0749748972
sample26 -0.0595567385 0.0848974034
sample27 0.0826578916 -0.0086748221
sample28 -0.0384834463 0.0440973050
sample29 0.0777742653 0.1735297996
sample30 0.1229474262 -0.0819019085
sample31 0.0579748502 -0.0238646816
sample32 0.0970365166 -0.0111435501
sample33 0.1017579822 -0.0630453039
sample34 0.0637902332 0.0377935988
sample35 0.0790003744 -0.0229732932
sample36 0.1224932688 -0.1274968942
sample37 0.1798847691 -0.1673449021
sample38 0.0466395884 0.0888152707
sample39 -0.0168694766 0.0421536152
sample40 0.1756418189 -0.1526663315
sample41 0.0042471359 0.0004924232
sample42 -0.0447825141 -0.0651501274
sample43 0.0482291626 -0.0253533715
sample44 -0.1986821694 -0.0545752521
sample45 -0.0741919726 0.0054714813
sample46 0.0478863953 -0.0007080903
sample47 0.0608217286 0.0481615073
sample48 -0.1381464131 0.0578301598
sample49 -0.0530633449 -0.1405523028
sample50 -0.0173643125 0.1602385765
sample51 0.0462454563 0.0303473160
sample52 0.0279994673 0.0280387958
sample53 0.0667496241 0.0237700242
sample54 0.0121811153 -0.0521354911
sample55 0.0182392175 0.0221326565
sample56 -0.0001309966 0.0030909459
sample57 0.0316572836 0.0530190829
sample58 0.0393890409 -0.0297801897
sample59 0.1278270887 -0.0546541152
sample60 0.1486964415 0.1069141236
sample61 0.0793066528 0.0569790222
sample62 0.1172822277 -0.0149211799
sample63 -0.0028814147 0.1300524479
sample64 0.0237295071 0.1073288548
sample65 -0.0126543703 0.0589810467
sample66 -0.0468234809 -0.0771066285
sample67 0.1494286229 -0.0769878198
sample68 0.0978024616 -0.0577364508
sample69 0.0403090567 0.0156038068
sample70 0.0221599367 0.0315436322
sample71 -0.0546328024 -0.0272395053
sample72 0.1107501196 -0.0537331972
sample73 0.0906756712 0.0579957480
sample74 0.0586512592 0.0121417324
sample75 0.0390513093 0.0349277979
sample76 -0.0022939477 -0.1676560208
sample77 -0.0232101988 -0.2067300875
sample78 -0.0929810953 -0.0434927357
sample79 -0.1619378618 -0.0378102113
sample80 0.0680393584 0.1424655556
sample81 -0.0530724468 -0.0358347623
sample82 0.0266850920 -0.0577449350
sample83 0.1517242098 -0.0448570862
sample84 -0.0570942796 -0.0273808280
sample85 0.1086270913 -0.1228130923
sample86 0.0833892205 -0.0442925337
sample87 0.0022041035 -0.0943908631
sample88 -0.0078278065 -0.1140504385
sample89 0.0611004871 -0.0094589526
sample90 0.0022941703 -0.0936254950
sample91 0.0433777419 0.3205971447
sample92 -0.1815215475 -0.0334666233
sample93 0.0267654659 0.0614425614
sample94 0.0181902064 0.0605088029
sample95 -0.0720313105 -0.0013040427
sample96 -0.0559671872 -0.0118787013
sample97 -0.0217420800 0.0195417360
sample98 0.0379199830 0.0588352525
sample99 -0.0792509855 -0.0151261745
sample100 0.0222100006 -0.0023322978
sample101 -0.0387081095 0.1224224951
sample102 -0.2094626359 -0.0516419856
sample103 0.0138559580 0.0301047320
sample104 -0.0807947273 -0.0162712149
sample105 -0.0520492076 -0.1229660160
sample106 -0.0192643594 -0.0185234994
sample107 0.0319014405 0.0405120446
sample108 -0.0140673792 0.0163422349
sample109 -0.1831855346 0.0613024325
sample110 -0.0292782484 -0.0199846390
sample111 -0.1423172127 0.0327352509
sample112 0.0426312871 -0.0029087199
sample113 -0.0771932663 0.0268743204
sample114 -0.0241566450 -0.0184080782
sample115 -0.1958954766 0.0460149331
sample116 -0.1394436680 -0.0530792989
sample117 -0.1672310959 -0.1386521386
sample118 -0.0448331346 -0.0117617820
sample119 -0.0910188161 0.2217435624
sample120 -0.0331405255 -0.0057270121
sample121 0.0307515402 0.1392506288
sample122 -0.0839839268 -0.0291983041
sample123 0.0239675849 -0.0642167629
sample124 -0.0909177030 0.0130430656
sample125 -0.0065362899 -0.1092630990
sample126 0.0935272503 0.1368276577
sample127 0.0035406228 0.0292754958
sample128 -0.0660351527 0.1018576311
sample129 0.0693671914 -0.0695430722
sample130 0.0008517652 -0.0669705489
sample131 0.0431011630 0.0174060855
sample132 -0.0637090437 0.0029383989
sample133 -0.0289463816 -0.0390817284
sample134 0.0446140330 0.0456332317
sample135 0.0712344091 0.0521627248
sample136 0.0596319915 0.0197291261
sample137 0.0793176135 -0.0380637753
sample138 -0.0973504411 -0.0454209817
sample139 0.0539864630 -0.1534332287
sample140 0.0850873666 0.0955803904
sample141 -0.0192725261 -0.0554446250
sample142 -0.0672295476 -0.0461312670
sample143 -0.0303706524 -0.0519258502
sample144 -0.0089350121 0.0145815372
sample145 -0.0638880147 0.0122269390
sample146 0.0585924641 0.0063074401
sample147 0.0894147015 -0.1124626315
sample148 -0.0216441997 -0.0615962080
sample149 -0.0515313415 -0.0839902998
sample150 0.0568227060 -0.0124472826
