| Back to Multiple platform build/check report for BioC 3.23: simplified long |
|
This page was generated on 2025-12-04 11:35 -0500 (Thu, 04 Dec 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" | 4869 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" | 4576 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 97/2331 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| aroma.light 3.41.0 (landing page) Henrik Bengtsson
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the aroma.light package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/aroma.light.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: aroma.light |
| Version: 3.41.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:aroma.light.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings aroma.light_3.41.0.tar.gz |
| StartedAt: 2025-12-03 18:47:29 -0500 (Wed, 03 Dec 2025) |
| EndedAt: 2025-12-03 18:49:42 -0500 (Wed, 03 Dec 2025) |
| EllapsedTime: 133.4 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: aroma.light.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:aroma.light.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings aroma.light_3.41.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/aroma.light.Rcheck’
* using R Under development (unstable) (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 16.0.0 (clang-1600.0.26.6)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘aroma.light/DESCRIPTION’ ... OK
* this is package ‘aroma.light’ version ‘3.41.0’
* package encoding: latin1
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... NOTE
Found the following hidden files and directories:
inst/rsp/.rspPlugins
These were most likely included in error. See section ‘Package
structure’ in the ‘Writing R Extensions’ manual.
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘aroma.light’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking examples ... OK
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘backtransformAffine.matrix.R’
Running ‘backtransformPrincipalCurve.matrix.R’
Running ‘callNaiveGenotypes.R’
Running ‘distanceBetweenLines.R’
Running ‘findPeaksAndValleys.R’
Running ‘fitPrincipalCurve.matrix.R’
Running ‘fitXYCurve.matrix.R’
Running ‘iwpca.matrix.R’
Running ‘likelihood.smooth.spline.R’
Running ‘medianPolish.matrix.R’
Running ‘normalizeAffine.matrix.R’
Running ‘normalizeAverage.list.R’
Running ‘normalizeAverage.matrix.R’
Running ‘normalizeCurveFit.matrix.R’
Running ‘normalizeDifferencesToAverage.R’
Running ‘normalizeFragmentLength-ex1.R’
Running ‘normalizeFragmentLength-ex2.R’
Running ‘normalizeQuantileRank.list.R’
Running ‘normalizeQuantileRank.matrix.R’
Running ‘normalizeQuantileSpline.matrix.R’
Running ‘normalizeTumorBoost,flavors.R’
Running ‘normalizeTumorBoost.R’
Running ‘robustSmoothSpline.R’
Running ‘rowAverages.matrix.R’
Running ‘sampleCorrelations.matrix.R’
Running ‘sampleTuples.R’
Running ‘wpca.matrix.R’
Running ‘wpca2.matrix.R’
OK
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
‘/Users/biocbuild/bbs-3.23-bioc/meat/aroma.light.Rcheck/00check.log’
for details.
aroma.light.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL aroma.light ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’ * installing *source* package ‘aroma.light’ ... ** this is package ‘aroma.light’ version ‘3.41.0’ ** using staged installation ** R ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (aroma.light)
aroma.light.Rcheck/tests/backtransformAffine.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> X <- matrix(1:8, nrow=4, ncol=2)
> X[2,2] <- NA_integer_
>
> print(X)
[,1] [,2]
[1,] 1 5
[2,] 2 NA
[3,] 3 7
[4,] 4 8
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=c(1,5)))
[,1] [,2]
[1,] 0 0
[2,] 1 NA
[3,] 2 2
[4,] 3 3
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, b=c(1,1/2)))
[,1] [,2]
[1,] 1 10
[2,] 2 NA
[3,] 3 14
[4,] 4 16
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:4,ncol=1)))
[,1] [,2]
[1,] 0 4
[2,] 0 NA
[3,] 0 4
[4,] 0 4
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:3,ncol=1)))
[,1] [,2]
[1,] 0 4
[2,] 0 NA
[3,] 0 4
[4,] 3 7
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:2,ncol=1), b=c(1,2)))
[,1] [,2]
[1,] 0 2
[2,] 0 NA
[3,] 2 3
[4,] 2 3
>
> # Returns a 4x1 matrix
> print(backtransformAffine(X, b=c(1,1/2), project=TRUE))
[,1]
[1,] 2.8
[2,] 1.6
[3,] 5.2
[4,] 6.4
>
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> Y <- backtransformAffine(X, b=c(1,1,1), project=TRUE)
> print(X)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
[4,] 4 4 4
> print(Y)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
>
>
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> X[,2] <- X[,2]*2; X[,3] <- X[,3]*3
> print(X)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9
[4,] 4 8 12
> Y <- backtransformAffine(X, b=c(1,2,3))
> print(Y)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
[4,] 4 4 4
> Y <- backtransformAffine(X, b=c(1,2,3), project=TRUE)
> print(Y)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
>
> proc.time()
user system elapsed
0.098 0.025 0.120
aroma.light.Rcheck/tests/backtransformPrincipalCurve.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # Consider the case where K=4 measurements have been done
> # for the same underlying signals 'x'. The different measurements
> # have different systematic variation
> #
> # y_k = f(x_k) + eps_k; k = 1,...,K.
> #
> # In this example, we assume non-linear measurement functions
> #
> # f(x) = a + b*x + x^c + eps(b*x)
> #
> # where 'a' is an offset, 'b' a scale factor, and 'c' an exponential.
> # We also assume heteroscedastic zero-mean noise with standard
> # deviation proportional to the rescaled underlying signal 'x'.
> #
> # Furthermore, we assume that measurements k=2 and k=3 undergo the
> # same transformation, which may illustrate that the come from
> # the same batch. However, when *fitting* the model below we
> # will assume they are independent.
>
> # Transforms
> a <- c(2, 15, 15, 3)
> b <- c(2, 3, 3, 4)
> c <- c(1, 2, 2, 1/2)
> K <- length(a)
>
> # The true signal
> N <- 1000
> x <- rexp(N)
>
> # The noise
> bX <- outer(b,x)
> E <- apply(bX, MARGIN=2, FUN=function(x) rnorm(K, mean=0, sd=0.1*x))
>
> # The transformed signals with noise
> Xc <- t(sapply(c, FUN=function(c) x^c))
> Y <- a + bX + Xc + E
> Y <- t(Y)
>
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve through Y = (y_1, y_2, ..., y_K)
> fit <- fitPrincipalCurve(Y)
>
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, Y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+ fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
>
> L <- ncol(fit$s)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform data according to model fit
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform toward the principal curve (the "common scale")
> YN1 <- backtransformPrincipalCurve(Y, fit=fit)
> stopifnot(ncol(YN1) == K)
>
>
> # Backtransform toward the first dimension
> YN2 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=1)
> stopifnot(ncol(YN2) == K)
>
>
> # Backtransform toward the last (fitted) dimension
> YN3 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=L)
> stopifnot(ncol(YN3) == K)
>
>
> # Backtransform toward the third dimension (dimension by dimension)
> # Note, this assumes that K == L.
