Back to Multiple platform build/check report for BioC 3.8 |
|
This page was generated on 2019-04-16 11:47:49 -0400 (Tue, 16 Apr 2019).
Package 832/1649 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
limma 3.38.3 Gordon Smyth
| malbec1 | Linux (Ubuntu 16.04.6 LTS) / x86_64 | OK | OK | [ OK ] | |||||||
merida1 | OS X 10.11.6 El Capitan / x86_64 | OK | OK | OK | OK |
Package: limma |
Version: 3.38.3 |
Command: /home/biocbuild/bbs-3.8-bioc/R/bin/R CMD check --install=check:limma.install-out.txt --library=/home/biocbuild/bbs-3.8-bioc/R/library --no-vignettes --timings limma_3.38.3.tar.gz |
StartedAt: 2019-04-16 01:00:16 -0400 (Tue, 16 Apr 2019) |
EndedAt: 2019-04-16 01:01:36 -0400 (Tue, 16 Apr 2019) |
EllapsedTime: 79.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: limma.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.8-bioc/R/bin/R CMD check --install=check:limma.install-out.txt --library=/home/biocbuild/bbs-3.8-bioc/R/library --no-vignettes --timings limma_3.38.3.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.8-bioc/meat/limma.Rcheck’ * using R version 3.5.3 (2019-03-11) * using platform: x86_64-pc-linux-gnu (64-bit) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘limma/DESCRIPTION’ ... OK * this is package ‘limma’ version ‘3.38.3’ * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘limma’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking compiled code ... NOTE Note: information on .o files is not available * checking installed files from ‘inst/doc’ ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘limma-Tests.R’ Comparing ‘limma-Tests.Rout’ to ‘limma-Tests.Rout.save’ ... OK OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/home/biocbuild/bbs-3.8-bioc/meat/limma.Rcheck/00check.log’ for details.
limma.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.8-bioc/R/bin/R CMD INSTALL limma ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.8-bioc/R/library’ * installing *source* package ‘limma’ ... ** libs gcc -I"/home/biocbuild/bbs-3.8-bioc/R/include" -DNDEBUG -I/usr/local/include -fpic -g -O2 -Wall -c init.c -o init.o gcc -I"/home/biocbuild/bbs-3.8-bioc/R/include" -DNDEBUG -I/usr/local/include -fpic -g -O2 -Wall -c normexp.c -o normexp.o gcc -I"/home/biocbuild/bbs-3.8-bioc/R/include" -DNDEBUG -I/usr/local/include -fpic -g -O2 -Wall -c weighted_lowess.c -o weighted_lowess.o gcc -shared -L/home/biocbuild/bbs-3.8-bioc/R/lib -L/usr/local/lib -o limma.so init.o normexp.o weighted_lowess.o -L/home/biocbuild/bbs-3.8-bioc/R/lib -lR installing to /home/biocbuild/bbs-3.8-bioc/R/library/limma/libs ** R ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ‘intro.Rnw’ ** testing if installed package can be loaded * DONE (limma)
limma.Rcheck/tests/limma-Tests.Rout
R version 3.5.3 (2019-03-11) -- "Great Truth" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(limma) > > set.seed(0); u <- runif(100) > > ### strsplit2 > > x <- c("ab;cd;efg","abc;def","z","") > strsplit2(x,split=";") [,1] [,2] [,3] [1,] "ab" "cd" "efg" [2,] "abc" "def" "" [3,] "z" "" "" [4,] "" "" "" > > ### removeext > > removeExt(c("slide1.spot","slide.2.spot")) [1] "slide1" "slide.2" > removeExt(c("slide1.spot","slide")) [1] "slide1.spot" "slide" > > ### printorder > > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6),ndups=2,start="topright",npins=4) $printorder [1] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13 [19] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31 [37] 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1 [55] 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19 [73] 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37 [91] 48 47 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7 [109] 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 26 25 [127] 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43 [145] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13 [163] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31 [181] 42 41 40 39 38 37 48 47 46 45 44 43 54 53 52 51 50 49 [199] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67 [217] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85 [235] 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55 [253] 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73 [271] 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91 [289] 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61 [307] 72 71 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79 [325] 90 89 88 87 86 85 96 95 94 93 92 91 54 53 52 51 50 49 [343] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67 [361] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85 [379] 96 95 94 93 92 91 102 101 100 99 98 97 108 107 106 105 104 103 [397] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121 [415] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139 [433] 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 110 109 [451] 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127 [469] 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 98 97 [487] 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115 [505] 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133 [523] 144 143 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103 [541] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121 [559] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139 [577] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157 [595] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 [613] 186 185 184 183 182 181 192 191 190 189 188 187 150 149 148 147 146 145 [631] 156 155 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163 [649] 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 182 181 [667] 192 191 190 189 188 187 150 149 148 147 146 145 156 155 154 153 152 151 [685] 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169 [703] 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187 [721] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157 [739] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 [757] 186 185 184 183 182 181 192 191 190 189 188 187 $plate [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $plate.r [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 [26] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 [76] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 [101] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [126] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 [151] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 [201] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 [226] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 [251] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 [276] 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 [301] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 [326] 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 [351] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 [376] 5 5 5 5 5 5 5 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 [401] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 [426] 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 [451] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 [476] 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 [501] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 [526] 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 [551] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 [576] 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 [601] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 [626] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 [651] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 [676] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 [701] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 [726] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 [751] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 $plate.c [1] 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 [26] 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 [51] 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 [76] 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 [101] 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 [126] 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 [151] 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 [176] 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 [201] 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 [226] 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 [251] 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 [276] 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 [301] 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 [326] 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 [351] 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 [376] 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 [401] 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 [426] 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 [451] 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 [476] 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 [501] 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 [526] 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 [551] 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 [576] 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 [601] 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 [626] 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 [651] 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 [676] 