sample151 -0.0789513147 -0.0261823636
sample152 -0.0330691212 0.1306444990
sample153 -0.1752069133 0.1497756826
sample154 0.0421491796 -0.0037017548
sample155 0.0680199500 0.0095703106
sample156 0.0388951639 0.1057557668
sample157 0.0314765087 0.0561364519
sample158 0.0329630626 0.0353943434
sample159 -0.0398463231 -0.1007367971
sample160 0.0424904769 0.0108492955
sample161 -0.0888339414 -0.0679692530
sample162 -0.0027573548 0.1237848649
sample163 -0.0126233184 0.0725441403
sample164 -0.0566787531 -0.0458318012
sample165 -0.0315331462 -0.0236359457
sample166 -0.0612110959 -0.0425224370
sample167 0.0142729566 0.0179306943
sample168 -0.0169544393 -0.0769614686
sample169 0.0675062890 0.0131498801
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
1 2
sample1 -0.001233176 1.635716e-01
sample2 -0.072435334 6.022157e-03
sample3 -0.018845992 1.080029e-01
sample4 0.039014304 -3.106259e-04
sample5 0.177481059 2.996431e-02
sample6 -0.045144655 3.455900e-02
sample7 -0.022646337 7.019178e-03
sample8 -0.103368474 9.857988e-03
sample9 0.135001432 -8.979114e-02
sample10 0.125988430 5.097940e-02
sample11 0.097979103 -7.086568e-02
sample12 -0.086302108 8.620322e-02
sample13 -0.138140185 -1.827998e-01
sample14 -0.061507478 2.642808e-02
sample15 0.038160065 3.101600e-02
sample16 -0.004877951 -1.270994e-03
sample17 -0.078848332 1.547607e-02
sample18 -0.088418953 3.795476e-02
sample19 0.070304348 1.084003e-01
sample20 -0.002558118 -7.975973e-02
sample21 0.094159642 4.126898e-02
sample22 -0.055027076 7.806612e-02
sample23 0.067949271 4.102080e-02
sample24 -0.131096972 -1.649281e-01
sample25 0.011358350 4.426901e-02
sample26 -0.140294904 -2.016456e-02
sample27 0.026156626 -1.590012e-03
sample28 -0.072420087 -5.850508e-02
sample29 -0.033005462 -2.062119e-03
sample30 -0.022875023 2.015341e-02
sample31 -0.063507052 6.670370e-02
sample32 0.068510002 4.955245e-02
sample33 -0.077776492 1.272070e-01
sample34 0.015784207 3.024311e-02
sample35 -0.052962772 -1.500981e-01
sample36 0.007090830 -2.025321e-01
sample37 -0.044241142 -1.802110e-01
sample38 -0.078150826 3.676294e-02
sample39 0.012032999 3.388885e-02
sample40 -0.047328348 -1.471582e-01
sample41 0.022819231 2.673455e-02
sample42 -0.024536193 7.960878e-02
sample43 0.103636198 8.229578e-02
sample44 -0.101223503 -7.049234e-02
sample45 0.001372647 2.451074e-02
sample46 -0.055850630 -2.948625e-03
sample47 -0.038047861 -4.554239e-02
sample48 0.078434040 -4.888888e-02
sample49 -0.060516824 1.162475e-02
sample50 0.053008307 2.737810e-02
sample51 0.151464530 -5.678257e-02
sample52 0.186093605 -1.246711e-01
sample53 -0.006417983 2.701062e-02
sample54 0.069703753 2.308413e-02
sample55 0.163357773 -1.366432e-02
sample56 0.101148395 -4.682131e-02
sample57 0.173037441 -1.609593e-01
sample58 -0.007138490 1.666951e-02
sample59 -0.003045834 -3.005379e-02
sample60 0.021584249 -2.665888e-01
sample61 0.151058540 -1.002384e-01
sample62 -0.092553149 4.845724e-02
sample63 -0.059631561 4.137112e-02
sample64 -0.044922736 2.600974e-03
sample65 0.093938218 4.406952e-02
sample66 0.106339761 5.710081e-02
sample67 -0.020158041 -2.361747e-01
sample68 0.003720861 -2.418548e-02
sample69 -0.064516204 1.155618e-01
sample70 -0.101343974 1.351780e-01
sample71 -0.001646602 2.976771e-02
sample72 0.032889551 2.835768e-02
sample73 0.027508040 5.148151e-02
sample74 0.134171831 7.895304e-02
sample75 0.095157668 3.943147e-02
sample76 -0.086471985 -3.035056e-02
sample77 -0.103574949 2.545324e-02
sample78 -0.157564802 -4.939471e-02
sample79 0.018913844 -4.874690e-02
sample80 0.138414285 -4.316298e-05
sample81 -0.011884667 6.357907e-02
sample82 -0.167530657 -3.533971e-02
sample83 -0.006567106 7.812494e-02
sample84 0.148689062 3.109097e-02
sample85 -0.053272017 -7.417992e-02
sample86 -0.113847481 1.816845e-05
sample87 0.043286604 -6.080500e-02
sample88 0.043345124 -1.402486e-01
sample89 0.033120476 1.395429e-02
sample90 -0.060741350 8.610384e-02
sample91 -0.056626339 -1.303771e-01
sample92 -0.035958061 -1.061605e-01
sample93 -0.043364646 4.443609e-02
sample94 -0.047729217 1.059570e-01
sample95 -0.024959593 3.980509e-02
sample96 0.003521752 9.293931e-02
sample97 -0.006605215 1.527234e-01
sample98 0.002036707 5.579514e-02
sample99 -0.088662196 3.728378e-02
sample100 -0.109125963 3.560400e-02
sample101 -0.073972373 4.317882e-02
sample102 0.057445549 2.784091e-02
sample103 0.014273387 -9.706377e-03
sample104 0.071039560 -4.068330e-02
sample105 0.098082989 3.452998e-02
sample106 -0.025426054 -3.628932e-02
sample107 -0.016065511 9.173398e-02
sample108 -0.020098834 2.379699e-02