> YN4 <- Y
> for (cc in 1:L) {
+ YN4[,cc] <- backtransformPrincipalCurve(Y, fit=fit,
+ targetDimension=1, dimensions=cc)
+ }
> stopifnot(identical(YN4, YN2))
>
>
> # Backtransform a subset toward the first dimension
> # Note, this assumes that K == L.
> YN5 <- backtransformPrincipalCurve(Y, fit=fit,
+ targetDimension=1, dimensions=2:3)
> stopifnot(identical(YN5, YN2[,2:3]))
> stopifnot(ncol(YN5) == 2)
>
>
> # Extract signals from measurement #2 and backtransform according
> # its model fit. Signals are standardized to target dimension 1.
> y6 <- Y[,2,drop=FALSE]
> yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2,
+ targetDimension=1)
> stopifnot(identical(yN6, YN2[,2,drop=FALSE]))
> stopifnot(ncol(yN6) == 1)
>
>
> # Extract signals from measurement #2 and backtransform according
> # the the model fit of measurement #3 (because we believe these
> # two have undergone very similar transformations.
> # Signals are standardized to target dimension 1.
> y7 <- Y[,2,drop=FALSE]
> yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3,
+ targetDimension=1)
> stopifnot(ncol(yN7) == 1)
>
> rho <- cor(yN7, yN6)
> print(rho)
[,1]
[1,] 0.9999825
> stopifnot(rho > 0.999)
>
> proc.time()
user system elapsed
0.332 0.036 0.366
aroma.light.Rcheck/tests/callNaiveGenotypes.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A bimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.1)
> xBB <- rnorm(n=10000, mean=1, sd=0.1)
> x <- c(xAA,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.006635626 1.7153034431
2 valley 0.488455272 0.0006392074
3 peak 0.991867026 1.6930909156
> calls <- callNaiveGenotypes(x, cn=rep(1,length(x)), verbose=-20)
Calling genotypes from allele B fractions (BAFs)...
Fitting naive genotype model...
Fitting naive genotype model from normal allele B fractions (BAFs)...
Flavor: density
Censoring BAFs...
Before:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.3365209 -0.0007213 0.5524632 0.4992234 0.9985688 1.4091213
[1] 20000
After:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-Inf -0.0007213 0.5524632 0.9985688 Inf
[1] 16873
Censoring BAFs...done
Copy number level #1 (C=1) of 1...
Identified extreme points in density of BAF:
type x density
1 peak 0.01092288 1.650115837
2 valley 0.49140786 0.004221333
3 peak 0.97875691 1.640730708
Local minimas ("valleys") in BAF:
type x density
2 valley 0.4914079 0.004221333
Copy number level #1 (C=1) of 1...done
Fitting naive genotype model from normal allele B fractions (BAFs)...done
[[1]]
[[1]]$flavor
[1] "density"
[[1]]$cn
[1] 1
[[1]]$nbrOfGenotypeGroups
[1] 2
[[1]]$tau
[1] 0.4914079
[[1]]$n
[1] 16873
[[1]]$fit
type x density
1 peak 0.01092288 1.650115837
2 valley 0.49140786 0.004221333
3 peak 0.97875691 1.640730708
[[1]]$fitValleys
type x density
2 valley 0.4914079 0.004221333
attr(,"class")
[1] "NaiveGenotypeModelFit" "list"
Fitting naive genotype model...done
Copy number level #1 (C=1) of 1...
Model fit:
$flavor
[1] "density"
$cn
[1] 1
$nbrOfGenotypeGroups
[1] 2
$tau
[1] 0.4914079
$n
[1] 16873
$fit
type x density
1 peak 0.01092288 1.650115837
2 valley 0.49140786 0.004221333
3 peak 0.97875691 1.640730708
$fitValleys
type x density
2 valley 0.4914079 0.004221333
Genotype threshholds [1]: 0.491407858003178
TCN=1 => BAF in {0,1}.
Call regions: A = (-Inf,0.491], B = (0.491,+Inf)
Copy number level #1 (C=1) of 1...done
Calling genotypes from allele B fractions (BAFs)...done
> xc <- split(x, calls)
> print(table(calls))
calls
0 1
10000 10000
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,BB)")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with missing values
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAB <- rnorm(n=10000, mean=1/2, sd=0.1)
> x <- c(xAA,xAB,xBB)
> x[sample(length(x), size=0.05*length(x))] <- NA_real_
> x[sample(length(x), size=0.01*length(x))] <- -Inf
> x[sample(length(x), size=0.01*length(x))] <- +Inf
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.004366865 1.1992637
2 valley 0.243023227 0.1785679
3 peak 0.494403482 1.1682453
4 valley 0.749773900 0.1900673
5 peak 0.993173829 1.1830474
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
0 0.5 1
9588 9295 9650
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,AB,BB)")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.02)
> xAB <- rnorm(n=10000, mean=1/2, sd=0.02)
> xBB <- rnorm(n=10000, mean=1, sd=0.02)
> x <- c(xAA,xAB,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.001984823 2.606821e+00
2 valley 0.247998356 3.116209e-05
3 peak 0.497981535 2.608298e+00
4 valley 0.747964714 3.168573e-05
5 peak 0.997947894 2.606052e+00
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
0 0.5 1
10000 10000 10000
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA',AB',BB')")
> abline(v=fit$x)
>
> proc.time()
user system elapsed
0.198 0.031 0.228
aroma.light.Rcheck/tests/distanceBetweenLines.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ layout(matrix(1:4, nrow=2, ncol=2, byrow=TRUE))
+
+ ############################################################
+ # Lines in two-dimensions
+ ############################################################
+ x <- list(a=c(1,0), b=c(1,2))
+ y <- list(a=c(0,2), b=c(1,1))
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+
+ xlim <- ylim <- c(-1,8)
+ plot(NA, xlab="", ylab="", xlim=ylim, ylim=ylim)
+
+ # Highlight the offset coordinates for both lines
+ points(t(x$a), pch="+", col="red")
+ text(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points(t(y$a), pch="+", col="blue")
+ text(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+
+ v <- c(-1,1)*10
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v)
+
+ lines(xv, col="red")
+ lines(yv, col="blue")
+
+ points(t(fit$xs), cex=2.0, col="red")
+ text(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points(t(fit$yt), cex=1.5, col="blue")
+ text(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+ print(fit)
+
+
+ ############################################################
+ # Lines in three-dimensions
+ ############################################################
+ x <- list(a=c(0,0,0), b=c(1,1,1)) # The 'diagonal'
+ y <- list(a=c(2,1,2), b=c(2,1,3)) # A 'fitted' line
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+
+ xlim <- ylim <- zlim <- c(-1,3)
+ dummy <- t(c(1,1,1))*100
+
+ # Coordinates for the lines in 3d
+ v <- seq(-10,10, by=1)
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v, z=x$a[3]+x$b[3]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v, z=y$a[3]+y$b[3]*v)
+
+ for (theta in seq(30,140,length.out=3)) {
+ plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="",
+ xlim=ylim, ylim=ylim, zlim=zlim)
+
+ # Highlight the offset coordinates for both lines
+ points3d(t(x$a), pch="+", col="red")
+ text3d(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points3d(t(y$a), pch="+", col="blue")
+ text3d(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+
+ # Draw the lines
+ lines3d(xv, col="red")
+ lines3d(yv, col="blue")
+
+ # Draw the two points that are closest to each other
+ points3d(t(fit$xs), cex=2.0, col="red")
+ text3d(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points3d(t(fit$yt), cex=1.5, col="blue")
+ text3d(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+
+ # Draw the distance between the two points
+ lines3d(rbind(fit$xs,fit$yt), col="purple", lwd=2)
+ }
+
+ print(fit)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.138 0.026 0.161
aroma.light.Rcheck/tests/findPeaksAndValleys.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A unimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1 <- rnorm(n=10000, mean=0, sd=1)
> x <- x1
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak 0.0309368 3.884775e-01
2 valley 3.7927968 6.859575e-05
3 peak 4.0720615 2.776735e-04
> plot(density(x), lwd=2, main="x1")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x2 <- rnorm(n=10000, mean=4, sd=1)
> x3 <- rnorm(n=10000, mean=8, sd=1)
> x <- c(x1,x2,x3)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak 0.002992089 0.12285082
2 valley 1.985989256 0.04379679
3 peak 3.934196999 0.12333852
4 valley 5.986773013 0.04379882
5 peak 7.934980756 0.12326181
> plot(density(x), lwd=2, main="c(x1,x2,x3)")
> abline(v=fit$x)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1b <- rnorm(n=10000, mean=0, sd=0.1)
> x2b <- rnorm(n=10000, mean=4, sd=0.1)
> x3b <- rnorm(n=10000, mean=8, sd=0.1)
> x <- c(x1b,x2b,x3b)
>
> # Illustrating explicit usage of density()
> d <- density(x)
> fit <- findPeaksAndValleys(d, tol=0)
> print(fit)
type x density
1 peak -0.01802612 3.424783e-01
2 valley 1.97936212 1.175452e-06
3 peak 3.97675035 3.426132e-01
4 valley 5.97413859 1.201163e-06
5 peak 7.97152682 3.422044e-01
> plot(d, lwd=2, main="c(x1b,x2b,x3b)")
> abline(v=fit$x)
>
> proc.time()
user system elapsed
0.132 0.031 0.162
aroma.light.Rcheck/tests/fitPrincipalCurve.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> J <- 1000
> x <- rexp(J)
> a <- c(2,15,3)
> b <- c(2,3,4)
> c <- c(1,2,1/2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1*x))
> y <- a + bx + xc + eps
> y <- t(y)
>
> # Fit principal curve through (y_1, y_2, y_3)
> fit <- fitPrincipalCurve(y, verbose=TRUE)
Fitting principal curve...
Data size: 1000x3
Identifying missing values...
Identifying missing values...done
Data size after removing non-finite data points: 1000x3
Calling principal_curve()...
Starting curve---distance^2: 1334033
Iteration 1---distance^2: 356.8215
Iteration 2---distance^2: 356.3028
Iteration 3---distance^2: 356.3024
Converged: TRUE
Number of iterations: 3
Processing time/iteration: 0.1s (0.0s/iteration)
Calling principal_curve()...done
Fitting principal curve...done
>
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+ fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
>
>
> # Backtransform (y_1, y_2, y_3) to be proportional to each other
> yN <- backtransformPrincipalCurve(y, fit=fit)
>
> # Same backtransformation dimension by dimension
> yN2 <- y
> for (cc in 1:ncol(y)) {
+ yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit, dimensions=cc)
+ }
> stopifnot(identical(yN2, yN))
>
>
> xlim <- c(0, 1.04*max(x))
> ylim <- range(c(y,yN), na.rm=TRUE)
>
>
> # Pairwise signals vs x before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (cc in 1:3) {
+ ylab <- substitute(y[c], env=list(c=cc))
+ plot(NA, xlim=xlim, ylim=ylim, xlab="x", ylab=ylab)
+ abline(h=a[cc], lty=3)
+ mtext(side=4, at=a[cc], sprintf("a=%g", a[cc]),
+ cex=0.8, las=2, line=0, adj=1.1, padj=-0.2)
+ points(x, y[,cc])
+ points(x, yN[,cc], col="tomato")
+ legend("topleft", col=c("black", "tomato"), pch=19,
+ c("orignal", "transformed"), bty="n")
+ }
> title(main="Pairwise signals vs x before and after transform", outer=TRUE, line=-2)
>
>
> # Pairwise signals before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (rr in 3:2) {
+ ylab <- substitute(y[c], env=list(c=rr))
+ for (cc in 1:2) {
+ if (cc == rr) {
+ plot.new()
+ next
+ }
+ xlab <- substitute(y[c], env=list(c=cc))
+ plot(NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab)
+ abline(a=0, b=1, lty=2)
+ points(y[,c(cc,rr)])
+ points(yN[,c(cc,rr)], col="tomato")
+ legend("topleft", col=c("black", "tomato"), pch=19,
+ c("orignal", "transformed"), bty="n")
+ }
+ }
> title(main="Pairwise signals before and after transform", outer=TRUE, line=-2)
>
> proc.time()
user system elapsed
0.441 0.041 0.483
aroma.light.Rcheck/tests/fitXYCurve.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> x <- rexp(1000)
> a <- c(2,15)
> b <- c(2,1)
> c <- c(1,2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
> Y <- a + bx + xc + eps
> Y <- t(Y)
>
> lim <- c(0,70)
> plot(Y, xlim=lim, ylim=lim)
>
> # Fit principal curve through a subset of (y_1, y_2)
> subset <- sample(nrow(Y), size=0.3*nrow(Y))
> fit <- fitXYCurve(Y[subset,], bandwidth=0.2)
>
> lines(fit, col="red", lwd=2)
>
> # Backtransform (y_1, y_2) keeping y_1 unchanged
> YN <- backtransformXYCurve(Y, fit=fit)
> points(YN, col="blue")
> abline(a=0, b=1, col="red", lwd=2)
>
> proc.time()
user system elapsed
0.144 0.026 0.169
aroma.light.Rcheck/tests/iwpca.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,4)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+
+ # Add some outliers by permuting the dimensions for 1/10 of the observations
+ idx <- sample(1:nrow(y), size=1/10*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+
+ # Plot the data with fitted lines at four different view points
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ N <- 4
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ theta <- seq(0,270,length.out=N)
+ phi <- rep(20, length.out=N)
+ xlim <- ylim <- zlim <- c(0,45)
+ persp <- list()
+ for (kk in seq_along(theta)) {
+ # Plot the data
+ persp[[kk]] <- plot3d(y, theta=theta[kk], phi=phi[kk], xlim=xlim, ylim=ylim, zlim=zlim)
+ }
+
+ # Weights on the observations
+ # Example a: Equal weights
+ w <- NULL
+ # Example b: More weight on the outliers (uncomment to test)
+ w <- rep(1, length(x)); w[idx] <- 0.8
+
+ # ...and show all iterations too with different colors.