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 [701] 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 [726] 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 [751] 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 $plateposition [1] "p1D03" "p1D03" "p1D02" "p1D02" "p1D01" "p1D01" "p1D06" "p1D06" "p1D05" [10] "p1D05" "p1D04" "p1D04" "p1D09" "p1D09" "p1D08" "p1D08" "p1D07" "p1D07" [19] "p1D12" "p1D12" "p1D11" "p1D11" "p1D10" "p1D10" "p1D15" "p1D15" "p1D14" [28] "p1D14" "p1D13" "p1D13" "p1D18" "p1D18" "p1D17" "p1D17" "p1D16" "p1D16" [37] "p1D21" "p1D21" "p1D20" "p1D20" "p1D19" "p1D19" "p1D24" "p1D24" "p1D23" [46] "p1D23" "p1D22" "p1D22" "p1C03" "p1C03" "p1C02" "p1C02" "p1C01" "p1C01" [55] "p1C06" "p1C06" "p1C05" "p1C05" "p1C04" "p1C04" "p1C09" "p1C09" "p1C08" [64] "p1C08" "p1C07" "p1C07" "p1C12" "p1C12" "p1C11" "p1C11" "p1C10" "p1C10" [73] "p1C15" "p1C15" "p1C14" "p1C14" "p1C13" "p1C13" "p1C18" "p1C18" "p1C17" [82] "p1C17" "p1C16" "p1C16" "p1C21" "p1C21" "p1C20" "p1C20" "p1C19" "p1C19" [91] "p1C24" "p1C24" "p1C23" "p1C23" "p1C22" "p1C22" "p1B03" "p1B03" "p1B02" [100] "p1B02" "p1B01" "p1B01" "p1B06" "p1B06" "p1B05" "p1B05" "p1B04" "p1B04" [109] "p1B09" "p1B09" "p1B08" "p1B08" "p1B07" "p1B07" "p1B12" "p1B12" "p1B11" [118] "p1B11" "p1B10" "p1B10" "p1B15" "p1B15" "p1B14" "p1B14" "p1B13" "p1B13" [127] "p1B18" "p1B18" "p1B17" "p1B17" "p1B16" "p1B16" "p1B21" "p1B21" "p1B20" [136] "p1B20" "p1B19" "p1B19" "p1B24" "p1B24" "p1B23" "p1B23" "p1B22" "p1B22" [145] "p1A03" "p1A03" "p1A02" "p1A02" "p1A01" "p1A01" "p1A06" "p1A06" "p1A05" [154] "p1A05" "p1A04" "p1A04" "p1A09" "p1A09" "p1A08" "p1A08" "p1A07" "p1A07" [163] "p1A12" "p1A12" "p1A11" "p1A11" "p1A10" "p1A10" "p1A15" "p1A15" "p1A14" [172] "p1A14" "p1A13" "p1A13" "p1A18" "p1A18" "p1A17" "p1A17" "p1A16" "p1A16" [181] "p1A21" "p1A21" "p1A20" "p1A20" "p1A19" "p1A19" "p1A24" "p1A24" "p1A23" [190] "p1A23" "p1A22" "p1A22" "p1H03" "p1H03" "p1H02" "p1H02" "p1H01" "p1H01" [199] "p1H06" "p1H06" "p1H05" "p1H05" "p1H04" "p1H04" "p1H09" "p1H09" "p1H08" [208] "p1H08" "p1H07" "p1H07" "p1H12" "p1H12" "p1H11" "p1H11" "p1H10" "p1H10" [217] "p1H15" "p1H15" "p1H14" "p1H14" "p1H13" "p1H13" "p1H18" "p1H18" "p1H17" [226] "p1H17" "p1H16" "p1H16" "p1H21" "p1H21" "p1H20" "p1H20" "p1H19" "p1H19" [235] "p1H24" "p1H24" "p1H23" "p1H23" "p1H22" "p1H22" "p1G03" "p1G03" "p1G02" [244] "p1G02" "p1G01" "p1G01" "p1G06" "p1G06" "p1G05" "p1G05" "p1G04" "p1G04" [253] "p1G09" "p1G09" "p1G08" "p1G08" "p1G07" "p1G07" "p1G12" "p1G12" "p1G11" [262] "p1G11" "p1G10" "p1G10" "p1G15" "p1G15" "p1G14" "p1G14" "p1G13" "p1G13" [271] "p1G18" "p1G18" "p1G17" "p1G17" "p1G16" "p1G16" "p1G21" "p1G21" "p1G20" [280] "p1G20" "p1G19" "p1G19" "p1G24" "p1G24" "p1G23" "p1G23" "p1G22" "p1G22" [289] "p1F03" "p1F03" "p1F02" "p1F02" "p1F01" "p1F01" "p1F06" "p1F06" "p1F05" [298] "p1F05" "p1F04" "p1F04" "p1F09" "p1F09" "p1F08" "p1F08" "p1F07" "p1F07" [307] "p1F12" "p1F12" "p1F11" "p1F11" "p1F10" "p1F10" "p1F15" "p1F15" "p1F14" [316] "p1F14" "p1F13" "p1F13" "p1F18" "p1F18" "p1F17" "p1F17" "p1F16" "p1F16" [325] "p1F21" "p1F21" "p1F20" "p1F20" "p1F19" "p1F19" "p1F24" "p1F24" "p1F23" [334] "p1F23" "p1F22" "p1F22" "p1E03" "p1E03" "p1E02" "p1E02" "p1E01" "p1E01" [343] "p1E06" "p1E06" "p1E05" "p1E05" "p1E04" "p1E04" "p1E09" "p1E09" "p1E08" [352] "p1E08" "p1E07" "p1E07" "p1E12" "p1E12" "p1E11" "p1E11" "p1E10" "p1E10" [361] "p1E15" "p1E15" "p1E14" "p1E14" "p1E13" "p1E13" "p1E18" "p1E18" "p1E17" [370] "p1E17" "p1E16" "p1E16" "p1E21" "p1E21" "p1E20" "p1E20" "p1E19" "p1E19" [379] "p1E24" "p1E24" "p1E23" "p1E23" "p1E22" "p1E22" "p1L03" "p1L03" "p1L02" [388] "p1L02" "p1L01" "p1L01" "p1L06" "p1L06" "p1L05" "p1L05" "p1L04" "p1L04" [397] "p1L09" "p1L09" "p1L08" "p1L08" "p1L07" "p1L07" "p1L12" "p1L12" "p1L11" [406] "p1L11" "p1L10" "p1L10" "p1L15" "p1L15" "p1L14" "p1L14" "p1L13" "p1L13" [415] "p1L18" "p1L18" "p1L17" "p1L17" "p1L16" "p1L16" "p1L21" "p1L21" "p1L20" [424] "p1L20" "p1L19" "p1L19" "p1L24" "p1L24" "p1L23" "p1L23" "p1L22" "p1L22" [433] "p1K03" "p1K03" "p1K02" "p1K02" "p1K01" "p1K01" "p1K06" "p1K06" "p1K05" [442] "p1K05" "p1K04" "p1K04" "p1K09" "p1K09" "p1K08" "p1K08" "p1K07" "p1K07" [451] "p1K12" "p1K12" "p1K11" "p1K11" "p1K10" "p1K10" "p1K15" "p1K15" "p1K14" [460] "p1K14" "p1K13" "p1K13" "p1K18" "p1K18" "p1K17" "p1K17" "p1K16" "p1K16" [469] "p1K21" "p1K21" "p1K20" "p1K20" "p1K19" "p1K19" "p1K24" "p1K24" "p1K23" [478] "p1K23" "p1K22" "p1K22" "p1J03" "p1J03" "p1J02" "p1J02" "p1J01" "p1J01" [487] "p1J06" "p1J06" "p1J05" "p1J05" "p1J04" "p1J04" "p1J09" "p1J09" "p1J08" [496] "p1J08" "p1J07" "p1J07" "p1J12" "p1J12" "p1J11" "p1J11" "p1J10" "p1J10" [505] "p1J15" "p1J15" "p1J14" "p1J14" "p1J13" "p1J13" "p1J18" "p1J18" "p1J17" [514] "p1J17" "p1J16" "p1J16" "p1J21" "p1J21" "p1J20" "p1J20" "p1J19" "p1J19" [523] "p1J24" "p1J24" "p1J23" "p1J23" "p1J22" "p1J22" "p1I03" "p1I03" "p1I02" [532] "p1I02" "p1I01" "p1I01" "p1I06" "p1I06" "p1I05" "p1I05" "p1I04" "p1I04" [541] "p1I09" "p1I09" "p1I08" "p1I08" "p1I07" "p1I07" "p1I12" "p1I12" "p1I11" [550] "p1I11" "p1I10" "p1I10" "p1I15" "p1I15" "p1I14" "p1I14" "p1I13" "p1I13" [559] "p1I18" "p1I18" "p1I17" "p1I17" "p1I16" "p1I16" "p1I21" "p1I21" "p1I20" [568] "p1I20" "p1I19" "p1I19" "p1I24" "p1I24" "p1I23" "p1I23" "p1I22" "p1I22" [577] "p1P03" "p1P03" "p1P02" "p1P02" "p1P01" "p1P01" "p1P06" "p1P06" "p1P05" [586] "p1P05" "p1P04" "p1P04" "p1P09" "p1P09" "p1P08" "p1P08" "p1P07" "p1P07" [595] "p1P12" "p1P12" "p1P11" "p1P11" "p1P10" "p1P10" "p1P15" "p1P15" "p1P14" [604] "p1P14" "p1P13" "p1P13" "p1P18" "p1P18" "p1P17" "p1P17" "p1P16" "p1P16" [613] "p1P21" "p1P21" "p1P20" "p1P20" "p1P19" "p1P19" "p1P24" "p1P24" "p1P23" [622] "p1P23" "p1P22" "p1P22" "p1O03" "p1O03" "p1O02" "p1O02" "p1O01" "p1O01" [631] "p1O06" "p1O06" "p1O05" "p1O05" "p1O04" "p1O04" "p1O09" "p1O09" "p1O08" [640] "p1O08" "p1O07" "p1O07" "p1O12" "p1O12" "p1O11" "p1O11" "p1O10" "p1O10" [649] "p1O15" "p1O15" "p1O14" "p1O14" "p1O13" "p1O13" "p1O18" "p1O18" "p1O17" [658] "p1O17" "p1O16" "p1O16" "p1O21" "p1O21" "p1O20" "p1O20" "p1O19" "p1O19" [667] "p1O24" "p1O24" "p1O23" "p1O23" "p1O22" "p1O22" "p1N03" "p1N03" "p1N02" [676] "p1N02" "p1N01" "p1N01" "p1N06" "p1N06" "p1N05" "p1N05" "p1N04" "p1N04" [685] "p1N09" "p1N09" "p1N08" "p1N08" "p1N07" "p1N07" "p1N12" "p1N12" "p1N11" [694] "p1N11" "p1N10" "p1N10" "p1N15" "p1N15" "p1N14" "p1N14" "p1N13" "p1N13" [703] "p1N18" "p1N18" "p1N17" "p1N17" "p1N16" "p1N16" "p1N21" "p1N21" "p1N20" [712] "p1N20" "p1N19" "p1N19" "p1N24" "p1N24" "p1N23" "p1N23" "p1N22" "p1N22" [721] "p1M03" "p1M03" "p1M02" "p1M02" "p1M01" "p1M01" "p1M06" "p1M06" "p1M05" [730] "p1M05" "p1M04" "p1M04" "p1M09" "p1M09" "p1M08" "p1M08" "p1M07" "p1M07" [739] "p1M12" "p1M12" "p1M11" "p1M11" "p1M10" "p1M10" "p1M15" "p1M15" "p1M14" [748] "p1M14" "p1M13" "p1M13" "p1M18" "p1M18" "p1M17" "p1M17" "p1M16" "p1M16" [757] "p1M21" "p1M21" "p1M20" "p1M20" "p1M19" "p1M19" "p1M24" "p1M24" "p1M23" [766] "p1M23" "p1M22" "p1M22" > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6)) $printorder [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 [51] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 [76] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 [101] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 [126] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 [151] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 [176] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 [201] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 [226] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 [251] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 [276] 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 [301] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 [326] 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 [351] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 [376] 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [401] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 [426] 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 [451] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 [476] 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 [501] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [526] 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 [551] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 [576] 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 [601] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 [626] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [651] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 [676] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 [701] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 [726] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 [751] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 $plate [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 [38] 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [112] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [186] 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 [223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [260] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [334] 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 [371] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [408] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 [445] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [519] 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 [556] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [593] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [667] 