sample109 -0.038978199 -1.692310e-02
sample110 -0.032630526 -2.988086e-02
sample111 0.067693587 6.038251e-02
sample112 0.016788352 -5.336924e-03
sample113 0.096921383 2.757706e-02
sample114 -0.002639796 9.209100e-02
sample115 -0.030804965 -1.603741e-02
sample116 -0.124030635 -1.272998e-01
sample117 0.033472865 -5.392661e-02
sample118 -0.103715212 -6.252440e-02
sample119 -0.106417034 -1.196218e-01
sample120 -0.077135782 1.004935e-01
sample121 -0.012935239 -3.181912e-02
sample122 0.084748736 5.568468e-02
sample123 -0.004133546 -7.693565e-03
sample124 -0.058346238 8.396478e-02
sample125 0.063484320 5.232568e-02
sample126 -0.066258216 1.091730e-01
sample127 -0.086502566 1.094172e-01
sample128 -0.062782222 1.471097e-02
sample129 -0.033627451 4.007772e-02
sample130 -0.029351813 8.046085e-02
sample131 -0.046919676 2.209373e-03
sample132 -0.024174584 1.248608e-01
sample133 0.090730383 -1.466698e-02
sample134 -0.035084120 -7.539660e-02
sample135 0.000133494 -9.185832e-03
sample136 -0.033587476 9.860179e-02
sample137 -0.064014721 7.554368e-02
sample138 0.006096402 1.742783e-02
sample139 -0.059208268 -5.615007e-02
sample140 0.042798871 1.099463e-02
sample141 0.061879314 9.301104e-02
sample142 0.089855243 -3.573321e-02
sample143 0.081739115 -8.880528e-02
sample144 0.078775446 3.821395e-02
sample145 0.108581943 -1.569460e-01
sample146 -0.058955489 4.373233e-02
sample147 -0.049532780 -7.278088e-03
sample148 0.116159039 -9.078107e-03
sample149 -0.012157533 -7.788465e-02
sample150 -0.031451196 -3.520220e-02
sample151 0.057538090 1.945394e-02
sample152 -0.049454029 -7.025566e-02
sample153 -0.094133877 -2.153269e-01
sample154 -0.033592870 -2.078828e-02
sample155 0.069045910 2.780360e-02
sample156 0.103990232 6.292487e-02
sample157 -0.040864584 -8.065531e-03
sample158 0.101810638 -7.817024e-03
sample159 -0.028173261 1.207261e-02
sample160 0.164305286 -2.977800e-03
sample161 0.037433013 -8.524588e-02
sample162 -0.080453839 -8.349632e-02
sample163 -0.074323258 1.406350e-02
sample164 0.120880421 2.139526e-02
sample165 0.160811596 -2.025158e-02
sample166 -0.042594806 2.660803e-02
sample167 -0.022684951 4.464257e-02
sample168 -0.018073743 7.471686e-04
sample169 0.019078026 -2.645427e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
[,1] [,2]
sample1 -0.0572060227 -1.729087e-02
sample2 0.0875245208 1.112588e-02
sample3 0.0403482602 -3.168994e-02
sample4 -0.0218345996 4.052760e-06
sample5 -0.0150905011 4.795041e-03
sample6 -0.0924362933 4.511003e-02
sample7 -0.0793066751 -1.243823e-02
sample8 -0.1342997187 6.215220e-02
sample9 -0.0338886944 -1.854401e-02
sample10 0.0020547173 1.749421e-02
sample11 0.0037275602 -2.364116e-02
sample12 -0.0753094533 2.772698e-02
sample13 0.0856160091 3.679963e-02
sample14 -0.0737457307 2.668452e-02
sample15 -0.0062111746 -3.554864e-03
sample16 -0.0602355268 6.675115e-02
sample17 0.1086768843 2.524534e-02
sample18 0.0702999472 2.231671e-02
sample19 0.0173785882 -3.024846e-02
sample20 0.0484173812 -3.310904e-02
sample21 0.0124657042 6.517144e-02
sample22 -0.0140989936 -3.159137e-02
sample23 -0.0627028403 -5.393710e-04
sample24 0.0919972100 7.909297e-02
sample25 0.0326998483 -1.945206e-02
sample26 0.1064741246 2.120849e-02
sample27 0.0166058995 -4.964993e-02
sample28 0.0743504770 2.614211e-02
sample29 -0.0511008491 -2.782647e-02
sample30 0.0962250842 -3.974893e-03
sample31 -0.0869563008 5.250819e-02
sample32 0.0271858919 1.552005e-02
sample33 -0.0448364581 6.243160e-03
sample34 0.0718415218 1.469396e-02
sample35 0.0403086451 -1.632629e-02
sample36 -0.1036402827 -1.304320e-02
sample37 -0.0159385744 -3.036525e-02
sample38 0.0182198369 -4.034805e-02
sample39 0.0690363619 8.058350e-03
sample40 -0.0467312750 -2.810325e-02
sample41 0.0263674438 -5.171216e-02
sample42 0.0374578960 -1.268634e-02
sample43 0.0132336869 9.536642e-03
sample44 -0.1119154428 5.028683e-02
sample45 0.0759639367 4.587903e-02
sample46 0.0871885519 -4.670385e-02
sample47 0.0721490571 -1.288540e-02
sample48 0.0005086144 -1.290565e-02
sample49 -0.0858177028 5.173760e-02
sample50 0.0118992665 -7.276215e-02
sample51 -0.0426446855 5.306205e-02
sample52 -0.0381605826 3.086785e-02
sample53 -0.0855757630 6.730043e-02
sample54 0.0261723092 9.184260e-03
sample55 -0.0156418304 4.682404e-04
sample56 0.0307831193 2.597550e-02
sample57 -0.0157242103 4.829381e-02
sample58 -0.0031174404 1.359898e-02
sample59 -0.0373001859 5.868397e-03
sample60 -0.0142609099 5.831654e-03
sample61 -0.0122255144 2.663579e-02
sample62 0.0228002942 -8.692265e-03
sample63 -0.0833127581 5.473229e-02
sample64 -0.1166548159 4.196500e-02
