Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-01-22 11:46 -0500 (Wed, 22 Jan 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences" | 4779 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences" | 4503 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" | 4468 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" | 4423 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences" | 4407 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 2063/2286 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
STATegRa 1.43.0 (landing page) David Gomez-Cabrero
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the STATegRa package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: STATegRa |
Version: 1.43.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings STATegRa_1.43.0.tar.gz |
StartedAt: 2025-01-21 21:48:36 -0500 (Tue, 21 Jan 2025) |
EndedAt: 2025-01-21 21:49:50 -0500 (Tue, 21 Jan 2025) |
EllapsedTime: 73.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: STATegRa.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:STATegRa.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings STATegRa_1.43.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/STATegRa.Rcheck’ * using R Under development (unstable) (2024-11-20 r87352) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Ventura 13.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘STATegRa/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘STATegRa’ version ‘1.43.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘STATegRa’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE modelSelection,list-numeric-character: no visible binding for global variable ‘components’ modelSelection,list-numeric-character: no visible binding for global variable ‘mylabel’ plotVAF,caClass: no visible binding for global variable ‘comp’ plotVAF,caClass: no visible binding for global variable ‘VAF’ plotVAF,caClass: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comps’ selectCommonComps,list-numeric: no visible binding for global variable ‘block’ selectCommonComps,list-numeric: no visible binding for global variable ‘comp’ selectCommonComps,list-numeric: no visible binding for global variable ‘ratio’ Undefined global functions or variables: VAF block comp components comps mylabel ratio * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Found the following Rd file(s) with Rd \link{} targets missing package anchors: modelSelection.Rd: ggplot Please provide package anchors for all Rd \link{} targets not in the package itself and the base packages. * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘STATEgRa_Example.omicsCLUST.R’ Running ‘STATEgRa_Example.omicsPCA.R’ Running ‘STATegRa_Example.omicsNPC.R’ Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.21-bioc/meat/STATegRa.Rcheck/00check.log’ for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL STATegRa ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘STATegRa’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (STATegRa)
STATegRa.Rcheck/tests/runTests.Rout
R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") Common components [1] 2 Distinctive components [[1]] [1] 0 [[2]] [1] 0 Common components [1] 2 Distinctive components [[1]] [1] 1 [[2]] [1] 1 Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 RUNIT TEST PROTOCOL -- Tue Jan 21 21:49:46 2025 *********************************************** Number of test functions: 4 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures Number of test functions: 4 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 1.230 0.072 1.303