+ maxIter <- c(seq(1,20,length.out=10),Inf)
+ col <- topo.colors(length(maxIter))
+ # Show the fitted value for every iteration
+ for (ii in seq_along(maxIter)) {
+ # Fit a line using IWPCA through data
+ fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE)
+
+ ymid <- fit$xMean
+ d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+ d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+ b <- fit$vt[1,]
+ y0 <- -b * max(abs(d0))
+ y1 <- b * max(abs(d1))
+ yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+ yline <- yline + ymid
+
+ for (kk in seq_along(theta)) {
+ # Set pane to draw in
+ par(mfg=c((kk-1) %/% 2, (kk-1) %% 2) + 1)
+ # Set the viewpoint of the pane
+ options(persp.matrix=persp[[kk]])
+
+ # Get the first principal component
+ points3d(t(ymid), col=col[ii])
+ lines3d(t(yline), col=col[ii])
+
+ # Highlight the last one
+ if (ii == length(maxIter))
+ lines3d(t(yline), col="red", lwd=3)
+ }
+ }
+
+ par(opar)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.136 0.026 0.159
aroma.light.Rcheck/tests/likelihood.smooth.spline.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # Define f(x)
> f <- expression(0.1*x^4 + 1*x^3 + 2*x^2 + x + 10*sin(2*x))
>
> # Simulate data from this function in the range [a,b]
> a <- -2; b <- 5
> x <- seq(a, b, length.out=3000)
> y <- eval(f)
>
> # Add some noise to the data
> y <- y + rnorm(length(y), 0, 10)
>
> # Plot the function and its second derivative
> plot(x,y, type="l", lwd=4)
>
> # Fit a cubic smoothing spline and plot it
> g <- smooth.spline(x,y, df=16)
> lines(g, col="yellow", lwd=2, lty=2)
>
> # Calculating the (log) likelihood of the fitted spline
> l <- likelihood(g)
>
> cat("Log likelihood with unique x values:\n")
Log likelihood with unique x values:
> print(l)
Likelihood of smoothing spline: -297016.8
Log base: 2.718282
Weighted residuals sum of square: 297017
Penalty: -0.1256917
Smoothing parameter lambda: 0.0009257147
Roughness score: 135.778
>
> # Note that this is not the same as the log likelihood of the
> # data on the fitted spline iff the x values are non-unique
> x[1:5] <- x[1] # Non-unique x values
> g <- smooth.spline(x,y, df=16)
> l <- likelihood(g)
>
> cat("\nLog likelihood of the *spline* data set:\n")
Log likelihood of the *spline* data set:
> print(l)
Likelihood of smoothing spline: -296700.7
Log base: 2.718282
Weighted residuals sum of square: 296700.9
Penalty: -0.1251994
Smoothing parameter lambda: 0.0009261969
Roughness score: 135.1758
>
> # In cases with non unique x values one has to proceed as
> # below if one want to get the log likelihood for the original
> # data.
> l <- likelihood(g, x=x, y=y)
> cat("\nLog likelihood of the *original* data set:\n")
Log likelihood of the *original* data set:
> print(l)
Likelihood of smoothing spline: -297014.5
Log base: 2.718282
Weighted residuals sum of square: 297014.6
Penalty: -0.1251996
Smoothing parameter lambda: 0.0009261969
Roughness score: 135.176
>
>
>
>
>
>
> proc.time()
user system elapsed
0.146 0.029 0.172
aroma.light.Rcheck/tests/medianPolish.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # Deaths from sport parachuting; from ABC of EDA, p.224:
> deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE)
> rownames(deaths) <- c("1-24", "25-74", "75-199", "200++", "NA")
> colnames(deaths) <- 1973:1975
>
> print(deaths)
1973 1974 1975
1-24 14 15 14
25-74 7 4 7
75-199 8 2 10
200++ 15 9 10
NA 0 2 0
>
> mp <- medianPolish(deaths)
> mp1 <- medpolish(deaths, trace=FALSE)
> print(mp)
Median Polish Results (Dataset: "deaths")
Overall: 8
Row Effects:
1-24 25-74 75-199 200++ NA
6 -1 0 2 -8
Column Effects:
1973 1974 1975
0 -1 0
Residuals:
1973 1974 1975
1-24 0 2 0
25-74 0 -2 0
75-199 0 -5 2
200++ 5 0 0
NA 0 3 0
>
> ff <- c("overall", "row", "col", "residuals")
> stopifnot(all.equal(mp[ff], mp1[ff]))
>
> # Validate decomposition:
> stopifnot(all.equal(deaths, mp$overall+outer(mp$row,mp$col,"+")+mp$resid))
>
> proc.time()
user system elapsed
0.103 0.026 0.126
aroma.light.Rcheck/tests/normalizeAffine.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
>
> rg <- as.list(rg)
> for (field in c("R", "G"))
+ rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
>
> rgC <- rg
>
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
>
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ channelColor <- switch(channel, R="red", G="green")
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The raw data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ plotMvsAPairs(rg, channel=channel)
+ title(main=paste("Observed", channel))
+ box(col=channelColor)
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The calibrated data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+
+ plotMvsAPairs(rgC, channel=channel)
+ title(main=paste("Calibrated", channel))
+ box(col=channelColor)
+ } # for (channel ...)
There were 50 or more warnings (use warnings() to see the first 50)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- matrix(NA_real_, nrow=nrow(rg), ncol=2)
> colnames(rgCA) <- c("R", "G")
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCA[,channel] <- calibrateMultiscan(rg[,sidx])
+ }
>
> plotMvsA(rgCA)
> title(main="Average calibrated")
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The affine normalized average calibrated data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Create a matrix where the columns represent the channels
> # to be normalized.
> rgCAN <- rgCA
> # Affine normalization of channels
> rgCAN <- normalizeAffine(rgCAN)
>
> plotMvsA(rgCAN)
> title(main="Affine normalized A.C.")