sample65 0.0038808902 8.568590e-03
sample66 0.0011561811 1.766612e-02
sample67 -0.1129311062 -2.608702e-02
sample68 -0.0382526429 -3.804045e-02
sample69 -0.0476502440 4.003241e-03
sample70 -0.0110329882 -2.752719e-02
sample71 0.0096850282 -5.627056e-02
sample72 0.0487124704 -8.800131e-03
sample73 0.0773058132 8.239864e-03
sample74 -0.0102488176 2.454957e-02
sample75 -0.0286613976 -8.387293e-03
sample76 -0.0472655595 -2.129315e-02
sample77 -0.0865043074 -7.296820e-03
sample78 0.1070293698 2.818346e-02
sample79 -0.0165060681 -6.659721e-02
sample80 -0.0206765949 -8.712112e-03
sample81 -0.0050943615 -3.079175e-02
sample82 0.1153622361 -1.647054e-02
sample83 0.0367979217 -2.538114e-03
sample84 0.0199463070 -1.468961e-02
sample85 -0.0827122185 -2.709824e-04
sample86 0.0969487314 -1.699897e-02
sample87 0.0421957457 -1.965953e-02
sample88 0.0215934743 1.566050e-02
sample89 0.0751559502 2.811652e-02
sample90 -0.0057328000 -8.283795e-03
sample91 -0.1134005268 -8.603522e-02
sample92 -0.0101689918 -6.894992e-02
sample93 0.0725967502 -6.003176e-03
sample94 -0.0096878852 -4.693081e-03
sample95 -0.0223502239 -3.139636e-02
sample96 -0.0013232863 -1.963604e-02
sample97 -0.0476541710 1.183660e-02
sample98 0.0269546160 -5.978398e-03
sample99 0.0728179461 4.597884e-02
sample100 -0.0413398038 1.079347e-02
sample101 0.0087536994 -6.796076e-02
sample102 0.0032509529 3.932612e-03
sample103 0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105 0.0294940465 -7.140722e-03
sample106 0.0686472054 1.462895e-02
sample107 0.0748635927 8.401339e-03
sample108 0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110 0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112 0.0570870472 1.066018e-02
sample113 -0.0200110554 1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586 1.089843e-02
sample121 0.0542443861 3.861344e-02
sample122 0.0178575357 3.027138e-02
sample123 0.0775020581 -1.636852e-02
sample124 -0.0460701050 1.814758e-02
sample125 0.0543846585 2.075898e-03
sample126 -0.0729417144 3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128 0.0908136899 3.758801e-02
sample129 0.0552445878 -1.879062e-02
sample130 0.0007128089 -1.294308e-02
sample131 -0.0693311345 7.357082e-03
sample132 -0.0556565156 3.126995e-02
sample133 0.0375870104 -1.977240e-02
sample134 -0.1229130924 3.159495e-02
sample135 0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201 1.040683e-02
sample140 0.0452288969 -1.876279e-02
sample141 -0.0189142561 2.247042e-02
sample142 0.0297545566 1.280524e-02
sample143 0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491 5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147 0.0726083535 -1.239968e-02
sample148 -0.0284795794 3.389732e-02
sample149 0.0082261455 -6.399305e-02
sample150 -0.0765013197 2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152 0.0403422737 -2.714879e-02
sample153 0.0629117719 7.425085e-02
sample154 0.0551622927 -3.548984e-02
sample155 0.0654439133 -1.005306e-02
sample156 0.0209310714 -1.390213e-02
sample157 0.0851522597 6.577150e-03
sample158 0.0208354599 -4.663078e-03
sample159 -0.0498794349 1.913257e-02
sample160 0.0216074437 1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162 0.0963663017 5.705881e-02
sample163 -0.1009542191 7.174224e-02
sample164 0.0109881996 1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357 2.673084e-02
sample167 -0.0825048036 2.278863e-03
sample168 0.0486147429 1.793843e-02
sample169 0.0302506727 8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
[,1] [,2]
sample1 -0.0621842115 -1.364509e-02
sample2 0.0944623785 9.720892e-03
sample3 0.0406196267 -2.236338e-02
sample4 -0.0229316496 -3.932487e-04
sample5 -0.0157330047 3.231033e-03
sample6 -0.0945794025 3.120720e-02
sample7 -0.0854427118 -1.052880e-02
sample8 -0.1376625920 4.286608e-02
sample9 -0.0377115311 -1.415134e-02
sample10 0.0035244506 1.280825e-02
sample11 0.0016639987 -1.717895e-02
sample12 -0.0781403168 1.884368e-02
sample13 0.0938400516 2.838858e-02
sample14 -0.0759839772 1.810989e-02
sample15 -0.0068340837 -2.705361e-03
sample16 -0.0590150849 4.757848e-02
sample17 0.1178805097 2.040526e-02
sample18 0.0767858320 1.756604e-02
sample19 0.0157112113 -2.172867e-02
sample20 0.0485318300 -2.327033e-02
sample21 0.0185928176 4.777095e-02
sample22 -0.0191358702 -2.329775e-02
sample23 -0.0672994194 -1.535656e-03
sample24 0.1047476642 5.935707e-02
sample25 0.0329844953 -1.358036e-02
sample26 0.1154952052 1.741529e-02
sample27 0.0133849853 -3.590922e-02
sample28 0.0821554039 2.042376e-02
sample29 -0.0567643690 -2.123848e-02
sample30 0.1016073931 -1.134728e-03