STATegRa.Rcheck/tests/STATEgRa_Example.omicsCLUST.Rout
R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Loading required package: generics Attaching package: 'generics' The following objects are masked from 'package:base': as.difftime, as.factor, as.ordered, intersect, is.element, setdiff, setequal, union Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, saveRDS, table, tapply, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 10.982 0.178 11.183
STATegRa.Rcheck/tests/STATegRa_Example.omicsNPC.Rout
R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 19.629 0.945 20.643
STATegRa.Rcheck/tests/STATEgRa_Example.omicsPCA.Rout
R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## Select the optimal components > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE) Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 > > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 -0.0781574505 0.0431553932 sample2 0.1192222495 -0.0294024007 sample3 0.0531409471 0.0746834446 sample4 -0.0292972257 0.0006039883 sample5 -0.0202093568 -0.0110445045 sample6 -0.1226088356 -0.1053498744 sample7 -0.1078931043 0.0322414510 sample8 -0.1782890111 -0.1449334890 sample9 -0.0468699117 0.0455183703 sample10 0.0036030754 -0.0420068693 sample11 0.0035565173 0.0566293993 sample12 -0.1006127871 -0.0641394786 sample13 0.1174414069 -0.0907483222 sample14 -0.0981203027 -0.0617770016 sample15 -0.0085337484 0.0086959112 sample16 -0.0783147361 -0.1581333989 sample17 0.1483611676 -0.0638585568 sample18 0.0963085301 -0.0556698649 sample19 0.0217242510 0.0720132856 sample20 0.0635634213 0.0779610086 sample21 0.0201841839 -0.1566377508 sample22 -0.0218272694 0.0764048329 sample23 -0.0852039638 0.0032774941 sample24 0.1287183073 -0.1924422870 sample25 0.0430575761 0.0456640895 sample26 0.1453902226 -0.0541461176 sample27 0.0197483418 0.1185589641 sample28 0.1025340420 -0.0650656139 sample29 -0.0706021202 0.0682933982 sample30 0.1295622727 0.0066666075 sample31 -0.1147448925 -0.1232734661 sample32 0.0374306765 -0.0380251375 sample33 -0.0599519813 -0.0136948577 sample34 0.0984198934 -0.0375366047 sample35 0.0543096676 0.0378027155 sample36 -0.1403629441 0.0343628993 sample37 -0.0228948368 0.0732671514 sample38 0.0222074979 0.0962563474 sample39 0.0941739248 -0.0215177764 sample40 -0.0643807578 0.0687702467 sample41 0.0327635204 0.1232188142 sample42 0.0500432240 0.0292511765 sample43 0.0184495424 -0.0233042126 sample44 -0.1487888053 -0.1171206958 sample45 0.1050778607 -0.1123136648 sample46 0.1151192788 0.1093989469 sample47 0.0962592130 0.0288414180 sample48 -0.0004833202 0.0310393692 sample49 -0.1135203799 -0.1213942402 sample50 0.0123550591 0.1740773127 sample51 -0.0550530542 -0.1258922811 sample52 -0.0499122048 -0.0728569932 sample53 -0.1119773281 -0.1588066894 sample54 0.0360054339 -0.0228584432 sample55 -0.0210421415 -0.0006741130 sample56 0.0434169515 -0.0633125274 sample57 -0.0197824237 -0.1150742958 sample58 -0.0030440924 -0.0326131264 sample59 -0.0500257439 -0.0129530470 sample60 -0.0184281244 -0.0136219850 sample61 -0.0150301866 -0.0635089775 sample62 0.0304760009 0.0201223632 sample63 -0.1102249093 -0.1285966285 sample64 -0.1552586176 -0.0971184321 sample65 0.0058502640 -0.0207094377 sample66 0.0025605607 -0.0424279007 sample67 -0.1546639477 0.0661567247 sample68 -0.0536374515 0.0923597125 sample69 -0.0640331764 -0.0082009196 sample70 -0.0163519433 0.0663221060 