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCAN <- rgCAN * 2^5
> plotMvsA(rgCAN)
> title(main="Rescaled normalized")
>
>
>
> proc.time()
user system elapsed
0.716 0.066 0.780
aroma.light.Rcheck/tests/normalizeAverage.list.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+ rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+ size <- runif(1, min=0.3, max=1)
+ a <- rgamma(1, shape=20, rate=10)
+ b <- rgamma(1, shape=10, rate=10)
+ values <- rfcn(size*N, a, b)
+
+ # "Censor" values
+ values[values < 0 | values > 8] <- NA_real_
+
+ X[[kk]] <- values
+ }
>
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+ x[sample(length(x), size=0.20*length(x))] <- NA_real_
+ x
+ })
>
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(unlist(X), na.rm=TRUE))
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
>
> proc.time()
user system elapsed
0.149 0.029 0.175
aroma.light.Rcheck/tests/normalizeAverage.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(X, na.rm=TRUE))
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.134 0.030 0.161
aroma.light.Rcheck/tests/normalizeCurveFit.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
>
> rg <- as.list(rg)
> for (field in c("R", "G"))
+ rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
>
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
>
> rgC <- rg
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ channelColor <- switch(channel, R="red", G="green")
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The raw data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ plotMvsAPairs(rg[,sidx])
+ title(main=paste("Observed", channel))
+ box(col=channelColor)
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The calibrated data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+
+ plotMvsAPairs(rgC[,sidx])
+ title(main=paste("Calibrated", channel))
+ box(col=channelColor)
+ } # for (channel ...)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- rg
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
+ }
>
> rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2)
> colnames(rgCAavg) <- c("R", "G")
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE)
+ }
>
> # Add some "fake" outliers
> outliers <- 1:600
> rgCAavg[outliers,"G"] <- 50000
>
> plotMvsA(rgCAavg)
> title(main="Average calibrated (AC)")
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Normalize data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Weight-down outliers when normalizing
> weights <- rep(1, nrow(rgCAavg))
> weights[outliers] <- 0.001
>
> # Affine normalization of channels
> rgCANa <- normalizeAffine(rgCAavg, weights=weights)
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> rgCANa <- rgCANa *2^1.4
> plotMvsA(rgCANa)
> title(main="Normalized AC")
>
> # Curve-fit (lowess) normalization
> rgCANlw <- normalizeLowess(rgCAavg, weights=weights)
Warning message:
In normalizeCurveFit.matrix(X, method = "lowess", ...) :
Weights were rounded to {0,1} since 'lowess' normalization supports only zero-one weights.
> plotMvsA(rgCANlw, col="orange", add=TRUE)
>
> # Curve-fit (loess) normalization
> rgCANl <- normalizeLoess(rgCAavg, weights=weights)
> plotMvsA(rgCANl, col="red", add=TRUE)
>
> # Curve-fit (robust spline) normalization
> rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)
> plotMvsA(rgCANrs, col="blue", add=TRUE)
>
> legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
+ col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
>
>
> plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
> title(main="Normalized AC")
> plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE)
> plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)
> abline(a=0, b=1, lty=2)
> legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,
+ col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
>
>
> proc.time()
user system elapsed
2.518 0.053 2.568
aroma.light.Rcheck/tests/normalizeDifferencesToAverage.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # Simulate three shifted tracks of different lengths with same profiles
> ns <- c(A=2, B=1, C=0.25)*1000
> xx <- lapply(ns, FUN=function(n) { seq(from=1, to=max(ns), length.out=n) })
> zz <- mapply(seq_along(ns), ns, FUN=function(z,n) rep(z,n))
>
> yy <- list(
+ A = rnorm(ns["A"], mean=0, sd=0.5),
+ B = rnorm(ns["B"], mean=5, sd=0.4),
+ C = rnorm(ns["C"], mean=-5, sd=1.1)
+ )
> yy <- lapply(yy, FUN=function(y) {
+ n <- length(y)
+ y[1:(n/2)] <- y[1:(n/2)] + 2
+ y[1:(n/4)] <- y[1:(n/4)] - 4
+ y
+ })
>
> # Shift all tracks toward the first track
> yyN <- normalizeDifferencesToAverage(yy, baseline=1)
>
> # The baseline channel is not changed
> stopifnot(identical(yy[[1]], yyN[[1]]))
>
> # Get the estimated parameters
> fit <- attr(yyN, "fit")
>
> # Plot the tracks
> layout(matrix(1:2, ncol=1))
> x <- unlist(xx)
> col <- unlist(zz)
> y <- unlist(yy)
> yN <- unlist(yyN)
> plot(x, y, col=col, ylim=c(-10,10))
> plot(x, yN, col=col, ylim=c(-10,10))
>
> proc.time()
user system elapsed
0.154 0.030 0.180
aroma.light.Rcheck/tests/normalizeFragmentLength-ex1.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 1: Single-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Number samples
> I <- 9
>
> # Number of loci
> J <- 1000
>
> # Fragment lengths
> fl <- seq(from=100, to=1000, length.out=J)
>
> # Simulate data points with unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=50)
> fl[hasUnknownFL] <- NA_real_
>
> # Simulate data
> y <- matrix(0, nrow=J, ncol=I)
> maxY <- 12
> for (kk in 1:I) {
+ k <- runif(n=1, min=3, max=5)
+ mu <- function(fl) {
+ mu <- rep(maxY, length(fl))
+ ok <- !is.na(fl)
+ mu[ok] <- mu[ok] - fl[ok]^{1/k}
+ mu
+ }
+ eps <- rnorm(J, mean=0, sd=1)
+ y[,kk] <- mu(fl) + eps
+ }
>
> # Normalize data (to a zero baseline)
> yN <- apply(y, MARGIN=2, FUN=function(y) {
+ normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median")
+ })
>
> # The correction factors
> rho <- y-yN
> print(summary(rho))
V1 V2 V3 V4
Min. :3.910 Min. :2.914 Min. :7.325 Min. :7.689
1st Qu.:4.725 1st Qu.:3.587 1st Qu.:7.645 1st Qu.:7.835
Median :5.430 Median :4.456 Median :7.975 Median :8.075