sample31 -0.0880396372 3.670548e-02
sample32 0.0300363338 1.182406e-02
sample33 -0.0467252272 3.739254e-03
sample34 0.0783666394 1.203777e-02
sample35 0.0424227097 -1.118559e-02
sample36 -0.1107646166 -1.143464e-02
sample37 -0.0191667664 -2.246060e-02
sample38 0.0155968095 -2.909621e-02
sample39 0.0746847148 7.148218e-03
sample40 -0.0517028178 -2.137267e-02
sample41 0.0234979494 -3.723018e-02
sample42 0.0388797356 -8.557228e-03
sample43 0.0149555568 7.210002e-03
sample44 -0.1150305613 3.461805e-02
sample45 0.0846146236 3.486020e-02
sample46 0.0884426404 -3.246853e-02
sample47 0.0748644971 -8.083045e-03
sample48 -0.0012033198 -9.403647e-03
sample49 -0.0872662737 3.616245e-02
sample50 0.0066941314 -5.284863e-02
sample51 -0.0411777630 3.791830e-02
sample52 -0.0379355780 2.180834e-02
sample53 -0.0851639886 4.751761e-02
sample54 0.0288006248 7.184424e-03
sample55 -0.0164920835 5.919925e-05
sample56 0.0355115616 1.951043e-02
sample57 -0.0141146068 3.492409e-02
sample58 -0.0015636132 9.862883e-03
sample59 -0.0390656483 3.590929e-03
sample60 -0.0139454780 3.963030e-03
sample61 -0.0106410274 1.919705e-02
sample62 0.0236748439 -5.922677e-03
sample63 -0.0846790877 3.839102e-02
sample64 -0.1202581015 2.846469e-02
sample65 0.0050548584 6.328644e-03
sample66 0.0028013072 1.291807e-02
sample67 -0.1231623009 -2.112565e-02
sample68 -0.0437782161 -2.845072e-02
sample69 -0.0501199692 2.053469e-03
sample70 -0.0140278645 -2.027157e-02
sample71 0.0057489505 -4.085977e-02
sample72 0.0511212704 -5.522408e-03
sample73 0.0828141409 7.431582e-03
sample74 -0.0085959456 1.772951e-02
sample75 -0.0312180394 -6.636869e-03
sample76 -0.0519051781 -1.640191e-02
sample77 -0.0925924762 -6.907800e-03
sample78 0.1163971046 2.251122e-02
sample79 -0.0240906926 -4.887766e-02
sample80 -0.0221327065 -6.730703e-03
sample81 -0.0072114968 -2.254399e-02
sample82 0.1204416674 -9.907422e-03
sample83 0.0386739485 -1.171663e-03
sample84 0.0195988488 -1.033806e-02
sample85 -0.0877680171 -1.725057e-03
sample86 0.1023541048 -1.062501e-02
sample87 0.0425213089 -1.356865e-02
sample88 0.0244788514 1.180820e-02
sample89 0.0804276691 2.188588e-02
sample90 -0.0074639871 -6.140721e-03
sample91 -0.1278832404 -6.485140e-02
sample92 -0.0162199697 -5.048358e-02
sample93 0.0769344893 -3.045135e-03
sample94 -0.0104345587 -3.593172e-03
sample95 -0.0260058453 -2.330475e-02
sample96 -0.0025018700 -1.433516e-02
sample97 -0.0492358305 7.774183e-03
sample98 0.0279220220 -3.862141e-03
sample99 0.0813921923 3.487339e-02
sample100 -0.0428797405 7.112807e-03
sample101 0.0032855240 -4.940743e-02
sample102 0.0038439317 2.938008e-03
sample103 0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105 0.0314853405 -4.656633e-03
sample106 0.0726456731 1.192390e-02
sample107 0.0807342975 7.508627e-03
sample108 0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110 0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112 0.0599954082 8.820317e-03
sample113 -0.0195006577 1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131 6.937326e-03
sample121 0.0613899126 2.915307e-02
sample122 0.0218424338 2.241775e-02
sample123 0.0809008460 -1.051759e-02
sample124 -0.0472109313 1.239887e-02
sample125 0.0583180947 2.521167e-03
sample126 -0.0753941872 2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128 0.1000212216 2.908091e-02
sample129 0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877 4.091672e-03
sample132 -0.0566219024 2.179861e-02
sample133 0.0384172955 -1.372840e-02
sample134 -0.1280862736 2.077912e-02
sample135 0.0592633273 6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861 6.729304e-03
sample140 0.0468926306 -1.285498e-02
sample141 -0.0186248693 1.605439e-02
sample142 0.0328031246 9.887746e-03
sample143 0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310 3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147 0.0765025670 -7.714769e-03
sample148 -0.0276016641 2.420589e-02
sample149 0.0027545308 -4.653007e-02
sample150 -0.0792296010 1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152 0.0409796547 -1.907063e-02
sample153 0.0734301757 5.528780e-02
sample154 0.0557740684 -2.487723e-02
sample155 0.0689436560 -6.127635e-03
sample156 0.0212272938 -9.747423e-03
sample157 0.0911931194 6.355708e-03
sample158 0.0220840645 -3.016357e-03
sample159 -0.0513244242 1.304175e-02
sample160 0.0246213576 1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162 0.1078802043 4.337260e-02
sample163 -0.1017965082 5.047171e-02
sample164 0.0119430799 9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180 1.899222e-02
sample167 -0.0872832229 1.516582e-04