sample71 0.0102536857 0.1345966568 sample72 0.0654190841 0.0196029810 sample73 0.1048552805 -0.0221001543 sample74 -0.0123802788 -0.0586151799 sample75 -0.0392081025 0.0209731111 sample76 -0.0648953727 0.0524748307 sample77 -0.1172921607 0.0201187843 sample78 0.1463074786 -0.0708406026 sample79 -0.0265208235 0.1603433908 sample80 -0.0279740956 0.0214163531 sample81 -0.0079211455 0.0738496113 sample82 0.1544236988 0.0361436536 sample83 0.0494205105 0.0049928292 sample84 0.0259037685 0.0346602085 sample85 -0.1116487614 0.0031391089 sample86 0.1306480577 0.0377142593 sample87 0.0554776831 0.0459738282 sample88 0.0301624874 -0.0382208012 sample89 0.1016865183 -0.0694080366 sample90 -0.0086820742 0.0201316298 sample91 -0.1578627210 0.2097800049 sample92 -0.0170932097 0.1655942951 sample93 0.0979806115 0.0121498399 sample94 -0.0131484947 0.0114927864 sample95 -0.0315681420 0.0758919478 sample96 -0.0024125318 0.0470187683 sample97 -0.0634545259 -0.0270302277 sample98 0.0359372847 0.0135466629 sample99 0.1009168821 -0.1124714755 sample100 -0.0551752460 -0.0246509652 sample101 0.0080118572 0.1627409595 sample102 0.0046450755 -0.0095460657 sample103 0.0472521092 0.0940384639 sample104 -0.0198158251 0.0591155156 sample105 0.0400237280 0.0160952544 sample106 0.0923810272 -0.0369005355 sample107 0.1019372837 -0.0224968976 sample108 0.0877092058 0.0128849508 sample109 -0.0864818518 0.0901091077 sample110 0.1223116965 0.0096106919 sample111 -0.0257352371 0.0936293808 sample112 0.0765285383 -0.0270381011 sample113 -0.0258801118 -0.0377427598 sample114 -0.0021140426 0.0882040317 sample115 -0.0303453755 0.0723745595 sample116 -0.0780502339 0.0685160882 sample117 -0.0536894387 0.0912030993 sample118 -0.0666648235 0.0236257291 sample119 -0.1021869072 0.2325011645 sample120 -0.0750214867 -0.0243348619 sample121 0.0756938056 -0.0942967585 sample122 0.0259630710 -0.0731913244 sample123 0.1037844559 0.0369174337 sample124 -0.0611203870 -0.0421645221 sample125 0.0738471320 -0.0066944905 sample126 -0.0972917863 -0.0762702131 sample127 -0.0824697632 0.0096640624 sample128 0.1249412767 -0.0929250643 sample129 0.0734064029 0.0434304911 sample130 0.0003500797 0.0309852621 sample131 -0.0930183433 -0.0155974030 sample132 -0.0736219989 -0.0732970159 sample133 0.0498397019 0.0462461073 sample134 -0.1644872542 -0.0720048671 sample135 0.0752295002 -0.0003871533 sample136 -0.0227149071 0.0495464982 sample137 -0.0564720767 0.0288851297 sample138 -0.0255986154 0.0610934244 sample139 -0.0621218870 -0.0235869648 sample140 0.0604148599 0.0435533920 sample141 -0.0246744154 -0.0532627999 sample142 0.0409562245 -0.0316227398 sample143 0.0077354952 0.0476913373 sample144 -0.0173241992 0.0156791497 sample145 -0.0485470111 -0.1202727177 sample146 -0.0419648746 0.0811234740 sample147 0.0977304807 0.0274758986 sample148 -0.0368255659 -0.0803963805 sample149 0.0072865333 0.1533015840 sample150 -0.1020825602 -0.0624827310 sample151 -0.0305397754 0.0289343538 sample152 0.0533596689 0.0638338899 sample153 0.0891640707 -0.1799443651 sample154 0.0727555081 0.0834124882 sample155 0.0880664728 0.0220770856 sample156 0.0276557814 0.0326609772 sample157 0.1155032232 -0.0183637796 sample158 0.0281505156 0.0104917511 sample159 -0.0663233763 -0.0443813020 sample160 0.0302641148 -0.0404293572 sample161 -0.0114713520 0.0591087509 sample162 0.1337091950 -0.1398131505 sample163 -0.1330119931 -0.1688769691 sample164 0.0150336279 -0.0028367280 sample165 -0.0076521355 0.0164156056 sample166 -0.0367790998 -0.0630615148 sample167 -0.1111989326 -0.0030067466 sample168 0.0672982824 -0.0446270198 sample169 0.0413003012 -0.0224449018 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 0.0420457405 0.0867865976 sample2 0.0820853886 -0.0410964854 sample3 -0.0155967658 -0.0195190697 sample4 0.1001343805 -0.0410771525 sample5 0.0153477355 -0.0253255687 sample6 -0.0340232229 -0.0408220759 sample7 -0.0722602763 0.0002319673 sample8 0.0457629016 -0.0369999172 sample9 0.0086208503 0.0820184421 sample10 0.0423630255 -0.0083913643 sample11 -0.0022601194 0.0787762642 sample12 -0.0322078352 0.1479823973 sample13 0.0293977531 -0.0306738516 sample14 -0.0337425442 -0.0367507567 sample15 -0.0815567063 0.1275609924 sample16 -0.0508328551 0.0540608423 sample17 -0.0062551792 0.0041025970 sample18 -0.0705595606 -0.0351055429 sample19 0.0476781853 -0.0509596205 sample20 -0.0523033235 0.0715508756 sample21 0.0119256090 -0.0376080248 sample22 -0.0724458970 -0.0095641682 sample23 0.0992527540 0.0134303878 sample24 0.1595271591 0.0728698336 sample25 0.0920662484 -0.0749747134 sample26 0.0595567848 0.0848977202 sample27 -0.0826581469 -0.0086755811 sample28 0.0384835275 0.0440976431 sample29 -0.0777750188 0.1735292444 sample30 -0.1229470718 -0.0819025044 sample31 -0.0579743402 -0.0238644910 sample32 -0.0970365521 -0.0111438064 sample33 -0.1017574895 -0.0630457405 sample34 -0.0637903640 0.0377934331 sample35 -0.0790002673 -0.0229737421 sample36 -0.1224928383 -0.1274973821 sample37 -0.1798841509 -0.1673458459 sample38 -0.0466399567 0.0888146671 sample39 0.0168693071 0.0421537195 sample40 -0.1756412322 -0.1526672410 sample41 -0.0042474277 0.0004919500 sample42 0.0447827844 -0.0651501137 sample43 -0.0482292392 -0.0253534683 sample44 0.1986828621 -0.0545739871 sample45 0.0741921481 0.0054721420 sample46 -0.0478864965 -0.0007087536 sample47 -0.0608219191 0.0481611158 sample48 0.1381459308 0.0578306745 sample49 0.0530643123 -0.1405516419 sample50 0.0173632050 0.1602380317 sample51 -0.0462456825 0.0303477067 sample52 -0.0279998767 0.0280391133 sample53 -0.0667493775 0.0237703529 sample54 -0.0121810192 -0.0521354435 sample55 -0.0182396764 0.0221326858 sample56 0.0001308603 0.0030912320 sample57 -0.0316576959 0.0530195340 sample58 -0.0393888370 -0.0297802423 sample59 -0.1278268296 -0.0546545621 sample60 -0.1486969426 0.1069136894 sample61 -0.0793071211 0.0569790544 sample62 -0.1172819924 -0.0149218129 sample63 0.0028812917 0.1300529171 sample64 -0.0237296295 0.1073291417 sample65 0.0126539617 0.0589812042 sample66 0.0468236451 -0.0771062501 sample67 -0.1494284011 -0.0769885286 sample68 -0.0978024058 -0.0577371527 sample69 -0.0403089276 0.0156036149 sample70 -0.0221599374 0.0315431996 sample71 0.0546326623 -0.0272397847 sample72 -0.1107500191 -0.0537337391 sample73 -0.0906759385 0.0579954119 sample74 -0.0586514858 0.0121417499 sample75 -0.0390516951 0.0349276129 sample76 0.0022947355 -0.1676562112 sample77 0.0232112660 -0.2067300871 sample78 0.0929817329 -0.0434922199 sample79 0.1619376622 -0.0378100888 sample80 -0.0680402917 0.1424652852 sample81 0.0530724905 -0.0358348408 sample82 -0.0266845779 -0.0577453091 sample83 -0.1517240168 -0.0448577779 sample84 0.0570939878 -0.0273806617 sample85 -0.1086264666 -0.1228135051 sample86 -0.0833888764 -0.0442931216 sample87 -0.0022039240 -0.0943910116 sample88 0.0078282191 -0.1140502006 sample89 -0.0611004061 -0.0094589776 sample90 -0.0022936722 -0.0936256409 sample91 -0.0433793207 0.3205962902 sample92 0.1815214335 -0.0334664500 sample93 -0.0267656520 0.0614423301 sample94 -0.0181903475 0.0605086241 sample95 0.0720312391 -0.0013040397 sample96 0.0559671534 -0.0118786764 sample97 0.0217421036 0.0195418821 sample98 -0.0379202513 0.0588350139 sample99 0.0792514530 -0.0151255447 sample100 -0.0222096801 -0.0023323519 sample101 0.0387074702 0.1224220053 sample102 0.2094627387 -0.0516410764 sample103 -0.0138563040 0.0301043294 sample104 0.0807945157 -0.0162710361 sample105 0.0520494554 -0.1229658371 sample106 0.0192645413 -0.0185233213 sample107 -0.0319015293 0.0405119119 sample108 0.0140673217 0.0163421925 sample109 0.1831852120 0.0613028744 sample110 0.0292783591 -0.0199846057 sample111 0.1423167599 0.0327355168 sample112 -0.0426312759 -0.0029088142 sample113 0.0771930178 0.0268748235 sample114 0.0241565726 -0.0184083353 sample115 0.1958952222 0.0460154739 sample116 0.1394440279 -0.0530789631 sample117 0.1672314123 -0.1386517245 sample118 0.0448333744 -0.0117616900 sample119 0.0910177030 0.2217431233 sample120 0.0331408010 -0.0057268421 sample121 -0.0307519180 0.1392508209 sample122 0.0839839988 -0.0291976824 sample123 -0.0239674035 -0.0642170325 sample124 0.0909178880 0.0130435478 sample125 0.0065366010 -0.1092630624 sample126 -0.0935274775 0.1368275082 sample127 -0.0035405317 0.0292753872 sample128 0.0660350374 0.1018581501 sample129 -0.0693669204 -0.0695435744 sample130 -0.0008514708 -0.0669707123 sample131 -0.0431010808 0.0174059744 sample132 0.0637092612 0.0029388892 sample133 0.0289462352 -0.0390817411 sample134 -0.0446139850 0.0456333823 sample135 -0.0712346368 0.0521624104 sample136 -0.0596320705 0.0197286544 sample137 -0.0793173452 -0.0380642474 sample138 0.0973505032 -0.0454207984 sample139 -0.0539856541 -0.1534333505 sample140 -0.0850879472 0.0955798811 sample141 0.0192727344 -0.0554443481 sample142 0.0672295796 -0.0461308306 sample143 0.0303705713 -0.0519258218 sample144 0.0089347528 0.0145815508 sample145 0.0638879315 0.0122277740 sample146 -0.0585924969 0.0063068740 sample147 -0.0894142003 -0.1124631570 sample148 0.0216443470 -0.0615957489 sample149 0.0515314040 -0.0839906212 sample150 -0.0568224514 -0.0124472538 sample151 0.0789512442 -0.0261821105 sample152 0.0330685556 0.1306443849 sample153 0.1752068084 0.1497770505 sample154 -0.0421492646 -0.0037022657 sample155 -0.0680201994 0.0095699457 sample156 -0.0388958898 0.1057555104 sample157 -0.0314766320 0.0561363273 sample158 -0.0329634650 0.0353942182 sample159 0.0398468980 -0.1007364689 sample160 -0.0424908228 0.0108493463 sample161 0.0888340087 -0.0679690449 sample162 0.0027572622 0.1237853208 sample163 0.0126235408 0.0725448064 sample164 0.0566786723 -0.0458315081 sample165 0.0315328440 -0.0236357784 sample166 0.0612114986 -0.0425219786 sample167 -0.0142729454 0.0179306586 sample168 0.0169548689 -0.0769612734 sample169 -0.0675063547 0.0131496905 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 -0.0012330304 1.635717e-01 sample2 -0.0724347420 6.022287e-03 sample3 -0.0188460635 1.080030e-01 sample4 0.0390145027 -3.107643e-04 sample5 0.1774812290 2.996377e-02 sample6 -0.0451441727 3.455909e-02 sample7 -0.0226468454 7.019307e-03 sample8 -0.1033677364 9.858239e-03 sample9 0.1350007971 -8.979146e-02 sample10 0.1259889375 5.097900e-02 sample11 0.0979785141 -7.086590e-02 sample12 -0.0863017838 8.620353e-02 sample13 -0.1381399075 -1.827995e-01 sample14 -0.0615072429 2.642824e-02 sample15 0.0381598358 3.101596e-02 sample16 -0.0048772768 -1.271017e-03 sample17 -0.0788476848 1.547623e-02 sample18 -0.0884184963 3.795496e-02 