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 [704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [741] 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 $plate.r [1] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 [26] 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 [51] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 [76] 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 [101] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 [126] 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 [151] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 [176] 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 [201] 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 [226] 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 [251] 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 [276] 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 [301] 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 [326] 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 [351] 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 [376] 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 [401] 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 [426] 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 [451] 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 [476] 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 [501] 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 [526] 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 [551] 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 [576] 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 [601] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 [626] 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 [651] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 [676] 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 [701] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 [726] 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 [751] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 $plate.c [1] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 [26] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 [51] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 [76] 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 [101] 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 [126] 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 [151] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 [176] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 2 6 10 14 18 22 2 6 [201] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 [226] 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 [251] 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 [276] 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 [301] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 [326] 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 [351] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 [376] 14 18 22 2 6 10 14 18 22 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 [401] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 [426] 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 [451] 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 [476] 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 [501] 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 [526] 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 [551] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 [576] 23 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 [601] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 [626] 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 [651] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 [676] 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 [701] 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 [726] 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 [751] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 $plateposition [1] "p1D01" "p1D05" "p1D09" "p1D13" "p1D17" "p1D21" "p1H01" "p1H05" "p1H09" [10] "p1H13" "p1H17" "p1H21" "p1L01" "p1L05" "p1L09" "p1L13" "p1L17" "p1L21" [19] "p1P01" "p1P05" "p1P09" "p1P13" "p1P17" "p1P21" "p2D01" "p2D05" "p2D09" [28] "p2D13" "p2D17" "p2D21" "p2H01" "p2H05" "p2H09" "p2H13" "p2H17" "p2H21" [37] "p2L01" "p2L05" "p2L09" "p2L13" "p2L17" "p2L21" "p2P01" "p2P05" "p2P09" [46] "p2P13" "p2P17" "p2P21" "p1C01" "p1C05" "p1C09" "p1C13" "p1C17" "p1C21" [55] "p1G01" "p1G05" "p1G09" "p1G13" "p1G17" "p1G21" "p1K01" "p1K05" "p1K09" [64] "p1K13" "p1K17" "p1K21" "p1O01" "p1O05" "p1O09" "p1O13" "p1O17" "p1O21" [73] "p2C01" "p2C05" "p2C09" "p2C13" "p2C17" "p2C21" "p2G01" "p2G05" "p2G09" [82] "p2G13" "p2G17" "p2G21" "p2K01" "p2K05" "p2K09" "p2K13" "p2K17" "p2K21" [91] "p2O01" "p2O05" "p2O09" "p2O13" "p2O17" "p2O21" "p1B01" "p1B05" "p1B09" [100] "p1B13" "p1B17" "p1B21" "p1F01" "p1F05" "p1F09" "p1F13" "p1F17" "p1F21" [109] "p1J01" "p1J05" "p1J09" "p1J13" "p1J17" "p1J21" "p1N01" "p1N05" "p1N09" [118] "p1N13" "p1N17" "p1N21" "p2B01" "p2B05" "p2B09" "p2B13" "p2B17" "p2B21" [127] "p2F01" "p2F05" "p2F09" "p2F13" "p2F17" "p2F21" "p2J01" "p2J05" "p2J09" [136] "p2J13" "p2J17" "p2J21" "p2N01" "p2N05" "p2N09" "p2N13" "p2N17" "p2N21" [145] "p1A01" "p1A05" "p1A09" "p1A13" "p1A17" "p1A21" "p1E01" "p1E05" "p1E09" [154] "p1E13" "p1E17" "p1E21" "p1I01" "p1I05" "p1I09" "p1I13" "p1I17" "p1I21" [163] "p1M01" "p1M05" "p1M09" "p1M13" "p1M17" "p1M21" "p2A01" "p2A05" "p2A09" [172] "p2A13" "p2A17" "p2A21" "p2E01" "p2E05" "p2E09" "p2E13" "p2E17" "p2E21" [181] "p2I01" "p2I05" "p2I09" "p2I13" "p2I17" "p2I21" "p2M01" "p2M05" "p2M09" [190] "p2M13" "p2M17" "p2M21" "p1D02" "p1D06" "p1D10" "p1D14" "p1D18" "p1D22" [199] "p1H02" "p1H06" "p1H10" "p1H14" "p1H18" "p1H22" "p1L02" "p1L06" "p1L10" [208] "p1L14" "p1L18" "p1L22" "p1P02" "p1P06" "p1P10" "p1P14" "p1P18" "p1P22" [217] "p2D02" "p2D06" "p2D10" "p2D14" "p2D18" "p2D22" "p2H02" "p2H06" "p2H10" [226] "p2H14" "p2H18" "p2H22" "p2L02" "p2L06" "p2L10" "p2L14" "p2L18" "p2L22" [235] "p2P02" "p2P06" "p2P10" "p2P14" "p2P18" "p2P22" "p1C02" "p1C06" "p1C10" [244] "p1C14" "p1C18" "p1C22" "p1G02" "p1G06" "p1G10" "p1G14" "p1G18" "p1G22" [253] "p1K02" "p1K06" "p1K10" "p1K14" "p1K18" "p1K22" "p1O02" "p1O06" "p1O10" [262] "p1O14" "p1O18" "p1O22" "p2C02" "p2C06" "p2C10" "p2C14" "p2C18" "p2C22" [271] "p2G02" "p2G06" "p2G10" "p2G14" "p2G18" "p2G22" "p2K02" "p2K06" "p2K10" [280] "p2K14" "p2K18" "p2K22" "p2O02" "p2O06" "p2O10" "p2O14" "p2O18" "p2O22" [289] "p1B02" "p1B06" "p1B10" "p1B14" "p1B18" "p1B22" "p1F02" "p1F06" "p1F10" [298] "p1F14" "p1F18" "p1F22" "p1J02" "p1J06" "p1J10" "p1J14" "p1J18" "p1J22" [307] "p1N02" "p1N06" "p1N10" "p1N14" "p1N18" "p1N22" "p2B02" "p2B06" "p2B10" [316] "p2B14" "p2B18" "p2B22" "p2F02" "p2F06" "p2F10" "p2F14" "p2F18" "p2F22" [325] "p2J02" "p2J06" "p2J10" "p2J14" "p2J18" "p2J22" "p2N02" "p2N06" "p2N10" [334] "p2N14" "p2N18" "p2N22" "p1A02" "p1A06" "p1A10" "p1A14" "p1A18" "p1A22" [343] "p1E02" "p1E06" "p1E10" "p1E14" "p1E18" "p1E22" "p1I02" "p1I06" "p1I10" [352] "p1I14" "p1I18" "p1I22" "p1M02" "p1M06" "p1M10" "p1M14" "p1M18" "p1M22" [361] "p2A02" "p2A06" "p2A10" "p2A14" "p2A18" "p2A22" "p2E02" "p2E06" "p2E10" [370] "p2E14" "p2E18" "p2E22" "p2I02" "p2I06" "p2I10" "p2I14" "p2I18" "p2I22" [379] "p2M02" "p2M06" "p2M10" "p2M14" "p2M18" "p2M22" "p1D03" "p1D07" "p1D11" [388] "p1D15" "p1D19" "p1D23" "p1H03" "p1H07" "p1H11" "p1H15" "p1H19" "p1H23" [397] "p1L03" "p1L07" "p1L11" "p1L15" "p1L19" "p1L23" "p1P03" "p1P07" "p1P11" [406] "p1P15" "p1P19" "p1P23" "p2D03" "p2D07" "p2D11" "p2D15" "p2D19" "p2D23" [415] "p2H03" "p2H07" "p2H11" "p2H15" "p2H19" "p2H23" "p2L03" "p2L07" "p2L11" [424] "p2L15" "p2L19" "p2L23" "p2P03" "p2P07" "p2P11" "p2P15" "p2P19" "p2P23" [433] "p1C03" "p1C07" "p1C11" "p1C15" "p1C19" "p1C23" "p1G03" "p1G07" "p1G11" [442] "p1G15" "p1G19" "p1G23" "p1K03" "p1K07" "p1K11" "p1K15" "p1K19" "p1K23" [451] "p1O03" "p1O07" "p1O11" "p1O15" "p1O19" "p1O23" "p2C03" "p2C07" "p2C11" [460] "p2C15" "p2C19" "p2C23" "p2G03" "p2G07" "p2G11" "p2G15" "p2G19" "p2G23" [469] "p2K03" "p2K07" "p2K11" "p2K15" "p2K19" "p2K23" "p2O03" "p2O07" "p2O11" [478] "p2O15" "p2O19" "p2O23" "p1B03" "p1B07" "p1B11" "p1B15" "p1B19" "p1B23" [487] "p1F03" "p1F07" "p1F11" "p1F15" "p1F19" "p1F23" "p1J03" "p1J07" "p1J11" [496] "p1J15" "p1J19" "p1J23" "p1N03" "p1N07" "p1N11" "p1N15" "p1N19" "p1N23" [505] "p2B03" "p2B07" "p2B11" "p2B15" "p2B19" "p2B23" "p2F03" "p2F07" "p2F11" [514] "p2F15" "p2F19" "p2F23" "p2J03" "p2J07" "p2J11" "p2J15" "p2J19" "p2J23" [523] "p2N03" "p2N07" "p2N11" "p2N15" "p2N19" "p2N23" "p1A03" "p1A07" "p1A11" [532] "p1A15" "p1A19" "p1A23" "p1E03" "p1E07" "p1E11" "p1E15" "p1E19" "p1E23" [541] "p1I03" "p1I07" "p1I11" "p1I15" "p1I19" "p1I23" "p1M03" "p1M07" "p1M11" [550] "p1M15" "p1M19" "p1M23" "p2A03" "p2A07" "p2A11" "p2A15" "p2A19" "p2A23" [559] "p2E03" "p2E07" "p2E11" "p2E15" "p2E19" "p2E23" "p2I03" "p2I07" "p2I11" [568] "p2I15" "p2I19" "p2I23" "p2M03" "p2M07" "p2M11" "p2M15" "p2M19" "p2M23" [577] "p1D04" "p1D08" "p1D12" "p1D16" "p1D20" "p1D24" "p1H04" "p1H08" "p1H12" [586] "p1H16" "p1H20" "p1H24" "p1L04" "p1L08" "p1L12" "p1L16" "p1L20" "p1L24" [595] "p1P04" "p1P08" "p1P12" "p1P16" "p1P20" "p1P24" "p2D04" "p2D08" "p2D12" [604] "p2D16" "p2D20" "p2D24" "p2H04" "p2H08" "p2H12" "p2H16" "p2H20" "p2H24" [613] "p2L04" "p2L08" "p2L12" "p2L16" "p2L20" "p2L24" "p2P04" "p2P08" "p2P12" [622] "p2P16" "p2P20" "p2P24" "p1C04" "p1C08" "p1C12" "p1C16" "p1C20" "p1C24" [631] "p1G04" "p1G08" "p1G12" "p1G16" "p1G20" "p1G24" "p1K04" "p1K08" "p1K12" [640] "p1K16" "p1K20" "p1K24" "p1O04" "p1O08" "p1O12" "p1O16" "p1O20" "p1O24" [649] "p2C04" "p2C08" "p2C12" "p2C16" "p2C20" "p2C24" "p2G04" "p2G08" "p2G12" [658] "p2G16" "p2G20" "p2G24" "p2K04" "p2K08" "p2K12" "p2K16" "p2K20" "p2K24" [667] "p2O04" "p2O08" "p2O12" "p2O16" "p2O20" "p2O24" "p1B04" "p1B08" "p1B12" [676] "p1B16" "p1B20" "p1B24" "p1F04" "p1F08" "p1F12" "p1F16" "p1F20" "p1F24" [685] "p1J04" "p1J08" "p1J12" "p1J16" "p1J20" "p1J24" "p1N04" "p1N08" "p1N12" [694] "p1N16" "p1N20" "p1N24" "p2B04" "p2B08" "p2B12" "p2B16" "p2B20" "p2B24" [703] "p2F04" "p2F08" "p2F12" "p2F16" "p2F20" "p2F24" "p2J04" "p2J08" "p2J12" [712] "p2J16" "p2J20" "p2J24" "p2N04" "p2N08" "p2N12" "p2N16" "p2N20" "p2N24" [721] "p1A04" "p1A08" "p1A12" "p1A16" "p1A20" "p1A24" "p1E04" "p1E08" "p1E12" [730] "p1E16" "p1E20" "p1E24" "p1I04" "p1I08" "p1I12" "p1I16" "p1I20" "p1I24" [739] "p1M04" "p1M08" "p1M12" "p1M16" "p1M20" "p1M24" "p2A04" "p2A08" "p2A12" [748] "p2A16" "p2A20" "p2A24" "p2E04" "p2E08" "p2E12" "p2E16" "p2E20" "p2E24" [757] "p2I04" "p2I08" "p2I12" "p2I16" "p2I20" "p2I24" "p2M04" "p2M08" "p2M12" [766] "p2M16" "p2M20" "p2M24" > > ### merge.rglist > > R <- G <- matrix(11:14,4,2) > rownames(R) <- rownames(G) <- c("a","a","b","c") > RG1 <- new("RGList",list(R=R,G=G)) > R <- G <- matrix(21:24,4,2) > rownames(R) <- rownames(G) <- c("b","a","a","c") > RG2 <- new("RGList",list(R=R,G=G)) > merge(RG1,RG2) An object of class "RGList" $R [,1] [,2] [,3] [,4] a 11 11 22 22 a 12 12 23 23 b 13 13 21 21 c 14 14 24 24 $G [,1] [,2] [,3] [,4] a 11 11 22 22 a 12 12 23 23 b 13 13 21 21 c 14 14 24 24 > merge(RG2,RG1) An object of class "RGList" $R [,1] [,2] [,3] [,4] b 21 21 13 13 a 22 22 11 11 a 23 23 12 12 c 24 24 14 14 $G [,1] [,2] [,3] [,4] b 21 21 13 13 a 22 22 11 11 a 23 23 12 12 c 24 24 14 14 > > ### background correction > > RG <- new("RGList", list(R=c(1,2,3,4),G=c(1,2,3,4),Rb=c(2,2,2,2),Gb=c(2,2,2,2))) > backgroundCorrect(RG) An object of class "RGList" $R [,1] [1,] -1 [2,] 0 [3,] 1 [4,] 2 $G [,1] [1,] -1 [2,] 0 [3,] 1 [4,] 2 > backgroundCorrect(RG, method="half") An object of class "RGList" $R [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 $G [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 > backgroundCorrect(RG, method="minimum") An object of class "RGList" $R [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 $G [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 > backgroundCorrect(RG, offset=5) An object of class "RGList" $R [,1] [1,] 4 [2,] 5 [3,] 6 [4,] 7 $G [,1] [1,] 4 [2,] 5 [3,] 6 [4,] 7 > > ### loessFit > > x <- 1:100 > y <- rnorm(100) > out <- loessFit(y,x) > f1 <- quantile(out$fitted) > r1 <- quantile(out$residual) > w <- rep(1,100) > w[1:50] <- 0.5 > out <- loessFit(y,x,weights=w,method="weightedLowess") > f2 <- quantile(out$fitted) > r2 <- quantile(out$residual) > out <- loessFit(y,x,weights=w,method="locfit") > f3 <- quantile(out$fitted) > r3 <- quantile(out$residual) > out <- loessFit(y,x,weights=w,method="loess") > f4 <- quantile(out$fitted) > r4 <- quantile(out$residual) > w <- rep(1,100) > w[2*(1:50)] <- 0 > out <- loessFit(y,x,weights=w,method="weightedLowess") > f5 <- quantile(out$fitted) > r5 <- quantile(out$residual) > data.frame(f1,f2,f3,f4,f5) f1 f2 f3 f4 f5 0% -0.78835384 -0.687432210 -0.78957137 -0.76756060 -0.63778292 25% -0.18340154 -0.179683572 -0.18979269 -0.16773223 -0.38064318 50% -0.11492924 -0.114796040 -0.12087983 -0.07185314 -0.15971879 75% 0.01507921 -0.008145125 -0.01857508 0.04030634 0.07839396 100% 0.21653837 0.145106033 0.19214597 0.21417361 0.51836274 > data.frame(r1,r2,r3,r4,r5) r1 r2 r3 r4 r5 0% -2.04434053 -2.05132680 -2.02404318 -2.101242874 -2.22280633 25% -0.59321065 -0.57200209 -0.58975649 -0.577887481 -0.71037756 50% 0.05874864 0.04514326 0.08335198 -0.001769806 0.06785517 75% 0.56010750 0.55124530 0.57618740 0.561454370 0.65383830 100% 2.57936026 2.64549799 2.57549257 2.402324533 2.28648835 > > ### normalizeWithinArrays > > RG <- new("RGList",list()) > RG$R <- matrix(rexp(100*2),100,2) > RG$G <- matrix(rexp(100*2),100,2) > RG$Rb <- matrix(rnorm(100*2,sd=0.02),100,2) > RG$Gb <- matrix(rnorm(100*2,sd=0.02),100,2) > RGb <- backgroundCorrect(RG,method="normexp",normexp.method="saddle") Array 1 corrected Array 2 corrected Array 1 corrected Array 2 corrected > summary(cbind(RGb$R,RGb$G)) V1 V2 V3 V4 Min. :0.01626 Min. :0.01213 Min. :0.0000 Min. :0.0000 1st Qu.:0.35497 1st Qu.:0.29133 1st Qu.:0.2745 1st Qu.:0.3953 Median :0.71793 Median :0.70294 Median :0.6339 Median :0.8223 Mean :0.90184 Mean :1.00122 Mean :0.9454 Mean :1.1324 3rd Qu.:1.16891 3rd Qu.:1.33139 3rd Qu.:1.4059 3rd Qu.:1.4221 Max. :4.56267 Max. :6.37947 Max. :5.0486 Max. :6.6295 > RGb <- backgroundCorrect(RG,method="normexp",normexp.method="mle") Array 1 corrected Array 2 corrected Array 1 corrected Array 2 corrected > summary(cbind(RGb$R,RGb$G)) V1 V2 V3 V4 Min. :0.01701 Min. :0.01255 Min. :0.0000 Min. :0.0000 1st Qu.:0.35423 1st Qu.:0.29118 1st Qu.:0.2745 1st Qu.:0.3953 Median :0.71719 Median :0.70280 Median :0.6339 Median :0.8223 Mean :0.90118 Mean :1.00110 Mean :0.9454 Mean :1.1324 3rd Qu.:1.16817 3rd Qu.:1.33124 3rd Qu.:1.4059 3rd Qu.:1.4221 Max. :4.56193 Max. :6.37932 Max. :5.0486 Max. :6.6295 > MA <- normalizeWithinArrays(RGb,method="loess") > summary(MA$M) V1 V2 Min. :-5.88044 Min. :-5.66985 1st Qu.:-1.18483 1st Qu.:-1.57014 Median :-0.21632 Median : 0.04823 Mean : 0.03487 Mean :-0.05481 3rd Qu.: 1.49669 3rd Qu.: 1.45113 Max. : 7.07324 Max. : 6.19744 > #MA <- normalizeWithinArrays(RG[,1:2], mouse.setup, method="robustspline") > #MA$M[1:5,] > #MA <- normalizeWithinArrays(mouse.data, mouse.setup) > #MA$M[1:5,] > > ### normalizeBetweenArrays > > MA2 <- normalizeBetweenArrays(MA,method="scale") > MA$M[1:5,] [,1] [,2] [1,] -1.1689588 4.5558123 [2,] 0.8971363 0.3296544 [3,] 2.8247439 1.4249960 [4,] -1.8533240 0.4804851 [5,] 1.9158459 -5.5087631 > MA$A[1:5,] [,1] [,2] [1,] -2.48465011 -2.4041550 [2,] -0.79230447 -0.9002250 [3,] -0.76237200 0.2071043 [4,] 0.09281027 -1.3880965 [5,] 0.22385828 -3.0855818 > MA2 <- normalizeBetweenArrays(MA,method="quantile") > MA$M[1:5,] [,1] [,2] [1,] -1.1689588 4.5558123 [2,] 0.8971363 0.3296544 [3,] 2.8247439 1.4249960 [4,] -1.8533240 0.4804851 [5,] 1.9158459 -5.5087631 > MA$A[1:5,] [,1] [,2] [1,] -2.48465011 -2.4041550 [2,] -0.79230447 -0.9002250 [3,] -0.76237200 0.2071043 [4,] 0.09281027 -1.3880965 [5,] 0.22385828 -3.0855818 > > ### unwrapdups > > M <- matrix(1:12,6,2) > unwrapdups(M,ndups=1) [,1] [,2] [1,] 1 7 [2,] 2 8 [3,] 3 9 [4,] 4 10 [5,] 5 11 [6,] 6 12 > unwrapdups(M,ndups=2) [,1] [,2] [,3] [,4] [1,] 1 2 7 8 [2,] 3 4 9 10 [3,] 5 6 11 12 > unwrapdups(M,ndups=3) [,1] [,2] [,3] [,4] [,5] [,6] [1,] 1 2 3 7 8 9 [2,] 4 5 6 10 11 12 > unwrapdups(M,ndups=2,spacing=3) [,1] [,2] [,3] [,4] [1,] 1 4 7 10 [2,] 2 5 8 11 [3,] 3 6 9 12 > > ### trigammaInverse > > trigammaInverse(c(1e-6,NA,5,1e6)) [1] 1.000000e+06 NA 4.961687e-01 1.000001e-03 > > ### lmFit, eBayes, topTable > > M <- matrix(rnorm(10*6,sd=0.3),10,6) > rownames(M) <- LETTERS[1:10] > M[1,1:3] <- M[1,1:3] + 2 > design <- cbind(First3Arrays=c(1,1,1,0,0,0),Last3Arrays=c(0,0,0,1,1,1)) > contrast.matrix <- cbind(First3=c(1,0),Last3=c(0,1),"Last3-First3"=c(-1,1)) > fit <- lmFit(M,design) > fit2 <- eBayes(contrasts.fit(fit,contrasts=contrast.matrix)) > topTable(fit2) First3 Last3 Last3.First3 AveExpr F P.Value A 1.77602021 0.06025114 -1.71576906 0.918135675 50.91471061 7.727200e-23 D -0.05454069 0.39127869 0.44581938 0.168369004 2.51638838 8.075072e-02 F -0.16249607 -0.33009728 -0.16760121 -0.246296671 2.18256779 1.127516e-01 G 0.30852468 -0.06873462 -0.37725930 0.119895035 1.61088775 1.997102e-01 H -0.16942269 0.20578118 0.37520387 0.018179245 1.14554368 3.180510e-01 J 0.21417623 0.07074940 -0.14342683 0.142462814 0.82029274 4.403027e-01 C -0.12236781 0.15095948 0.27332729 0.014295836 0.60885003 5.439761e-01 B -0.11982833 0.13529287 0.25512120 0.007732271 0.52662792 5.905931e-01 E 0.01897934 0.10434934 0.08536999 0.061664340 0.18136849 8.341279e-01 I -0.04720963 0.03996397 0.08717360 -0.003622829 0.06168476 9.401792e-01 adj.P.Val A 7.727200e-22 D 3.758388e-01 F 3.758388e-01 G 4.992756e-01 H 6.361019e-01 J 7.338379e-01 C 7.382414e-01 B 7.382414e-01 E 9.268088e-01 I 9.401792e-01 > topTable(fit2,coef=3,resort.by="logFC") logFC AveExpr t P.Value adj.P.Val B D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 > topTable(fit2,coef=3,resort.by="p") logFC AveExpr t P.Value adj.P.Val B A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 > topTable(fit2,coef=3,sort="logFC",resort.by="t") logFC AveExpr t P.Value adj.P.Val B D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 > topTable(fit2,coef=3,resort.by="B") logFC AveExpr t P.Value adj.P.Val B A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 > topTable(fit2,coef=3,lfc=1) logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > topTable(fit2,coef=3,p=0.2) logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > topTable(fit2,coef=3,p=0.2,lfc=0.5) logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > topTable(fit2,coef=3,p=0.2,lfc=0.5,sort="none") logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > > designlist <- list(Null=matrix(1,6,1),Two=design,Three=cbind(1,c(0,0,1,1,0,0),c(0,0,0,0,1,1))) > out <- selectModel(M,designlist) > table(out$pref) Null Two Three 5 3 2 > > ### marray object > > #suppressMessages(suppressWarnings(gotmarray <- require(marray,quietly=TRUE))) > #if(gotmarray) { > # data(swirl) > # snorm = maNorm(swirl) > # fit <- lmFit(snorm, design = c(1,-1,-1,1)) > # fit <- eBayes(fit) > # topTable(fit,resort.by="AveExpr") > #} > > ### duplicateCorrelation > > cor.out <- duplicateCorrelation(M) > cor.out$consensus.correlation [1] -0.09290714 > cor.out$atanh.correlations [1] -0.4419130 0.4088967 -0.1964978 -0.6093769 0.3730118 > > ### gls.series > > fit <- gls.series(M,design,correlation=cor.out$cor) > fit$coefficients First3Arrays Last3Arrays [1,] 0.82809594 0.09777201 [2,] -0.08845425 0.27111909 [3,] -0.07175836 -0.11287397 [4,] 0.06955100 0.06852328 [5,] 0.08348330 0.05535668 > fit$stdev.unscaled First3Arrays Last3Arrays [1,] 0.3888215 0.3888215 [2,] 0.3888215 0.3888215 [3,] 0.3888215 0.3888215 [4,] 0.3888215 0.3888215 [5,] 0.3888215 0.3888215 > fit$sigma [1] 0.7630059 0.2152728 0.3350370 0.3227781 0.3405473 > fit$df.residual [1] 10 10 10 10 10 > > ### mrlm > > fit <- mrlm(M,design) Warning message: In rlm.default(x = X, y = y, weights = w, ...) : 'rlm' failed to converge in 20 steps > fit$coef First3Arrays Last3Arrays A 1.75138894 0.06025114 B -0.11982833 0.10322039 C -0.09302502 0.15095948 D -0.05454069 0.33700045 E 0.07927938 0.10434934 F -0.16249607 -0.34010852 G 0.30852468 -0.06873462 H -0.16942269 0.24392984 I -0.04720963 0.03996397 J 0.21417623 -0.05679272 > fit$stdev.unscaled First3Arrays Last3Arrays A 0.5933418 0.5773503 B 0.5773503 0.6096497 C 0.6017444 0.5773503 D 0.5773503 0.6266021 E 0.6307703 0.5773503 F 0.5773503 0.5846707 G 0.5773503 0.5773503 H 0.5773503 0.6544564 I 0.5773503 0.5773503 J 0.5773503 0.6689776 > fit$sigma [1] 0.2894294 0.2679396 0.2090236 0.1461395 0.2309018 0.2827476 0.2285945 [8] 0.2267556 0.3537469 0.2172409 > fit$df.residual [1] 4 4 4 4 4 4 4 4 4 4 > > # Similar to Mette Langaas 19 May 2004 > set.seed(123) > narrays <- 9 > ngenes <- 5 > mu <- 0 > alpha <- 2 > beta <- -2 > epsilon <- matrix(rnorm(narrays*ngenes,0,1),ncol=narrays) > X <- cbind(rep(1,9),c(0,0,0,1,1,1,0,0,0),c(0,0,0,0,0,0,1,1,1)) > dimnames(X) <- list(1:9,c("mu","alpha","beta")) > yvec <- mu*X[,1]+alpha*X[,2]+beta*X[,3] > ymat <- matrix(rep(yvec,ngenes),ncol=narrays,byrow=T)+epsilon > ymat[5,1:2] <- NA > fit <- lmFit(ymat,design=X) > test.contr <- cbind(c(0,1,-1),c(1,1,0),c(1,0,1)) > dimnames(test.contr) <- list(c("mu","alpha","beta"),c("alpha-beta","mu+alpha","mu+beta")) > fit2 <- contrasts.fit(fit,contrasts=test.contr) > eBayes(fit2) An object of class "MArrayLM" $coefficients alpha-beta mu+alpha mu+beta [1,] 3.537333 1.677465 -1.859868 [2,] 4.355578 2.372554 -1.983024 [3,] 3.197645 1.053584 -2.144061 [4,] 2.697734 1.611443 -1.086291 [5,] 3.502304 2.051995 -1.450309 $stdev.unscaled alpha-beta mu+alpha mu+beta [1,] 0.8164966 0.5773503 0.5773503 [2,] 0.8164966 0.5773503 0.5773503 [3,] 0.8164966 0.5773503 0.5773503 [4,] 0.8164966 0.5773503 0.5773503 [5,] 1.1547005 0.8368633 0.8368633 $sigma [1] 1.3425032 0.4647155 1.1993444 0.9428569 0.9421509 $df.residual [1] 6 6 6 6 4 $cov.coefficients alpha-beta mu+alpha mu+beta alpha-beta 0.6666667 3.333333e-01 -3.333333e-01 mu+alpha 0.3333333 3.333333e-01 5.551115e-17 mu+beta -0.3333333 5.551115e-17 3.333333e-01 $rank [1] 3 $Amean [1] 0.2034961 0.1954604 -0.2863347 0.1188659 0.1784593 $method [1] "ls" $design mu alpha beta 1 1 0 0 2 1 0 0 3 1 0 0 4 1 1 0 5 1 1 0 6 1 1 0 7 1 0 1 8 1 0 1 9 1 0 1 $contrasts alpha-beta mu+alpha mu+beta mu 0 1 1 alpha 1 1 0 beta -1 0 1 $df.prior [1] 9.306153 $s2.prior [1] 0.923179 $var.prior [1] 17.33142 17.33142 12.26855 $proportion [1] 0.01 $s2.post [1] 1.2677996 0.6459499 1.1251558 0.9097727 0.9124980 $t alpha-beta mu+alpha mu+beta [1,] 3.847656 2.580411 -2.860996 [2,] 6.637308 5.113018 -4.273553 [3,] 3.692066 1.720376 -3.500994 [4,] 3.464003 2.926234 -1.972606 [5,] 3.175181 2.566881 -1.814221 $df.total [1] 15.30615 15.30615 15.30615 15.30615 13.30615 $p.value alpha-beta mu+alpha mu+beta [1,] 1.529450e-03 0.0206493481 0.0117123495 [2,] 7.144893e-06 0.0001195844 0.0006385076 [3,] 2.109270e-03 0.1055117477 0.0031325769 [4,] 3.381970e-03 0.0102514264 0.0668844448 [5,] 7.124839e-03 0.0230888584 0.0922478630 $lods alpha-beta mu+alpha mu+beta [1,] -1.013417 -3.702133 -3.0332393 [2,] 3.981496 1.283349 -0.2615911 [3,] -1.315036 -5.168621 -1.7864101 [4,] -1.757103 -3.043209 -4.6191869 [5,] -2.257358 -3.478267 -4.5683738 $F [1] 7.421911 22.203107 7.608327 6.227010 5.060579 $F.p.value [1] 5.581800e-03 2.988923e-05 5.080726e-03 1.050148e-02 2.320274e-02 > > ### uniquegenelist > > uniquegenelist(letters[1:8],ndups=2) [1] "a" "c" "e" "g" > uniquegenelist(letters[1:8],ndups=2,spacing=2) [1] "a" "b" "e" "f" > > ### classifyTests > > tstat <- matrix(c(0,5,0, 0,2.5,0, -2,-2,2, 1,1,1), 4, 3, byrow=TRUE) > classifyTestsF(tstat) TestResults matrix [,1] [,2] [,3] [1,] 0 1 0 [2,] 0 0 0 [3,] -1 -1 1 [4,] 0 0 0 > FStat(tstat) [1] 8.333333 2.083333 4.000000 1.000000 attr(,"df1") [1] 3 attr(,"df2") [1] Inf > classifyTestsT(tstat) TestResults matrix [,1] [,2] [,3] [1,] 0 1 0 [2,] 0 0 0 [3,] 0 0 0 [4,] 0 0 0 > classifyTestsP(tstat) TestResults matrix [,1] [,2] [,3] [1,] 0 1 0 [2,] 0 1 0 [3,] 0 0 0 [4,] 0 0 0 > > ### avereps > > x <- matrix(rnorm(8*3),8,3) > colnames(x) <- c("S1","S2","S3") > rownames(x) <- c("b","a","a","c","c","b","b","b") > avereps(x) S1 S2 S3 b -0.2353018 0.5220094 0.2302895 a -0.4347701 0.6453498 -0.6758914 c 0.3482980 -0.4820695 -0.3841313 > > ### roast > > y <- matrix(rnorm(100*4),100,4) > sigma <- sqrt(2/rchisq(100,df=7)) > y <- y*sigma > design <- cbind(Intercept=1,Group=c(0,0,1,1)) > iset1 <- 1:5 > y[iset1,3:4] <- y[iset1,3:4]+3 > iset2 <- 6:10 > roast(y=y,iset1,design,contrast=2) Active.Prop P.Value Down 0 0.996498249 Up 1 0.004002001 UpOrDown 1 0.008000000 Mixed 1 0.008000000 > roast(y=y,iset1,design,contrast=2,array.weights=c(0.5,1,0.5,1)) Active.Prop P.Value Down 0 0.99899950 Up 1 0.00150075 UpOrDown 1 0.00300000 Mixed 1 0.00300000 > w <- matrix(runif(100*4),100,4) > roast(y=y,iset1,design,contrast=2,weights=w) Active.Prop P.Value Down 0 0.9994997 Up 1 0.0010005 UpOrDown 1 0.0020000 Mixed 1 0.0020000 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,gene.weights=runif(100)) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1 Up 0.008 0.015 0.008 0.015 set2 5 0 0 Up 0.959 0.959 0.687 0.687 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,array.weights=c(0.5,1,0.5,1)) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1 Up 0.004 0.007 0.004 0.007 set2 5 0 0 Up 0.679 0.679 0.658 0.658 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0.0 1 Up 0.003 0.005 0.003 0.005 set2 5 0.2 0 Down 0.950 0.950 0.250 0.250 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1)) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1 Up 0.001 0.001 0.001 0.001 set2 5 0 0 Down 0.791 0.791 0.146 0.146 > fry(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1)) NGenes Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 Up 0.0007432594 0.001486519 1.820548e-05 3.641096e-05 set2 5 Down 0.8208140511 0.820814051 2.211837e-01 2.211837e-01 > rownames(y) <- paste0("Gene",1:100) > iset1A <- rownames(y)[1:5] > fry(y=y,index=iset1A,design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1)) NGenes Direction PValue PValue.Mixed set1 5 Up 0.0007432594 1.820548e-05 > > ### camera > > camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1),allow.neg.cor=TRUE,inter.gene.cor=NA) NGenes Correlation Direction PValue set1 5 -0.2481655 Up 0.001050253 > camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA) NGenes Correlation Direction PValue FDR set1 5 -0.2481655 Up 0.0009047749 0.00180955 set2 5 0.1719094 Down 0.9068364378 0.90683644 > camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1)) NGenes Direction PValue set1 5 Up 1.105329e-10 > camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2) NGenes Direction PValue FDR set1 5 Up 7.334400e-12 1.466880e-11 set2 5 Down 8.677115e-01 8.677115e-01 > camera(y=y,iset1A,design,contrast=2) NGenes Direction PValue set1 5 Up 7.3344e-12 > > ### with EList arg > > y <- new("EList",list(E=y)) > roast(y=y,iset1,design,contrast=2) Active.Prop P.Value Down 0 0.997498749 Up 1 0.003001501 UpOrDown 1 0.006000000 Mixed 1 0.006000000 > camera(y=y,iset1,design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA) NGenes Correlation Direction PValue set1 5 -0.2481655 Up 0.0009047749 > camera(y=y,iset1,design,contrast=2) NGenes Direction PValue set1 5 Up 7.3344e-12 > > ### eBayes with trend > > fit <- lmFit(y,design) > fit <- eBayes(fit,trend=TRUE) > topTable(fit,coef=2) logFC AveExpr t P.Value adj.P.Val B Gene2 3.729512 1.73488969 4.865697 0.0004854886 0.02902331 0.1596831 Gene3 3.488703 1.03931081 4.754954 0.0005804663 0.02902331 -0.0144071 Gene4 2.696676 1.74060725 3.356468 0.0063282637 0.21094212 -2.3434702 Gene1 2.391846 1.72305203 3.107124 0.0098781268 0.24695317 -2.7738874 Gene33 -1.492317 -0.07525287 -2.783817 0.0176475742 0.29965463 -3.3300835 Gene5 2.387967 1.63066783 2.773444 0.0179792778 0.29965463 -3.3478204 Gene80 -1.839760 -0.32802306 -2.503584 0.0291489863 0.37972679 -3.8049642 Gene39 1.366141 -0.27360750 2.451133 0.0320042242 0.37972679 -3.8925860 Gene95 -1.907074 1.26297763 -2.414217 0.0341754107 0.37972679 -3.9539571 Gene50 1.034777 0.01608433 2.054690 0.0642289403 0.59978803 -4.5350317 > fit$df.prior [1] 9.098442 > fit$s2.prior Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8 0.6901845 0.6977354 0.3860494 0.7014122 0.6341068 0.2926337 0.3077620 0.3058098 Gene9 Gene10 Gene11 Gene12 Gene13 Gene14 Gene15 Gene16 0.2985145 0.2832520 0.3232434 0.3279710 0.2816081 0.2943502 0.3127994 0.2894802 Gene17 Gene18 Gene19 Gene20 Gene21 