sample168 0.0540714512 1.397701e-02
sample169 0.0328432652 7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
[,1] [,2]
sample1 0.0133684846 2.195848e-02
sample2 0.0254157197 -1.058416e-02
sample3 -0.0049551479 -4.840017e-03
sample4 0.0310390570 -1.063929e-02
sample5 0.0046941318 -6.488426e-03
sample6 -0.0107406753 -1.026702e-02
sample7 -0.0225157631 2.624712e-04
sample8 0.0141320952 -9.505821e-03
sample9 0.0029681280 2.078210e-02
sample10 0.0131729174 -2.275042e-03
sample11 -0.0004164298 1.994019e-02
sample12 -0.0095211620 3.759883e-02
sample13 0.0091018604 -7.953956e-03
sample14 -0.0106557524 -9.181659e-03
sample15 -0.0249924121 3.262724e-02
sample16 -0.0156216400 1.375700e-02
sample17 -0.0019382446 1.073994e-03
sample18 -0.0221072481 -8.703592e-03
sample19 0.0146917619 -1.311712e-02
sample20 -0.0160353760 1.826290e-02
sample21 0.0035947899 -9.616341e-03
sample22 -0.0225060762 -2.532589e-03
sample23 0.0310000683 3.033060e-03
sample24 0.0499544372 1.809450e-02
sample25 0.0284442301 -1.932558e-02
sample26 0.0188220043 2.146985e-02
sample27 -0.0257763219 -1.999228e-03
sample28 0.0120888648 1.125834e-02
sample29 -0.0236482520 4.426726e-02
sample30 -0.0385486305 -2.055935e-02
sample31 -0.0181539336 -5.877838e-03
sample32 -0.0302630460 -2.607192e-03
sample33 -0.0319565715 -1.562628e-02
sample34 -0.0197970124 9.906813e-03
sample35 -0.0247412713 -5.434440e-03
sample36 -0.0386259060 -3.190394e-02
sample37 -0.0566199273 -4.192574e-02
sample38 -0.0142060273 2.259644e-02
sample39 0.0053589035 1.076485e-02
sample40 -0.0552546493 -3.819896e-02
sample41 -0.0013089975 9.278818e-05
sample42 0.0137252142 -1.664652e-02
sample43 -0.0151259626 -6.290953e-03
sample44 0.0617391754 -1.442883e-02
sample45 0.0231410886 1.163143e-03
sample46 -0.0148898209 -1.384176e-04
sample47 -0.0187252536 1.221690e-02
sample48 0.0432839432 1.416671e-02
sample49 0.0160818605 -3.588745e-02
sample50 0.0059333545 4.067003e-02
sample51 -0.0142914866 7.776270e-03
sample52 -0.0086339952 7.208917e-03
sample53 -0.0207386980 6.272432e-03
sample54 -0.0039856719 -1.316934e-02
sample55 -0.0056217017 5.692315e-03
sample56 0.0000123292 8.978290e-04
sample57 -0.0095805555 1.324253e-02
sample58 -0.0124160295 -7.326376e-03
sample59 -0.0400195442 -1.349736e-02
sample60 -0.0460063358 2.770091e-02
sample61 -0.0245266456 1.470710e-02
sample62 -0.0366022783 -3.437352e-03
sample63 0.0013742171 3.288796e-02
sample64 -0.0070599859 2.739588e-02
sample65 0.0041201911 1.498268e-02
sample66 0.0143173351 -1.968812e-02
sample67 -0.0467477531 -1.929938e-02
sample68 -0.0306751978 -1.436184e-02
sample69 -0.0125317217 4.130407e-03
sample70 -0.0068071487 8.080857e-03
sample71 0.0169170264 -7.027348e-03
sample72 -0.0346909749 -1.333770e-02
sample73 -0.0280506153 1.493843e-02
sample74 -0.0182611498 3.294697e-03
sample75 -0.0120563964 8.974612e-03
sample76 0.0001437236 -4.253184e-02
sample77 0.0065330299 -5.252886e-02
sample78 0.0288278141 -1.127782e-02
sample79 0.0503961481 -1.023318e-02
sample80 -0.0207693429 3.648391e-02
sample81 0.0163562768 -9.074596e-03
sample82 -0.0084317129 -1.478976e-02
sample83 -0.0474097918 -1.103126e-02
sample84 0.0177181395 -7.191197e-03
sample85 -0.0342718548 -3.082360e-02
sample86 -0.0261671791 -1.089491e-02
sample87 -0.0009486358 -2.411514e-02
sample88 0.0020528931 -2.894615e-02
sample89 -0.0189361111 -2.638639e-03
sample90 -0.0009863658 -2.390075e-02
sample91 -0.0124352695 8.153234e-02
sample92 0.0564264106 -8.909537e-03
sample93 -0.0081461774 1.570851e-02
sample94 -0.0054896581 1.547251e-02
sample95 0.0224073150 -4.374348e-04
sample96 0.0173528924 -3.050441e-03
sample97 0.0067948115 5.008237e-03
sample98 -0.0116030825 1.498764e-02
sample99 0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101 0.0124923691 3.091503e-02
sample102 0.0650835386 -1.367400e-02
sample103 -0.0042741828 7.855985e-03
sample104 0.0250591040 -4.171938e-03
sample105 0.0157516368 -3.121990e-02
sample106 0.0060593853 -5.101693e-03
sample107 -0.0098329626 1.044506e-02
sample108 0.0044269853 4.142036e-03
sample109 0.0572473486 1.517542e-02
sample110 0.0090474827 -5.119868e-03
sample111 0.0444263015 7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113 0.0241047399 6.706740e-03
sample114 0.0074558775 -4.728652e-03
sample115 0.0611851433 1.117210e-02
sample116 0.0432646951 -1.380556e-02
sample117 0.0516750066 -3.575617e-02
sample118 0.0139942100 -3.279138e-03
sample119 0.0291722987 5.587946e-02
sample120 0.0103515853 -1.690016e-03
sample121 -0.0091396331 3.552116e-02
sample122 0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124 0.0283466326 3.127845e-03