sample19 0.0703044049 1.084001e-01 sample20 -0.0025588749 -7.975966e-02 sample21 0.0941607811 4.126860e-02 sample22 -0.0550274986 7.806634e-02 sample23 0.0679494546 4.102061e-02 sample24 -0.1310957750 -1.649279e-01 sample25 0.0113585241 4.426895e-02 sample26 -0.1402943179 -2.016420e-02 sample27 0.0261557590 -1.590016e-03 sample28 -0.0724196423 -5.850492e-02 sample29 -0.0330062595 -2.061880e-03 sample30 -0.0228750335 2.015343e-02 sample31 -0.0635064191 6.670385e-02 sample32 0.0685102197 4.955223e-02 sample33 -0.0777763294 1.272072e-01 sample34 0.0157845115 3.024303e-02 sample35 -0.0529635193 -1.500980e-01 sample36 0.0070895974 -2.025321e-01 sample37 -0.0442424637 -1.802108e-01 sample38 -0.0781514131 3.676326e-02 sample39 0.0120333926 3.388879e-02 sample40 -0.0473296102 -1.471581e-01 sample41 0.0228186135 2.673454e-02 sample42 -0.0245359180 7.960882e-02 sample43 0.1036365120 8.229545e-02 sample44 -0.1012227637 -7.049212e-02 sample45 0.0013737240 2.451063e-02 sample46 -0.0558512191 -2.948425e-03 sample47 -0.0380481785 -4.554226e-02 sample48 0.0784339923 -4.888909e-02 sample49 -0.0605160470 1.162483e-02 sample50 0.0530073167 2.737810e-02 sample51 0.1514649086 -5.678305e-02 sample52 0.1860935173 -1.246716e-01 sample53 -0.0064172945 2.701060e-02 sample54 0.0697040154 2.308389e-02 sample55 0.1633576504 -1.366478e-02 sample56 0.1011487048 -4.682166e-02 sample57 0.1730375268 -1.609599e-01 sample58 -0.0071383238 1.666950e-02 sample59 -0.0030461847 -3.005377e-02 sample60 0.0215831243 -2.665888e-01 sample61 0.1510583921 -1.002388e-01 sample62 -0.0925533371 4.845753e-02 sample63 -0.0596309078 4.137130e-02 sample64 -0.0449225048 2.601144e-03 sample65 0.0939384774 4.406925e-02 sample66 0.1063403347 5.710043e-02 sample67 -0.0201596740 -2.361745e-01 sample68 0.0037199607 -2.418542e-02 sample69 -0.0645160175 1.155620e-01 sample70 -0.1013440685 1.351783e-01 sample71 -0.0016471663 2.976777e-02 sample72 0.0328893980 2.835758e-02 sample73 0.0275082525 5.148143e-02 sample74 0.1341722537 7.895263e-02 sample75 0.0951574882 3.943123e-02 sample76 -0.0864723959 -3.035032e-02 sample77 -0.1035750173 2.545350e-02 sample78 -0.1575640553 -4.939437e-02 sample79 0.0189130868 -4.874690e-02 sample80 0.1384138811 -4.348027e-05 sample81 -0.0118847957 6.357913e-02 sample82 -0.1675307608 -3.533926e-02 sample83 -0.0065671489 7.812495e-02 sample84 0.1486891314 3.109053e-02 sample85 -0.0532726110 -7.417976e-02 sample86 -0.1138476648 1.848113e-05 sample87 0.0432862846 -6.080516e-02 sample88 0.0433450692 -1.402488e-01 sample89 0.0331209606 1.395413e-02 sample90 -0.0607411869 8.610400e-02 sample91 -0.0566285002 -1.303766e-01 sample92 -0.0359589608 -1.061603e-01 sample93 -0.0433645271 4.443622e-02 sample94 -0.0477290701 1.059572e-01 sample95 -0.0249598166 3.980520e-02 sample96 0.0035218726 9.293932e-02 sample97 -0.0066046669 1.527234e-01 sample98 0.0020367287 5.579516e-02 sample99 -0.0886610647 3.728393e-02 sample100 -0.1091258474 3.560433e-02 sample101 -0.0739731862 4.317917e-02 sample102 0.0574461989 2.784068e-02 sample103 0.0142728221 -9.706365e-03 sample104 0.0710392477 -4.068349e-02 sample105 0.0980832422 3.452963e-02 sample106 -0.0254257387 -3.628930e-02 sample107 -0.0160650396 9.173401e-02 sample108 -0.0200986787 2.379703e-02 sample109 -0.0389785430 -1.692291e-02 sample110 -0.0326303997 -2.988081e-02 sample111 0.0676934680 6.038236e-02 sample112 0.0167885242 -5.337006e-03 sample113 0.0969218093 2.757676e-02 sample114 -0.0026399929 9.209105e-02 sample115 -0.0308050741 -1.603729e-02 sample116 -0.1240311974 -1.272994e-01 sample117 0.0334725297 -5.392672e-02 sample118 -0.1037155349 -6.252407e-02 sample119 -0.1064188525 -1.196212e-01 sample120 -0.0771353825 1.004937e-01 sample121 -0.0129347918 -3.181910e-02 sample122 0.0847495860 5.568436e-02 sample123 -0.0041336445 -7.693585e-03 sample124 -0.0583456369 8.396494e-02 sample125 0.0634847050 5.232543e-02 sample126 -0.0662578802 1.091732e-01 sample127 -0.0865024584 1.094175e-01 sample128 -0.0627813288 1.471109e-02 sample129 -0.0336275970 4.007780e-02 sample130 -0.0293517277 8.046093e-02 sample131 -0.0469198314 2.209544e-03 sample132 -0.0241737530 1.248609e-01 sample133 0.0907302289 -1.466725e-02 sample134 -0.0350842974 -7.539646e-02 sample135 0.0001333989 -9.185822e-03 sample136 -0.0335876659 9.860194e-02 sample137 -0.0640149216 7.554390e-02 sample138 0.0060962922 1.742782e-02 sample139 -0.0592084304 -5.614995e-02 sample140 0.0427984933 1.099457e-02 sample141 0.0618799407 9.301081e-02 sample142 0.0898555708 -3.573353e-02 sample143 0.0817386780 -8.880552e-02 sample144 0.0787754491 3.821374e-02 sample145 0.1085822646 -1.569464e-01 sample146 -0.0589560494 4.373257e-02 sample147 -0.0495329532 -7.277986e-03 sample148 0.1161595183 -9.078511e-03 sample149 -0.0121585058 -7.788457e-02 sample150 -0.0314512093 -3.520211e-02 sample151 0.0575381185 1.945377e-02 sample152 -0.0494545278 -7.025545e-02 sample153 -0.0941329716 -2.153267e-01 sample154 -0.0335934085 -2.078815e-02 sample155 0.0690458396 2.780340e-02 sample156 0.1039901197 6.292463e-02 sample157 -0.0408644164 -8.065429e-03 sample158 0.1018105033 -7.817306e-03 sample159 -0.0281729198 1.207264e-02 sample160 0.1643054648 -2.978303e-03 sample161 0.0374326289 -8.524599e-02 sample162 -0.0804530942 -8.349615e-02 sample163 -0.0743224274 1.406369e-02 sample164 0.1208806785 2.139487e-02 sample165 0.1608115104 -2.025205e-02 sample166 -0.0425942471 2.660810e-02 sample167 -0.0226850212 4.464268e-02 sample168 -0.0180732869 7.471425e-04 sample169 0.0190779876 -2.645434e-02 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Combined plot for loadings from common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ## Plot scores and loadings togheter: Common components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Common components O2PLS > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Distintive components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > > proc.time() user system elapsed 4.645 0.145 4.793
STATegRa.Rcheck/STATegRa-Ex.timings
name | user | system | elapsed | |
STATegRaUsersGuide | 0.000 | 0.000 | 0.001 | |
STATegRa_data | 0.114 | 0.004 | 0.118 | |
STATegRa_data_TCGA_BRCA | 0.001 | 0.000 | 0.002 | |
bioDist | 0.233 | 0.009 | 0.243 | |
bioDistFeature | 0.132 | 0.009 | 0.141 | |
bioDistFeaturePlot | 0.127 | 0.007 | 0.134 | |
bioDistW | 0.128 | 0.009 | 0.137 | |
bioDistWPlot | 0.128 | 0.007 | 0.136 | |
bioMap | 0.001 | 0.001 | 0.001 | |
combiningMappings | 0.004 | 0.000 | 0.004 | |
createOmicsExpressionSet | 0.063 | 0.002 | 0.065 | |
getInitialData | 0.275 | 0.051 | 0.326 | |
getLoadings | 0.283 | 0.064 | 0.347 | |
getMethodInfo | 0.331 | 0.059 | 0.394 | |
getPreprocessing | 0.351 | 0.265 | 0.630 | |
getScores | 0.338 | 0.056 | 0.394 | |
getVAF | 0.273 | 0.045 | 0.318 | |
holistOmics | 0.001 | 0.001 | 0.001 | |
modelSelection | 0.534 | 0.580 | 1.137 | |
omicsCompAnalysis | 1.987 | 0.125 | 2.124 | |
omicsNPC | 0.001 | 0.001 | 0.002 | |
plotRes | 2.107 | 0.088 | 2.202 | |
plotVAF | 1.946 | 0.108 | 2.090 | |