Gene22 Gene23 Gene24 0.2812758 0.2840051 0.2839124 0.2954261 0.2838592 0.2812704 0.3157029 0.2844541 Gene25 Gene26 Gene27 Gene28 Gene29 Gene30 Gene31 Gene32 0.4778832 0.2818242 0.2930360 0.2940957 0.2941862 0.3234399 0.3164779 0.2853510 Gene33 Gene34 Gene35 Gene36 Gene37 Gene38 Gene39 Gene40 0.2988244 0.3450090 0.3048596 0.3089086 0.3104534 0.4551549 0.3220008 0.2813286 Gene41 Gene42 Gene43 Gene44 Gene45 Gene46 Gene47 Gene48 0.2826027 0.2822504 0.2823330 0.3170673 0.3146173 0.3146793 0.2916540 0.2975003 Gene49 Gene50 Gene51 Gene52 Gene53 Gene54 Gene55 Gene56 0.3538946 0.2907240 0.3199596 0.2816641 0.2814293 0.2996822 0.2812885 0.2896157 Gene57 Gene58 Gene59 Gene60 Gene61 Gene62 Gene63 Gene64 0.2955317 0.2815907 0.2919420 0.2849675 0.3540805 0.3491713 0.2975019 0.2939325 Gene65 Gene66 Gene67 Gene68 Gene69 Gene70 Gene71 Gene72 0.2986943 0.3265466 0.3402343 0.3394927 0.2813283 0.2814440 0.3089669 0.3030850 Gene73 Gene74 Gene75 Gene76 Gene77 Gene78 Gene79 Gene80 0.2859286 0.2813216 0.3475231 0.3334419 0.2949550 0.3108702 0.2959688 0.3295294 Gene81 Gene82 Gene83 Gene84 Gene85 Gene86 Gene87 Gene88 0.3413700 0.2946268 0.3029565 0.2920284 0.2926205 0.2818046 0.3425116 0.2882936 Gene89 Gene90 Gene91 Gene92 Gene93 Gene94 Gene95 Gene96 0.2945459 0.3077919 0.2892134 0.2823787 0.3048049 0.2961408 0.4590012 0.2812784 Gene97 Gene98 Gene99 Gene100 0.2846345 0.2819651 0.3137551 0.2856081 > summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.2335 0.2603 0.2997 0.3375 0.3655 0.7812 > > y$E[1,1] <- NA > y$E[1,3] <- NA > fit <- lmFit(y,design) > fit <- eBayes(fit,trend=TRUE) > topTable(fit,coef=2) logFC AveExpr t P.Value adj.P.Val B Gene3 3.488703 1.03931081 4.604490 0.0007644061 0.07644061 -0.2333915 Gene2 3.729512 1.73488969 4.158038 0.0016033158 0.08016579 -0.9438583 Gene4 2.696676 1.74060725 2.898102 0.0145292666 0.44537707 -3.0530813 Gene33 -1.492317 -0.07525287 -2.784004 0.0178150826 0.44537707 -3.2456324 Gene5 2.387967 1.63066783 2.495395 0.0297982959 0.46902627 -3.7272957 Gene80 -1.839760 -0.32802306 -2.491115 0.0300256116 0.46902627 -3.7343584 Gene39 1.366141 -0.27360750 2.440729 0.0328318388 0.46902627 -3.8172597 Gene1 2.638272 1.47993643 2.227507 0.0530016060 0.58890673 -3.9537576 Gene95 -1.907074 1.26297763 -2.288870 0.0429197808 0.53649726 -4.0642439 Gene50 1.034777 0.01608433 2.063663 0.0635275235 0.60439978 -4.4204731 > fit$df.residual[1] [1] 0 > fit$df.prior [1] 8.971891 > fit$s2.prior [1] 0.7014084 0.9646561 0.4276287 0.9716476 0.8458852 0.2910492 0.3097052 [8] 0.3074225 0.2985517 0.2786374 0.3267121 0.3316013 0.2766404 0.2932679 [15] 0.3154347 0.2869186 0.2761395 0.2799884 0.2795119 0.2946468 0.2794412 [22] 0.2761282 0.3186442 0.2806092 0.4596465 0.2767847 0.2924541 0.2939204 [29] 0.2930568 0.3269177 0.3194905 0.2814293 0.2989389 0.3483845 0.3062977 [36] 0.3110287 0.3127934 0.4418052 0.3254067 0.2761732 0.2780422 0.2773311 [43] 0.2776653 0.3201314 0.3174515 0.3175199 0.2897731 0.2972785 0.3567262 [50] 0.2885556 0.3232426 0.2767207 0.2762915 0.3000062 0.2761306 0.2870975 [57] 0.2947817 0.2766152 0.2901489 0.2813183 0.3568982 0.3724440 0.2972804 [64] 0.2927300 0.2987764 0.3301406 0.3437962 0.3430762 0.2761729 0.2763094 [71] 0.3110958 0.3041715 0.2822004 0.2761654 0.3507694 0.3371214 0.2940441 [78] 0.3132660 0.2953388 0.3331880 0.3448949 0.2946558 0.3040162 0.2902616 [85] 0.2910320 0.2769211 0.3459946 0.2859057 0.2935193 0.3097398 0.2865663 [92] 0.2774968 0.3062327 0.2955576 0.5425422 0.2761214 0.2808585 0.2771484 [99] 0.3164981 0.2817725 > summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.2296 0.2581 0.3003 0.3453 0.3652 0.9158 > > ### voom > > y <- matrix(rpois(100*4,lambda=20),100,4) > design <- cbind(Int=1,x=c(0,0,1,1)) > v <- voom(y,design) > names(v) [1] "E" "weights" "design" "targets" > summary(v$E) V1 V2 V3 V4 Min. :12.25 Min. :12.58 Min. :12.19 Min. :12.24 1st Qu.:13.13 1st Qu.:13.07 1st Qu.:13.15 1st Qu.:13.03 Median :13.29 Median :13.30 Median :13.30 Median :13.27 Mean :13.28 Mean :13.29 Mean :13.29 Mean :13.28 3rd Qu.:13.49 3rd Qu.:13.51 3rd Qu.:13.50 3rd Qu.:13.50 Max. :14.23 Max. :14.28 Max. :13.97 Max. :13.96 > summary(v$weights) V1 V2 V3 V4 Min. : 5.935 Min. : 5.935 Min. : 5.935 Min. : 5.935 1st Qu.: 6.788 1st Qu.: 7.049 1st Qu.: 7.207 1st Qu.: 6.825 Median :11.066 Median :10.443 Median :10.606 Median :10.414 Mean :10.421 Mean :10.485 Mean :10.571 Mean :10.532 3rd Qu.:13.485 3rd Qu.:14.155 3rd Qu.:13.859 3rd Qu.:14.121 Max. :15.083 Max. :15.101 Max. :15.095 Max. :15.063 > > ### goana > > EB <- c("133746","1339","134","1340","134083","134111","134147","134187","134218","134266", + "134353","134359","134391","134429","134430","1345","134510","134526","134549","1346", + "134637","1347","134701","134728","1348","134829","134860","134864","1349","134957", + "135","1350","1351","135112","135114","135138","135152","135154","1352","135228", + "135250","135293","135295","1353","135458","1355","1356","135644","135656","1357", + "1358","135892","1359","135924","135935","135941","135946","135948","136","1360", + "136051","1361","1362","136227","136242","136259","1363","136306","136319","136332", + "136371","1364","1365","136541","1366","136647","1368","136853","1369","136991", + "1370","137075","1371","137209","1373","137362","1374","137492","1375","1376", + "137682","137695","137735","1378","137814","137868","137872","137886","137902","137964") > go <- goana(fit,FDR=0.8,geneid=EB) > topGO(go,n=10,truncate.term=30) Term Ont N Up Down P.Up GO:0070062 extracellular exosome CC 8 0 4 1.000000000 GO:0043230 extracellular organelle CC 8 0 4 1.000000000 GO:1903561 extracellular vesicle CC 8 0 4 1.000000000 GO:0072359 circulatory system developm... BP 2 0 2 1.000000000 GO:0007507 heart development BP 2 0 2 1.000000000 GO:0032501 multicellular organismal pr... BP 31 6 7 0.796992878 GO:0098609 cell-cell adhesion BP 5 4 0 0.009503355 GO:0097190 apoptotic signaling pathway BP 3 3 0 0.010952381 GO:0031252 cell leading edge CC 3 3 0 0.010952381 GO:0006897 endocytosis BP 3 3 0 0.010952381 P.Down GO:0070062 0.003047199 GO:0043230 0.003047199 GO:1903561 0.003047199 GO:0072359 0.009090909 GO:0007507 0.009090909 GO:0032501 0.009111120 GO:0098609 1.000000000 GO:0097190 1.000000000 GO:0031252 1.000000000 GO:0006897 1.000000000 > topGO(go,n=10,truncate.term=30,sort="down") Term Ont N Up Down P.Up P.Down GO:0070062 extracellular exosome CC 8 0 4 1.0000000 0.003047199 GO:0043230 extracellular organelle CC 8 0 4 1.0000000 0.003047199 GO:1903561 extracellular vesicle CC 8 0 4 1.0000000 0.003047199 GO:0072359 circulatory system developm... BP 2 0 2 1.0000000 0.009090909 GO:0007507 heart development BP 2 0 2 1.0000000 0.009090909 GO:0032501 multicellular organismal pr... BP 31 6 7 0.7969929 0.009111120 GO:0032502 developmental process BP 25 4 6 0.8946593 0.014492712 GO:0031982 vesicle CC 18 1 5 0.9946677 0.015552466 GO:0009887 animal organ morphogenesis BP 3 0 2 1.0000000 0.025788497 GO:0055082 cellular chemical homeostas... BP 3 1 2 0.5476190 0.025788497 > > proc.time() user system elapsed 4.136 0.176 4.995
limma.Rcheck/tests/limma-Tests.Rout.save
R version 3.5.1 (2018-07-02) -- "Feather Spray" Copyright (C) 2018 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(limma) > > set.seed(0); u <- runif(100) > > ### strsplit2 > > x <- c("ab;cd;efg","abc;def","z","") > strsplit2(x,split=";") [,1] [,2] [,3] [1,] "ab" "cd" "efg" [2,] "abc" "def" "" [3,] "z" "" "" [4,] "" "" "" > > ### removeext > > removeExt(c("slide1.spot","slide.2.spot")) [1] "slide1" "slide.2" > removeExt(c("slide1.spot","slide")) [1] "slide1.spot" "slide" > > ### printorder > > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6),ndups=2,start="topright",npins=4) $printorder [1] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13 [19] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31 [37] 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1 [55] 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19 [73] 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37 [91] 48 47 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7 [109] 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 26 25 [127] 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43 [145] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13 [163] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31 [181] 42 41 40 39 38 37 48 47 46 45 44 43 54 53 52 51 50 49 [199] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67 [217] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85 [235] 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55 [253] 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73 [271] 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91 [289] 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61 [307] 72 71 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79 [325] 90 89 88 87 86 85 96 95 94 93 92 91 54 53 52 51 50 49 [343] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67 [361] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85 [379] 96 95 94 93 92 91 102 101 100 99 98 97 108 107 106 105 104 103 [397] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121 [415] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139 [433] 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 110 109 [451] 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127 [469] 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 98 97 [487] 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115 [505] 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133 [523] 144 143 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103 [541] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121 [559] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139 [577] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157 [595] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 [613] 186 185 184 183 182 181 192 191 190 189 188 187 150 149 148 147 146 145 [631] 156 155 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163 [649] 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 182 181 [667] 192 191 190 189 188 187 150 149 148 147 146 145 156 155 154 153 152 151 [685] 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169 [703] 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187 [721] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157 [739] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 [757] 186 185 184 183 182 181 192 191 190 189 188 187 $plate [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $plate.r [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 [26] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 [76] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 [101] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [126] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 [151] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 [201] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 [226] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 [251] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 [276] 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 [301] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 [326] 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 [351] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 [376] 5 5 5 5 5 5 5 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 [401] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 [426] 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 [451] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 [476] 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 [501] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 [526] 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 [551] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 [576] 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 [601] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 [626] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 [651] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 [676] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 [701] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 [726] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 [751] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 $plate.c [1] 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 [26] 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 [51] 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 [76] 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 [101] 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 [126] 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 [151] 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 [176] 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 [201] 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 [226] 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 [251] 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 [276] 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 [301] 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 [326] 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 [351] 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 [376] 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 [401] 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 [426] 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 [451] 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 [476] 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 [501] 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 [526] 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 [551] 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 [576] 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 [601] 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 [626] 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 [651] 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 [676] 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 [701] 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 [726] 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 [751] 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 $plateposition [1] "p1D03" "p1D03" "p1D02" "p1D02" "p1D01" "p1D01" "p1D06" "p1D06" "p1D05" [10] "p1D05" "p1D04" "p1D04" "p1D09" "p1D09" "p1D08" "p1D08" "p1D07" "p1D07" [19] "p1D12" "p1D12" "p1D11" "p1D11" "p1D10" "p1D10" "p1D15" "p1D15" "p1D14" [28] "p1D14" "p1D13" "p1D13" "p1D18" "p1D18" "p1D17" "p1D17" "p1D16" "p1D16" [37] "p1D21" "p1D21" "p1D20" "p1D20" "p1D19" "p1D19" "p1D24" "p1D24" "p1D23" [46] "p1D23" "p1D22" "p1D22" "p1C03" "p1C03" "p1C02" "p1C02" "p1C01" "p1C01" [55] "p1C06" "p1C06" "p1C05" "p1C05" "p1C04" "p1C04" "p1C09" "p1C09" "p1C08" [64] "p1C08" "p1C07" "p1C07" "p1C12" "p1C12" "p1C11" "p1C11" "p1C10" "p1C10" [73] "p1C15" "p1C15" "p1C14" "p1C14" "p1C13" "p1C13" "p1C18" "p1C18" "p1C17" [82] "p1C17" "p1C16" "p1C16" "p1C21" "p1C21" "p1C20" "p1C20" "p1C19" "p1C19" [91] "p1C24" "p1C24" "p1C23" "p1C23" "p1C22" "p1C22" "p1B03" "p1B03" "p1B02" [100] "p1B02" "p1B01" "p1B01" "p1B06" "p1B06" "p1B05" "p1B05" "p1B04" "p1B04" [109] "p1B09" "p1B09" "p1B08" "p1B08" "p1B07" "p1B07" "p1B12" "p1B12" "p1B11" [118] "p1B11" "p1B10" "p1B10" "p1B15" "p1B15" "p1B14" "p1B14" "p1B13" "p1B13" [127] "p1B18" "p1B18" "p1B17" "p1B17" "p1B16" "p1B16" "p1B21" "p1B21" "p1B20" [136] "p1B20" "p1B19" "p1B19" "p1B24" "p1B24" "p1B23" "p1B23" "p1B22" "p1B22" [145] "p1A03" "p1A03" "p1A02" "p1A02" "p1A01" "p1A01" "p1A06" "p1A06" "p1A05" [154] "p1A05" "p1A04" "p1A04" "p1A09" "p1A09" "p1A08" "p1A08" "p1A07" "p1A07" [163] "p1A12" "p1A12" "p1A11" "p1A11" "p1A10" "p1A10" "p1A15" "p1A15" "p1A14" [172] "p1A14" "p1A13" "p1A13" "p1A18" "p1A18" "p1A17" "p1A17" "p1A16" "p1A16" [181] "p1A21" "p1A21" "p1A20" "p1A20" "p1A19" "p1A19" "p1A24" "p1A24" "p1A23" [190] "p1A23" "p1A22" "p1A22" "p1H03" "p1H03" "p1H02" "p1H02" "p1H01" "p1H01" [199] "p1H06" "p1H06" "p1H05" "p1H05" "p1H04" "p1H04" "p1H09" "p1H09" "p1H08" [208] "p1H08" "p1H07" "p1H07" "p1H12" "p1H12" "p1H11" "p1H11" "p1H10" "p1H10" [217] "p1H15" "p1H15" "p1H14" "p1H14" "p1H13" "p1H13" "p1H18" "p1H18" "p1H17" [226] "p1H17" "p1H16" "p1H16" "p1H21" "p1H21" "p1H20" "p1H20" "p1H19" "p1H19" [235] "p1H24" "p1H24" "p1H23" "p1H23" "p1H22" "p1H22" "p1G03" "p1G03" "p1G02" [244] "p1G02" "p1G01" "p1G01" "p1G06" "p1G06" "p1G05" "p1G05" "p1G04" "p1G04" [253] "p1G09" "p1G09" "p1G08" "p1G08" "p1G07" "p1G07" "p1G12" "p1G12" "p1G11" [262] "p1G11" "p1G10" "p1G10" "p1G15" "p1G15" "p1G14" "p1G14" "p1G13" "p1G13" [271] "p1G18" "p1G18" "p1G17" "p1G17" "p1G16" "p1G16" "p1G21" "p1G21" "p1G20" [280] "p1G20" "p1G19" "p1G19" "p1G24" "p1G24" "p1G23" "p1G23" "p1G22" "p1G22" [289] "p1F03" "p1F03" "p1F02" "p1F02" "p1F01" "p1F01" "p1F06" "p1F06" "p1F05" [298] "p1F05" "p1F04" "p1F04" "p1F09" "p1F09" "p1F08" "p1F08" "p1F07" "p1F07" [307] "p1F12" "p1F12" "p1F11" "p1F11" "p1F10" "p1F10" "p1F15" "p1F15" "p1F14" [316] "p1F14" "p1F13" "p1F13" "p1F18" "p1F18" "p1F17" "p1F17" "p1F16" "p1F16" [325] "p1F21" "p1F21" "p1F20" "p1F20" "p1F19" "p1F19" "p1F24" "p1F24" "p1F23" [334] "p1F23" "p1F22" "p1F22" "p1E03" "p1E03" "p1E02" "p1E02" "p1E01" "p1E01" [343] "p1E06" "p1E06" "p1E05" "p1E05" "p1E04" "p1E04" "p1E09" "p1E09" "p1E08" [352] "p1E08" "p1E07" "p1E07" "p1E12" "p1E12" "p1E11" "p1E11" "p1E10" "p1E10" [361] "p1E15" "p1E15" "p1E14" "p1E14" "p1E13" "p1E13" "p1E18" "p1E18" "p1E17" [370] "p1E17" "p1E16" "p1E16" "p1E21" "p1E21" "p1E20" "p1E20" "p1E19" "p1E19" [379] "p1E24" "p1E24" "p1E23" "p1E23" "p1E22" "p1E22" "p1L03" "p1L03" "p1L02" [388] "p1L02" "p1L01" "p1L01" "p1L06" "p1L06" "p1L05" "p1L05" "p1L04" "p1L04" [397] "p1L09" "p1L09" "p1L08" "p1L08" "p1L07" "p1L07" "p1L12" "p1L12" "p1L11" [406] "p1L11" "p1L10" "p1L10" "p1L15" "p1L15" "p1L14" "p1L14" "p1L13" "p1L13" [415] "p1L18" "p1L18" "p1L17" "p1L17" "p1L16" "p1L16" "p1L21" "p1L21" "p1L20" [424] "p1L20" "p1L19" "p1L19" "p1L24" "p1L24" "p1L23" "p1L23" "p1L22" "p1L22" [433] "p1K03" "p1K03" "p1K02" "p1K02" "p1K01" "p1K01" "p1K06" "p1K06" "p1K05" [442] "p1K05" "p1K04" "p1K04" "p1K09" "p1K09" "p1K08" "p1K08" "p1K07" "p1K07" [451] "p1K12" "p1K12" "p1K11" "p1K11" "p1K10" "p1K10" "p1K15" "p1K15" "p1K14" [460] "p1K14" "p1K13" "p1K13" "p1K18" "p1K18" "p1K17" "p1K17" "p1K16" "p1K16" [469] "p1K21" "p1K21" "p1K20" "p1K20" "p1K19" "p1K19" "p1K24" "p1K24" "p1K23" [478] "p1K23" "p1K22" "p1K22" "p1J03" "p1J03" "p1J02" "p1J02" "p1J01" "p1J01" [487] "p1J06" "p1J06" "p1J05" "p1J05" "p1J04" "p1J04" "p1J09" "p1J09" "p1J08" [496] "p1J08" "p1J07" "p1J07" "p1J12" "p1J12" "p1J11" "p1J11" "p1J10" "p1J10" [505] "p1J15" "p1J15" "p1J14" "p1J14" "p1J13" "p1J13" "p1J18" "p1J18" "p1J17" [514] "p1J17" "p1J16" "p1J16" "p1J21" "p1J21" "p1J20" "p1J20" "p1J19" "p1J19" [523] "p1J24" "p1J24" "p1J23" "p1J23" "p1J22" "p1J22" "p1I03" "p1I03" "p1I02" [532] "p1I02" "p1I01" "p1I01" "p1I06" "p1I06" "p1I05" "p1I05" "p1I04" "p1I04" [541] "p1I09" "p1I09" "p1I08" "p1I08" "p1I07" "p1I07" "p1I12" "p1I12" "p1I11" [550] "p1I11" "p1I10" "p1I10" "p1I15" "p1I15" "p1I14" "p1I14" "p1I13" "p1I13" [559] "p1I18" "p1I18" "p1I17" "p1I17" "p1I16" "p1I16" "p1I21" "p1