sample125 0.0016472378 -2.770692e-02
sample126 -0.0286529417 3.489336e-02
sample127 -0.0010224500 7.483214e-03
sample128 0.0209049296 2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968 4.637390e-03
sample132 0.0198526786 5.723983e-04
sample133 0.0088812957 -9.988115e-03
sample134 -0.0137484514 1.172591e-02
sample135 -0.0220314568 1.347465e-02
sample136 -0.0185173353 5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138 0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762 2.456863e-02
sample141 0.0058369763 -1.420854e-02
sample142 0.0207886071 -1.188764e-02
sample143 0.0092832598 -1.324238e-02
sample144 0.0028442140 3.627979e-03
sample145 0.0199749569 2.862202e-03
sample146 -0.0182236697 1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148 0.0065435868 -1.572917e-02
sample149 0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151 0.0245166984 -6.888241e-03
sample152 0.0107259913 3.314630e-02
sample153 0.0550963965 3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574 2.642246e-03
sample156 -0.0117803505 2.698265e-02
sample157 -0.0096167165 1.433840e-02
sample158 -0.0101754772 9.137620e-03
sample159 0.0120662931 -2.565236e-02
sample160 -0.0132238202 2.916023e-03
sample161 0.0274491966 -1.748284e-02
sample162 0.0012482909 3.152261e-02
sample163 0.0042031315 1.830701e-02
sample164 0.0174896157 -1.175915e-02
sample165 0.0097517662 -6.119019e-03
sample166 0.0190134679 -1.121582e-02
sample167 -0.0044140836 4.665585e-03
sample168 0.0049689168 -1.941822e-02
sample169 -0.0209802098 3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
[,1] [,2]
sample1 -0.0515543627 -0.0305856787
sample2 -0.0144993256 0.0236342950
sample3 -0.0371833108 -0.0140263348
sample4 0.0068945388 -0.0132539692
sample5 0.0215035333 -0.0663338101
sample6 -0.0187055152 0.0088773016
sample7 -0.0061521552 0.0064029054
sample8 -0.0210874459 0.0334652901
sample9 0.0516865043 -0.0291142799
sample10 0.0059440366 -0.0527217447
sample11 0.0393010793 -0.0200624712
sample12 -0.0420837100 0.0131331362
sample13 0.0333252565 0.0818552509
sample14 -0.0190062644 0.0160202175
sample15 -0.0030968049 -0.0189230681
sample16 -0.0004452158 0.0018880102
sample17 -0.0185848615 0.0240170131
sample18 -0.0273093598 0.0230213640
sample19 -0.0217761111 -0.0445894441
sample20 0.0245820821 0.0159812738
sample21 0.0034527644 -0.0400016054
sample22 -0.0340789054 0.0039289109
sample23 -0.0010344929 -0.0310161212
sample24 0.0289468503 0.0760962436
sample25 -0.0119098496 -0.0122798760
sample26 -0.0181001057 0.0517892852
sample27 0.0050465417 -0.0086515844
sample28 0.0057491502 0.0358830107
sample29 -0.0051104246 0.0116605117
sample30 -0.0103085904 0.0039678538
sample31 -0.0319929858 0.0090606113
sample32 -0.0036232521 -0.0328202010
sample33 -0.0534742153 0.0024751837
sample34 -0.0067495749 -0.0111000311
sample35 0.0378745721 0.0465929296
sample36 0.0647886800 0.0359987924
sample37 0.0488441236 0.0492906912
sample38 -0.0251514062 0.0197110110
sample39 -0.0085428066 -0.0105117852
sample40 0.0379324087 0.0440810741
sample41 -0.0044199152 -0.0128820644
sample42 -0.0292553573 -0.0067045265
sample43 -0.0077829155 -0.0510178219
sample44 0.0045122248 0.0479660309
sample45 -0.0074444298 -0.0051116726
sample46 -0.0088025512 0.0196186661
sample47 0.0076696301 0.0215947965
sample48 0.0290108585 -0.0175568376
sample49 -0.0141754858 0.0184717099
sample50 0.0006282201 -0.0233054373
sample51 0.0441995177 -0.0410022921
sample52 0.0715329391 -0.0399499475
sample53 -0.0095954087 -0.0029140909
sample54 0.0048933768 -0.0281884386
sample55 0.0327325487 -0.0532290012
sample56 0.0323068984 -0.0256595538
sample57 0.0806603122 -0.0286748097
sample58 -0.0064792049 -0.0006945349
sample59 0.0088958941 0.0067389649
sample60 0.0874124612 0.0431964341
sample61 0.0577604571 -0.0326112099
sample62 -0.0313318464 0.0224391756
sample63 -0.0233625220 0.0125110562
sample64 -0.0086426068 0.0148770341
sample65 0.0025256193 -0.0404466327
sample66 0.0006014071 -0.0471576264
sample67 0.0706087042 0.0516228406
sample68 0.0082301011 0.0033109509
sample69 -0.0475076743 0.0001452708
sample70 -0.0600773716 0.0089986962
sample71 -0.0096321627 -0.0050761187
sample72 -0.0031773546 -0.0166221542
sample73 -0.0113700517 -0.0191726684
sample74 -0.0014179662 -0.0608101325
sample75 0.0041911740 -0.0399981269
sample76 -0.0055326449 0.0353114263
sample77 -0.0260214459 0.0305731380
sample78 -0.0119267436 0.0632236007
sample79 0.0186017239 0.0027402910
sample80 0.0241047889 -0.0472697181
sample81 -0.0220288317 -0.0079577210
sample82 -0.0180751258 0.0639051029