Mean :5.571 Mean :4.671 Mean :8.072 Mean :8.199
3rd Qu.:6.386 3rd Qu.:5.681 3rd Qu.:8.464 3rd Qu.:8.525
Max. :7.660 Max. :7.170 Max. :9.165 Max. :9.112
V5 V6 V7 V8
Min. :7.529 Min. :6.595 Min. :4.946 Min. :7.400
1st Qu.:7.818 1st Qu.:6.925 1st Qu.:5.564 1st Qu.:7.658
Median :8.105 Median :7.276 Median :6.201 Median :8.005
Mean :8.200 Mean :7.419 Mean :6.332 Mean :8.097
3rd Qu.:8.546 3rd Qu.:7.862 3rd Qu.:7.049 3rd Qu.:8.496
Max. :9.215 Max. :8.746 Max. :8.179 Max. :9.146
V9
Min. :4.241
1st Qu.:4.810
Median :5.478
Mean :5.688
3rd Qu.:6.508
Max. :7.799
> # The correction for units with unknown fragment lengths
> # equals the median correction factor of all other units
> print(summary(rho[hasUnknownFL,]))
V1 V2 V3 V4 V5
Min. :5.43 Min. :4.456 Min. :7.975 Min. :8.075 Min. :8.105
1st Qu.:5.43 1st Qu.:4.456 1st Qu.:7.975 1st Qu.:8.075 1st Qu.:8.105
Median :5.43 Median :4.456 Median :7.975 Median :8.075 Median :8.105
Mean :5.43 Mean :4.456 Mean :7.975 Mean :8.075 Mean :8.105
3rd Qu.:5.43 3rd Qu.:4.456 3rd Qu.:7.975 3rd Qu.:8.075 3rd Qu.:8.105
Max. :5.43 Max. :4.456 Max. :7.975 Max. :8.075 Max. :8.105
V6 V7 V8 V9
Min. :7.276 Min. :6.201 Min. :8.005 Min. :5.478
1st Qu.:7.276 1st Qu.:6.201 1st Qu.:8.005 1st Qu.:5.478
Median :7.276 Median :6.201 Median :8.005 Median :5.478
Mean :7.276 Mean :6.201 Mean :8.005 Mean :5.478
3rd Qu.:7.276 3rd Qu.:6.201 3rd Qu.:8.005 3rd Qu.:5.478
Max. :7.276 Max. :6.201 Max. :8.005 Max. :5.478
>
> # Plot raw data
> layout(matrix(1:9, ncol=3))
> xlim <- c(0,max(fl, na.rm=TRUE))
> ylim <- c(0,max(y, na.rm=TRUE))
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> for (kk in 1:I) {
+ plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+ ok <- (is.finite(fl) & is.finite(y[,kk]))
+ lines(lowess(fl[ok], y[ok,kk]), col="red", lwd=2)
+ }
>
> # Plot normalized data
> layout(matrix(1:9, ncol=3))
> ylim <- c(-1,1)*max(y, na.rm=TRUE)/2
> for (kk in 1:I) {
+ plot(fl, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+ ok <- (is.finite(fl) & is.finite(y[,kk]))
+ lines(lowess(fl[ok], yN[ok,kk]), col="blue", lwd=2)
+ }
>
> proc.time()
user system elapsed
0.368 0.036 0.401
aroma.light.Rcheck/tests/normalizeFragmentLength-ex2.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 2: Two-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> set.seed(0xbeef)
>
> # Number samples
> I <- 5
>
> # Number of loci
> J <- 3000
>
> # Fragment lengths (two enzymes)
> fl <- matrix(0, nrow=J, ncol=2)
> fl[,1] <- seq(from=100, to=1000, length.out=J)
> fl[,2] <- seq(from=1000, to=100, length.out=J)
>
> # Let 1/2 of the units be on both enzymes
> fl[seq(from=1, to=J, by=4),1] <- NA_real_
> fl[seq(from=2, to=J, by=4),2] <- NA_real_
>
> # Let some have unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=15)
> fl[hasUnknownFL,] <- NA_real_
>
> # Sty/Nsp mixing proportions:
> rho <- rep(1, I)
> rho[1] <- 1/3; # Less Sty in 1st sample
> rho[3] <- 3/2; # More Sty in 3rd sample
>
>
> # Simulate data
> z <- array(0, dim=c(J,2,I))
> maxLog2Theta <- 12
> for (ii in 1:I) {
+ # Common effect for both enzymes
+ mu <- function(fl) {
+ k <- runif(n=1, min=3, max=5)
+ mu <- rep(maxLog2Theta, length(fl))
+ ok <- is.finite(fl)
+ mu[ok] <- mu[ok] - fl[ok]^{1/k}
+ mu
+ }
+
+ # Calculate the effect for each data point
+ for (ee in 1:2) {
+ z[,ee,ii] <- mu(fl[,ee])
+ }
+
+ # Update the Sty/Nsp mixing proportions
+ ee <- 2
+ z[,ee,ii] <- rho[ii]*z[,ee,ii]
+
+ # Add random errors
+ for (ee in 1:2) {
+ eps <- rnorm(J, mean=0, sd=1/sqrt(2))
+ z[,ee,ii] <- z[,ee,ii] + eps
+ }
+ }
>
>
> hasFl <- is.finite(fl)
>
> unitSets <- list(
+ nsp = which( hasFl[,1] & !hasFl[,2]),
+ sty = which(!hasFl[,1] & hasFl[,2]),
+ both = which( hasFl[,1] & hasFl[,2]),
+ none = which(!hasFl[,1] & !hasFl[,2])
+ )
>
> # The observed data is a mix of two enzymes
> theta <- matrix(NA_real_, nrow=J, ncol=I)
>
> # Single-enzyme units
> for (ee in 1:2) {
+ uu <- unitSets[[ee]]
+ theta[uu,] <- 2^z[uu,ee,]
+ }
>
> # Both-enzyme units (sum on intensity scale)
> uu <- unitSets$both
> theta[uu,] <- (2^z[uu,1,]+2^z[uu,2,])/2
>
> # Missing units (sample from the others)
> uu <- unitSets$none
> theta[uu,] <- apply(theta, MARGIN=2, sample, size=length(uu))
>
> # Calculate target array
> thetaT <- rowMeans(theta, na.rm=TRUE)
> targetFcns <- list()
> for (ee in 1:2) {
+ uu <- unitSets[[ee]]
+ fit <- lowess(fl[uu,ee], log2(thetaT[uu]))
+ class(fit) <- "lowess"
+ targetFcns[[ee]] <- function(fl, ...) {
+ predict(fit, newdata=fl)
+ }
+ }
>
>
> # Fit model only to a subset of the data
> subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10))
>
> # Normalize data (to a target baseline)
> thetaN <- matrix(NA_real_, nrow=J, ncol=I)
> fits <- vector("list", I)
> for (ii in 1:I) {
+ lthetaNi <- normalizeFragmentLength(log2(theta[,ii]), targetFcns=targetFcns,
+ fragmentLengths=fl, onMissing="median",
+ subsetToFit=subsetToFit, .returnFit=TRUE)
+ fits[[ii]] <- attr(lthetaNi, "modelFit")
+ thetaN[,ii] <- 2^lthetaNi
+ }
>
>
> # Plot raw data
> xlim <- c(0, max(fl, na.rm=TRUE))
> ylim <- c(0, max(log2(theta), na.rm=TRUE))
> Mlim <- c(-1,1)*4
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> Mlab <- expression(M==log[2](theta/theta[R]))
>
> layout(matrix(1:(3*I), ncol=I, byrow=TRUE))
> for (ii in 1:I) {
+ plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw")
+
+ # Single-enzyme units
+ for (ee in 1:2) {
+ # The raw data
+ uu <- unitSets[[ee]]
+ points(fl[uu,ee], log2(theta[uu,ii]), col=ee+1)
+ }
+
+ # Both-enzyme units (use fragment-length for enzyme #1)
+ uu <- unitSets$both
+ points(fl[uu,1], log2(theta[uu,ii]), col=3+1)
+
+ for (ee in 1:2) {
+ # The true effects
+ uu <- unitSets[[ee]]
+ lines(lowess(fl[uu,ee], log2(theta[uu,ii])), col="black", lwd=4, lty=3)
+
+ # The estimated effects
+ fit <- fits[[ii]][[ee]]$fit
+ lines(fit, col="orange", lwd=3)
+
+ muT <- targetFcns[[ee]](fl[uu,ee])
+ lines(fl[uu,ee], muT, col="cyan", lwd=1)
+ }
+ }
>
> # Calculate log-ratios
> thetaR <- rowMeans(thetaN, na.rm=TRUE)
> M <- log2(thetaN/thetaR)
>
> # Plot normalized data
> for (ii in 1:I) {
+ plot(NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized")
