Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFGHIJKL[M]NOPQRSTUVWXYZ

This page was generated on 2025-01-11 11:46 -0500 (Sat, 11 Jan 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_64R Under development (unstable) (2024-10-21 r87258) -- "Unsuffered Consequences" 4760
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2024-10-26 r87273 ucrt) -- "Unsuffered Consequences" 4479
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" 4443
kjohnson3macOS 13.7.1 Venturaarm64R Under development (unstable) (2024-11-20 r87352) -- "Unsuffered Consequences" 4398
kunpeng2Linux (openEuler 22.03 LTS-SP1)aarch64R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences" 4391
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1166/2277HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
MBECS 1.11.0  (landing page)
Michael Olbrich
Snapshot Date: 2025-01-10 13:40 -0500 (Fri, 10 Jan 2025)
git_url: https://git.bioconductor.org/packages/MBECS
git_branch: devel
git_last_commit: f568758
git_last_commit_date: 2024-10-29 11:08:55 -0500 (Tue, 29 Oct 2024)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  NO, package depends on 'phyloseq' which is not available
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  NO, package depends on 'phyloseq' which is not available
kunpeng2Linux (openEuler 22.03 LTS-SP1) / aarch64  OK    OK    OK  


CHECK results for MBECS on kunpeng2

To the developers/maintainers of the MBECS package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/MBECS.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: MBECS
Version: 1.11.0
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:MBECS.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings MBECS_1.11.0.tar.gz
StartedAt: 2025-01-11 08:12:37 -0000 (Sat, 11 Jan 2025)
EndedAt: 2025-01-11 08:17:52 -0000 (Sat, 11 Jan 2025)
EllapsedTime: 315.4 seconds
RetCode: 0
Status:   OK  
CheckDir: MBECS.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:MBECS.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings MBECS_1.11.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/MBECS.Rcheck’
* using R Under development (unstable) (2024-11-24 r87369)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘MBECS/DESCRIPTION’ ... OK
* this is package ‘MBECS’ version ‘1.11.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘MBECS’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dummy.ps.Rd: phyloseq
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                       user system elapsed
mbecCorrection        7.496  0.367   7.887
mbecModelVariance     7.438  0.084   7.543
mbecVarianceStatsPlot 6.315  0.048   6.374
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.21-bioc/meat/MBECS.Rcheck/00check.log’
for details.


Installation output

MBECS.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL MBECS
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.5.0-devel_2024-11-24/site-library’
* installing *source* package ‘MBECS’ ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (MBECS)

Tests output

MBECS.Rcheck/tests/testthat.Rout


R Under development (unstable) (2024-11-24 r87369) -- "Unsuffered Consequences"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(MBECS)
> 
> test_check("MBECS")
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
No negative control features provided.
                Using pseudo-negative controls.
Applying Remove Unwanted Variantion v3 (RUV-III).
No 'sID' column present, creating from rownames now.
No 'sID' column present, creating from rownames now.
Set tss-transformed counts.
No 'sID' column present, creating from rownames now.
Set tss-transformed counts.
Construct lm-formula from covariates.
Construct lm-formula from covariates.
There is a problem with the estimatibility of your model.
            Check out covariate: 'sIDS40'
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Calculating RLE for group: A
Calculating RLE for group: B
Fitting linear model to every feature and extract proportion of
          variance explained by covariates.
Construct formula from covariates.

  |                                                                                      
  |                                                                                |   0%
  |                                                                                      
  |====                                                                            |   5%
  |                                                                                      
  |========                                                                        |  10%
  |                                                                                      
  |============                                                                    |  15%
  |                                                                                      
  |================                                                                |  20%
  |                                                                                      
  |====================                                                            |  25%
  |                                                                                      
  |========================                                                        |  30%
  |                                                                                      
  |============================                                                    |  35%
  |                                                                                      
  |================================                                                |  40%
  |                                                                                      
  |====================================                                            |  45%
  |                                                                                      
  |========================================                                        |  50%
  |                                                                                      
  |============================================                                    |  55%
  |                                                                                      
  |================================================                                |  60%
  |                                                                                      
  |====================================================                            |  65%
  |                                                                                      
  |========================================================                        |  70%
  |                                                                                      
  |============================================================                    |  75%
  |                                                                                      
  |================================================================                |  80%
  |                                                                                      
  |====================================================================            |  85%
  |                                                                                      
  |========================================================================        |  90%
  |                                                                                      
  |============================================================================    |  95%
  |                                                                                      
  |================================================================================| 100%
Fitting linear-mixed model to every feature and extract proportion
            of variance explained by covariates.
Construct formula from covariates.