sample83 -0.0256671713 -0.0125898269
sample84 0.0161392598 -0.0567222449
sample85 0.0139988188 0.0322763454
sample86 -0.0198382995 0.0389225776
sample87 0.0266270281 -0.0032979996
sample88 0.0515677078 0.0117902495
sample89 0.0014022125 -0.0140510488
sample90 -0.0375949749 0.0044004551
sample91 0.0310397965 0.0440610926
sample92 0.0270570567 0.0324380452
sample93 -0.0215009202 0.0063993941
sample94 -0.0415702912 -0.0037692077
sample95 -0.0168416047 0.0010019120
sample96 -0.0285582661 -0.0187991000
sample97 -0.0490843868 -0.0266760748
sample98 -0.0171579033 -0.0112897471
sample99 -0.0271316525 0.0232395583
sample100 -0.0301789816 0.0305498693
sample101 -0.0264371151 0.0170723968
sample102 0.0012767734 -0.0248949597
sample103 0.0055214687 -0.0030040587
sample104 0.0251346074 -0.0165212671
sample105 0.0062424215 -0.0400309901
sample106 0.0069768684 0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679 0.0023637162
sample109 -0.0014762845 0.0165583675
sample110 0.0036971063 0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112 0.0046098120 -0.0048009350
sample113 0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453 0.0135805368
sample116 0.0183575759 0.0665377581
sample117 0.0227640036 -0.0012287760
sample118 0.0015695248 0.0472617382
sample119 0.0190084932 0.0590034062
sample120 -0.0449645755 0.0072755697
sample121 0.0077307184 0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123 0.0016959300 0.0028593594
sample124 -0.0365091615 0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408 0.0019165544
sample127 -0.0494064872 0.0088209044
sample128 -0.0155454766 0.0186819802
sample129 -0.0184340400 0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422 0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133 0.0204029276 -0.0282209049
sample134 0.0175513332 0.0262883962
sample135 0.0029009925 0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323 0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139 0.0073103935 0.0308956174
sample140 0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142 0.0268670676 -0.0239229634
sample143 0.0421049126 -0.0110888235
sample144 0.0017253664 -0.0341766012
sample145 0.0681741320 -0.0073526377
sample146 -0.0239965222 0.0118396767
sample147 -0.0063453522 0.0183130585
sample148 0.0230825251 -0.0379753037
sample149 0.0223298673 0.0188909118
sample150 0.0055709108 0.0174179009
sample151 0.0039177786 -0.0233533275
sample152 0.0134325667 0.0302344591
sample153 0.0511990309 0.0730230140
sample154 0.0006698324 0.0154177486
sample155 0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599 0.0154934573
sample158 0.0201775524 -0.0332982124
sample159 -0.0086909001 0.0073496711
sample160 0.0295437331 -0.0555734536
sample161 0.0332754288 0.0033779619
sample162 0.0121954537 0.0433540412
sample163 -0.0173490933 0.0227219128
sample164 0.0143374783 -0.0453542590
sample165 0.0343612593 -0.0511194536
sample166 -0.0157536004 0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919 0.0060747155
sample169 0.0116231468 -0.0015112800
>
> ## 3.3 Plotting VAF
>
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
>
> # JIVE plotVAF
> plotVAF(jiveRes)
>
>
> #########################
> ## PART 4. Plot Results
>
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
>
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Combined plot for loadings from common and distinctive part (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
>
> proc.time()
user system elapsed
4.769 0.170 4.978
STATegRa.Rcheck/STATegRa-Ex.timings
| name | user | system | elapsed | |
| STATegRaUsersGuide | 0 | 0 | 0 | |
| STATegRa_data | 0.108 | 0.004 | 0.112 | |
| STATegRa_data_TCGA_BRCA | 0.001 | 0.000 | 0.001 | |
| bioDist | 0.215 | 0.009 | 0.225 | |
| bioDistFeature | 0.130 | 0.012 | 0.142 | |
| bioDistFeaturePlot | 0.123 | 0.007 | 0.133 | |
| bioDistW | 0.132 | 0.009 | 0.142 | |
| bioDistWPlot | 0.129 | 0.007 | 0.139 | |
| bioMap | 0.002 | 0.001 | 0.002 | |
| combiningMappings | 0.003 | 0.001 | 0.003 | |
| createOmicsExpressionSet | 0.060 | 0.001 | 0.061 | |
| getInitialData | 0.277 | 0.070 | 0.350 | |
| getLoadings | 0.286 | 0.073 | 0.360 | |
| getMethodInfo | 0.326 | 0.063 | 0.389 | |
| getPreprocessing | 0.332 | 0.241 | 0.590 | |
| getScores | 0.347 | 0.062 | 0.417 | |
| getVAF | 0.280 | 0.053 | 0.334 | |
| holistOmics | 0.000 | 0.001 | 0.001 | |
| modelSelection | 0.532 | 0.517 | 1.057 | |
| omicsCompAnalysis | 2.024 | 0.116 | 2.148 | |
| omicsNPC | 0.001 | 0.001 | 0.001 | |
| plotRes | 2.144 | 0.147 | 2.312 | |
| plotVAF | 1.966 | 0.154 | 2.149 | |