+ # Single-enzyme units
+ for (ee in 1:2) {
+ # The normalized data
+ uu <- unitSets[[ee]]
+ points(fl[uu,ee], M[uu,ii], col=ee+1)
+ }
+ # Both-enzyme units (use fragment-length for enzyme #1)
+ uu <- unitSets$both
+ points(fl[uu,1], M[uu,ii], col=3+1)
+ }
>
> ylim <- c(0,1.5)
> for (ii in 1:I) {
+ data <- list()
+ for (ee in 1:2) {
+ # The normalized data
+ uu <- unitSets[[ee]]
+ data[[ee]] <- M[uu,ii]
+ }
+ uu <- unitSets$both
+ if (length(uu) > 0)
+ data[[3]] <- M[uu,ii]
+
+ uu <- unitSets$none
+ if (length(uu) > 0)
+ data[[4]] <- M[uu,ii]
+
+ cols <- seq_along(data)+1
+ plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized")
+
+ abline(v=0, lty=2)
+ }
>
>
> proc.time()
user system elapsed
0.293 0.039 0.334
aroma.light.Rcheck/tests/normalizeQuantileRank.list.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+ rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+ size <- runif(1, min=0.3, max=1)
+ a <- rgamma(1, shape=20, rate=10)
+ b <- rgamma(1, shape=10, rate=10)
+ values <- rfcn(size*N, a, b)
+
+ # "Censor" values
+ values[values < 0 | values > 8] <- NA_real_
+
+ X[[kk]] <- values
+ }
>
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+ x[sample(length(x), size=0.20*length(x))] <- NA_real_
+ x
+ })
>
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
>
> proc.time()
user system elapsed
0.156 0.031 0.183
aroma.light.Rcheck/tests/normalizeQuantileRank.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.132 0.027 0.156
aroma.light.Rcheck/tests/normalizeQuantileSpline.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Plot the data
> layout(matrix(c(1,0,2:5), ncol=2, byrow=TRUE))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
>
> Xn <- normalizeQuantile(X)
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn, xlim=xlim, main="The three normalized distributions")
>
> Xn2 <- normalizeQuantileSpline(X, xTarget=Xn[,1], spar=0.99)
> plotDensity(Xn2, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.399 0.066 0.464
aroma.light.Rcheck/tests/normalizeTumorBoost,flavors.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.27.1 (2025-05-02 21:00:05 UTC) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following object is masked from 'package:R.methodsS3':
throw
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, load, save
R.utils v2.13.0 (2025-02-24 21:20:02 UTC) successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, isOpen, nullfile, parse, use, warnings
>
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
>
> # Drop loci with missing values
> data <- na.omit(data)
>
> attachLocally(data)
> pos <- position/1e6
>
> # Call naive genotypes
> muN <- callNaiveGenotypes(betaN)
>
> # Genotype classes
> isAA <- (muN == 0)
> isAB <- (muN == 1/2)
> isBB <- (muN == 1)
>
> # Sanity checks
> stopifnot(all(muN[isAA] == 0))
> stopifnot(all(muN[isAB] == 1/2))
> stopifnot(all(muN[isBB] == 1))
>
> # TumorBoost normalization with different flavors
> betaTNs <- list()
> for (flavor in c("v1", "v2", "v3", "v4")) {
+ betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE, flavor=flavor)
+
+ # Assert that no non-finite values are introduced
+ stopifnot(all(is.finite(betaTN)))
+
+ # Assert that nothing is flipped
+ stopifnot(all(betaTN[isAA] < 1/2))
+ stopifnot(all(betaTN[isBB] > 1/2))
+
+ betaTNs[[flavor]] <- betaTN
+ }
>
> # Plot
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
> for (flavor in names(betaTNs)) {
+ betaTN <- betaTNs[[flavor]]
+ ylab <- sprintf("betaTN[%s]", flavor)
+ plot(pos, betaTN, col=col, ylim=ylim, ylab=ylab)
+ }
>
> proc.time()
user system elapsed
0.217 0.041 0.256
aroma.light.Rcheck/tests/normalizeTumorBoost.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.27.1 (2025-05-02 21:00:05 UTC) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following object is masked from 'package:R.methodsS3':
throw
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, load, save
R.utils v2.13.0 (2025-02-24 21:20:02 UTC) successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, isOpen, nullfile, parse, use, warnings
>
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
> attachLocally(data)
> pos <- position/1e6
> muN <- genotypeN
>
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
>
> # Allele B fractions for the normal sample
> plot(pos, betaN, col=col, ylim=ylim)
>
> # Allele B fractions for the tumor sample
> plot(pos, betaT, col=col, ylim=ylim)
>
> # TumorBoost w/ naive genotype calls
> betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE)
> plot(pos, betaTN, col=col, ylim=ylim)
>
> # TumorBoost w/ external multi-sample genotype calls
> betaTNx <- normalizeTumorBoost(betaT=betaT, betaN=betaN, muN=muN, preserveScale=FALSE)
> plot(pos, betaTNx, col=col, ylim=ylim)
>
> proc.time()
user system elapsed
0.202 0.041 0.239
aroma.light.Rcheck/tests/robustSmoothSpline.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> data(cars)
> attach(cars)
> plot(speed, dist, main = "data(cars) & robust smoothing splines")
>
> # Fit a smoothing spline using L_2 norm
> cars.spl <- smooth.spline(speed, dist)
> lines(cars.spl, col = "blue")
>
> # Fit a smoothing spline using L_1 norm
> cars.rspl <- robustSmoothSpline(speed, dist)
> lines(cars.rspl, col = "red")
>
> # Fit a smoothing spline using L_2 norm with 10 degrees of freedom
> lines(smooth.spline(speed, dist, df=10), lty=2, col = "blue")
>
> # Fit a smoothing spline using L_1 norm with 10 degrees of freedom
> lines(robustSmoothSpline(speed, dist, df=10), lty=2, col = "red")
>
> # Fit a smoothing spline using Tukey's biweight norm
> cars.rspl <- robustSmoothSpline(speed, dist, method = "symmetric")
> lines(cars.rspl, col = "purple")
>
> legend(5,120, c(
+ paste("smooth.spline [C.V.] => df =",round(cars.spl$df,1)),
+ paste("robustSmoothSpline L1 [C.V.] => df =",round(cars.rspl$df,1)),
+ paste("robustSmoothSpline symmetric [C.V.] => df =",round(cars.rspl$df,1)),
+ "standard with s( * , df = 10)", "robust with s( * , df = 10)"
+ ),
+ col = c("blue","red","purple","blue","red"), lty = c(1,1,1,2,2),
+ bg='bisque')
>
> proc.time()
user system elapsed