  |                                                                                      
  |                                                                                |   0%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |====                                                                            |   5%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |========                                                                        |  10%
  |                                                                                      
  |============                                                                    |  15%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |================                                                                |  20%
  |                                                                                      
  |====================                                                            |  25%
  |                                                                                      
  |========================                                                        |  30%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |============================                                                    |  35%
  |                                                                                      
  |================================                                                |  40%
  |                                                                                      
  |====================================                                            |  45%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |========================================                                        |  50%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |============================================                                    |  55%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |================================================                                |  60%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |====================================================                            |  65%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |========================================================                        |  70%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |============================================================                    |  75%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |================================================================                |  80%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |====================================================================            |  85%
  |                                                                                      
  |========================================================================        |  90%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |============================================================================    |  95%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |================================================================================| 100%

  |                                                                                      
  |                                                                                |   0%
  |                                                                                      
  |========================================                                        |  50%
  |                                                                                      
  |================================================================================| 100%
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
[1] "batch"
[1] "group"
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Applying ComBat (sva) for batch-correction.
Found2batches
Adjusting for1covariate(s) or covariate level(s)
Standardizing Data across genes
Fitting L/S model and finding priors
Finding nonparametric adjustments
Adjusting the Data

[ FAIL 0 | WARN 101 | SKIP 0 | PASS 282 ]

[ FAIL 0 | WARN 101 | SKIP 0 | PASS 282 ]
> 
> proc.time()
   user  system elapsed 
 83.907   1.036  85.102 

Example timings

MBECS.Rcheck/MBECS-Ex.timings

nameusersystemelapsed
MbecData0.1410.0280.170
colinScore0.3940.1390.535
dot-mbecGetData0.0390.0000.039
dot-mbecGetPhyloseq0.0460.0030.050
dot-mbecSetData0.0420.0120.054
dummy.list0.0050.0000.005
dummy.mbec0.0270.0000.028
dummy.ps0.0010.0040.005
mbecBox3.6170.2723.900
mbecBoxPlot3.0290.0483.086
mbecCorrection7.4960.3677.887
mbecDummy0.1660.0000.166
mbecGetData-MbecData-method0.0350.0000.035
mbecGetData0.0350.0000.035
mbecGetPhyloseq-MbecData-method0.0540.0000.054
mbecGetPhyloseq0.0490.0000.049
mbecHeat0.2540.0000.254
mbecHeatPlot0.1850.0000.185
mbecHelpFactor0.0050.0000.005
mbecLM1.1890.0241.216
mbecMixedVariance0.0470.0040.050
mbecModelVariance7.4380.0847.543
mbecMosaic1.2010.0241.238
mbecMosaicPlot1.0620.0001.064
mbecPCA-MbecData-method1.2130.0121.227
mbecPCA1.2110.0201.233
mbecPCAPlot1.0780.0041.084
mbecPVCAStatsPlot1.4550.0441.502
mbecProcessInput-MbecData-method0.0240.0040.028
mbecProcessInput-list-method0.0280.0000.028
mbecProcessInput-phyloseq-method0.0380.0000.039
mbecProcessInput0.0280.0000.029
mbecRDAStatsPlot0.1230.0040.128
mbecRLE0.2770.0080.286
mbecRLEPlot0.1990.0000.200
mbecReportPost4.4430.0004.451
mbecReportPrelim2.2070.0002.211
mbecRunCorrections2.7740.0202.798
mbecSCOEFStatsPlot0.0720.0000.073
mbecSetData-MbecData-method0.0530.0000.054
mbecSetData0.1110.0000.111
mbecTestModel0.0350.0000.035
mbecTransform0.1960.0000.196
mbecValidateModel0.0320.0040.036
mbecVarianceStats0.0160.0000.017
mbecVarianceStatsPlot6.3150.0486.374
percentileNorm3.3210.0723.397
poscore000