0.140 0.031 0.170
aroma.light.Rcheck/tests/rowAverages.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> X <- matrix(1:30, nrow=5L, ncol=6L)
> mu <- rowMeans(X)
> sd <- apply(X, MARGIN=1L, FUN=sd)
>
> y <- rowAverages(X)
> stopifnot(all(y == mu))
> stopifnot(all(attr(y,"deviance") == sd))
> stopifnot(all(attr(y,"df") == ncol(X)))
>
> proc.time()
user system elapsed
0.101 0.028 0.126
aroma.light.Rcheck/tests/sampleCorrelations.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # Simulate 20000 genes with 10 observations each
> X <- matrix(rnorm(n=20000), ncol=10)
>
> # Calculate the correlation for 5000 random gene pairs
> cor <- sampleCorrelations(X, npairs=5000)
> print(summary(cor))
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.920192 -0.237065 0.001836 0.003160 0.241398 0.898687
>
>
> proc.time()
user system elapsed
0.176 0.034 0.209
aroma.light.Rcheck/tests/sampleTuples.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> pairs <- sampleTuples(1:10, size=5, length=2)
> print(pairs)
[,1] [,2]
[1,] 10 2
[2,] 5 3
[3,] 10 4
[4,] 10 9
[5,] 4 5
>
> triples <- sampleTuples(1:10, size=5, length=3)
> print(triples)
[,1] [,2] [,3]
[1,] 9 10 3
[2,] 10 9 6
[3,] 3 9 10
[4,] 7 10 6
[5,] 7 6 2
>
> # Allow tuples with repeated elements
> quadruples <- sampleTuples(1:3, size=5, length=4, replace=TRUE)
> print(quadruples)
[,1] [,2] [,3] [,4]
[1,] 2 2 1 1
[2,] 3 1 1 2
[3,] 3 1 3 1
[4,] 1 3 1 3
[5,] 3 1 2 2
>
> proc.time()
user system elapsed
0.098 0.027 0.120
aroma.light.Rcheck/tests/wpca.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ # -------------------------------------------------------------
+ # A first example
+ # -------------------------------------------------------------
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,15)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+
+ # Add some outliers by permuting the dimensions for 1/3 of the observations
+ idx <- sample(1:nrow(y), size=1/3*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+
+ # Down-weight the outliers W times to demonstrate how weights are used
+ W <- 10
+
+ # Plot the data with fitted lines at four different view points
+ N <- 4
+ theta <- seq(0,180,length.out=N)
+ phi <- rep(30, length.out=N)
+
+ # Use a different color for each set of weights
+ col <- topo.colors(W)
+
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ for (kk in seq(theta)) {
+ # Plot the data
+ plot3d(y, theta=theta[kk], phi=phi[kk])
+
+ # First, same weights for all observations
+ w <- rep(1, length=nrow(y))
+
+ for (ww in 1:W) {
+ # Fit a line using IWPCA through data
+ fit <- wpca(y, w=w, swapDirections=TRUE)
+
+ # Get the first principal component
+ ymid <- fit$xMean
+ d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+ d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+ b <- fit$vt[1,]
+ y0 <- -b * max(abs(d0))
+ y1 <- b * max(abs(d1))
+ yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+ yline <- yline + ymid
+
+ points3d(t(ymid), col=col)
+ lines3d(t(yline), col=col)
+
+ # Down-weight outliers only, because here we know which they are.
+ w[idx] <- w[idx]/2
+ }
+
+ # Highlight the last one
+ lines3d(t(yline), col="red", lwd=3)
+ }
+
+ par(opar)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.126 0.028 0.150
aroma.light.Rcheck/tests/wpca2.matrix.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.41.0 (2025-12-03) successfully loaded. See ?aroma.light for help.
>
> # -------------------------------------------------------------
> # A second example
> # -------------------------------------------------------------
> # Data
> x <- c(1,2,3,4,5)
> y <- c(2,4,3,3,6)
>
> opar <- par(bty="L")
> opalette <- palette(c("blue", "red", "black"))
> xlim <- ylim <- c(0,6)
>
> # Plot the data and the center mass
> plot(x,y, pch=16, cex=1.5, xlim=xlim, ylim=ylim)
> points(mean(x), mean(y), cex=2, lwd=2, col="blue")
>
>
> # Linear regression y ~ x
> fit <- lm(y ~ x)
> abline(fit, lty=1, col=1)
>
> # Linear regression y ~ x through without intercept
> fit <- lm(y ~ x - 1)
> abline(fit, lty=2, col=1)
>
>
> # Linear regression x ~ y
> fit <- lm(x ~ y)
> c <- coefficients(fit)
> b <- 1/c[2]
> a <- -b*c[1]
> abline(a=a, b=b, lty=1, col=2)
>
> # Linear regression x ~ y through without intercept
> fit <- lm(x ~ y - 1)
> b <- 1/coefficients(fit)
> abline(a=0, b=b, lty=2, col=2)
>
>
> # Orthogonal linear "regression"
> fit <- wpca(cbind(x,y))
>
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lwd=2, col=3)
>
> # Orthogonal linear "regression" without intercept
> fit <- wpca(cbind(x,y), center=FALSE)
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lty=2, lwd=2, col=3)
>
> legend(xlim[1],ylim[2], legend=c("lm(y~x)", "lm(y~x-1)", "lm(x~y)",
+ "lm(x~y-1)", "pca", "pca w/o intercept"), lty=rep(1:2,3),
+ lwd=rep(c(1,1,2),each=2), col=rep(1:3,each=2))
>
> palette(opalette)
> par(opar)
>
> proc.time()
user system elapsed
0.119 0.026 0.143
aroma.light.Rcheck/aroma.light-Ex.timings
| name | user | system | elapsed | |
| backtransformAffine | 0.000 | 0.000 | 0.002 | |
| backtransformPrincipalCurve | 0.201 | 0.006 | 0.207 | |
| calibrateMultiscan | 0 | 0 | 0 | |
| callNaiveGenotypes | 0.085 | 0.005 | 0.090 | |
| distanceBetweenLines | 0.030 | 0.002 | 0.032 | |
| findPeaksAndValleys | 0.016 | 0.002 | 0.020 | |
| fitPrincipalCurve | 0.247 | 0.009 | 0.256 | |
| fitXYCurve | 0.105 | 0.002 | 0.109 | |
| iwpca | 0.020 | 0.001 | 0.020 | |
| likelihood.smooth.spline | 0.055 | 0.001 | 0.056 | |
| medianPolish | 0.001 | 0.000 | 0.001 | |
| normalizeAffine | 2.379 | 0.030 | 2.430 | |
| normalizeCurveFit | 2.485 | 0.031 | 2.538 | |
| normalizeDifferencesToAverage | 0.115 | 0.005 | 0.122 | |
| normalizeFragmentLength | 0.611 | 0.029 | 0.642 | |
| normalizeQuantileRank | 0.440 | 0.006 | 0.446 | |
| normalizeQuantileRank.matrix | 0.019 | 0.001 | 0.020 | |
| normalizeQuantileSpline | 0.227 | 0.022 | 0.251 | |
| normalizeTumorBoost | 0.111 | 0.008 | 0.120 | |
| robustSmoothSpline | 0.202 | 0.003 | 0.207 | |
| sampleCorrelations | 0.077 | 0.005 | 0.082 | |
| sampleTuples | 0.000 | 0.000 | 0.001 | |
| wpca | 0.021 | 0.002 | 0.023 | |