I21" "p1I20" [568] "p1I20" "p1I19" "p1I19" "p1I24" "p1I24" "p1I23" "p1I23" "p1I22" "p1I22" [577] "p1P03" "p1P03" "p1P02" "p1P02" "p1P01" "p1P01" "p1P06" "p1P06" "p1P05" [586] "p1P05" "p1P04" "p1P04" "p1P09" "p1P09" "p1P08" "p1P08" "p1P07" "p1P07" [595] "p1P12" "p1P12" "p1P11" "p1P11" "p1P10" "p1P10" "p1P15" "p1P15" "p1P14" [604] "p1P14" "p1P13" "p1P13" "p1P18" "p1P18" "p1P17" "p1P17" "p1P16" "p1P16" [613] "p1P21" "p1P21" "p1P20" "p1P20" "p1P19" "p1P19" "p1P24" "p1P24" "p1P23" [622] "p1P23" "p1P22" "p1P22" "p1O03" "p1O03" "p1O02" "p1O02" "p1O01" "p1O01" [631] "p1O06" "p1O06" "p1O05" "p1O05" "p1O04" "p1O04" "p1O09" "p1O09" "p1O08" [640] "p1O08" "p1O07" "p1O07" "p1O12" "p1O12" "p1O11" "p1O11" "p1O10" "p1O10" [649] "p1O15" "p1O15" "p1O14" "p1O14" "p1O13" "p1O13" "p1O18" "p1O18" "p1O17" [658] "p1O17" "p1O16" "p1O16" "p1O21" "p1O21" "p1O20" "p1O20" "p1O19" "p1O19" [667] "p1O24" "p1O24" "p1O23" "p1O23" "p1O22" "p1O22" "p1N03" "p1N03" "p1N02" [676] "p1N02" "p1N01" "p1N01" "p1N06" "p1N06" "p1N05" "p1N05" "p1N04" "p1N04" [685] "p1N09" "p1N09" "p1N08" "p1N08" "p1N07" "p1N07" "p1N12" "p1N12" "p1N11" [694] "p1N11" "p1N10" "p1N10" "p1N15" "p1N15" "p1N14" "p1N14" "p1N13" "p1N13" [703] "p1N18" "p1N18" "p1N17" "p1N17" "p1N16" "p1N16" "p1N21" "p1N21" "p1N20" [712] "p1N20" "p1N19" "p1N19" "p1N24" "p1N24" "p1N23" "p1N23" "p1N22" "p1N22" [721] "p1M03" "p1M03" "p1M02" "p1M02" "p1M01" "p1M01" "p1M06" "p1M06" "p1M05" [730] "p1M05" "p1M04" "p1M04" "p1M09" "p1M09" "p1M08" "p1M08" "p1M07" "p1M07" [739] "p1M12" "p1M12" "p1M11" "p1M11" "p1M10" "p1M10" "p1M15" "p1M15" "p1M14" [748] "p1M14" "p1M13" "p1M13" "p1M18" "p1M18" "p1M17" "p1M17" "p1M16" "p1M16" [757] "p1M21" "p1M21" "p1M20" "p1M20" "p1M19" "p1M19" "p1M24" "p1M24" "p1M23" [766] "p1M23" "p1M22" "p1M22" > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6)) $printorder [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 [51] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 [76] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 [101] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 [126] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 [151] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 [176] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 [201] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 [226] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 [251] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 [276] 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 [301] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 [326] 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 [351] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 [376] 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [401] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 [426] 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 [451] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 [476] 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 [501] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [526] 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 [551] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 [576] 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 [601] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 [626] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [651] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 [676] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 [701] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 [726] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 [751] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 $plate [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 [38] 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [112] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [186] 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 [223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [260] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [334] 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 [371] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [408] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 [445] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [519] 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 [556] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [593] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 [667] 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 [704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [741] 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 $plate.r [1] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 [26] 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 [51] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 [76] 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 [101] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 [126] 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 [151] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 [176] 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 [201] 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 [226] 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 [251] 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 [276] 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 [301] 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 [326] 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 [351] 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 [376] 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 [401] 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 [426] 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 [451] 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 [476] 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 [501] 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 [526] 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 [551] 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 [576] 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 [601] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 [626] 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 [651] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 [676] 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 [701] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 [726] 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 [751] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 $plate.c [1] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 [26] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 [51] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 [76] 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 [101] 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 [126] 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 [151] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 [176] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 2 6 10 14 18 22 2 6 [201] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 [226] 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 [251] 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 [276] 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 [301] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 [326] 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 [351] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 [376] 14 18 22 2 6 10 14 18 22 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 [401] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 [426] 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 [451] 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 [476] 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 [501] 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 [526] 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 [551] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 [576] 23 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 [601] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 [626] 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 [651] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 [676] 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 [701] 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 [726] 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 [751] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 $plateposition [1] "p1D01" "p1D05" "p1D09" "p1D13" "p1D17" "p1D21" "p1H01" "p1H05" "p1H09" [10] "p1H13" "p1H17" "p1H21" "p1L01" "p1L05" "p1L09" "p1L13" "p1L17" "p1L21" [19] "p1P01" "p1P05" "p1P09" "p1P13" "p1P17" "p1P21" "p2D01" "p2D05" "p2D09" [28] "p2D13" "p2D17" "p2D21" "p2H01" "p2H05" "p2H09" "p2H13" "p2H17" "p2H21" [37] "p2L01" "p2L05" "p2L09" "p2L13" "p2L17" "p2L21" "p2P01" "p2P05" "p2P09" [46] "p2P13" "p2P17" "p2P21" "p1C01" "p1C05" "p1C09" "p1C13" "p1C17" "p1C21" [55] "p1G01" "p1G05" "p1G09" "p1G13" "p1G17" "p1G21" "p1K01" "p1K05" "p1K09" [64] "p1K13" "p1K17" "p1K21" "p1O01" "p1O05" "p1O09" "p1O13" "p1O17" "p1O21" [73] "p2C01" "p2C05" "p2C09" "p2C13" "p2C17" "p2C21" "p2G01" "p2G05" "p2G09" [82] "p2G13" "p2G17" "p2G21" "p2K01" "p2K05" "p2K09" "p2K13" "p2K17" "p2K21" [91] "p2O01" "p2O05" "p2O09" "p2O13" "p2O17" "p2O21" "p1B01" "p1B05" "p1B09" [100] "p1B13" "p1B17" "p1B21" "p1F01" "p1F05" "p1F09" "p1F13" "p1F17" "p1F21" [109] "p1J01" "p1J05" "p1J09" "p1J13" "p1J17" "p1J21" "p1N01" "p1N05" "p1N09" [118] "p1N13" "p1N17" "p1N21" "p2B01" "p2B05" "p2B09" "p2B13" "p2B17" "p2B21" [127] "p2F01" "p2F05" "p2F09" "p2F13" "p2F17" "p2F21" "p2J01" "p2J05" "p2J09" [136] "p2J13" "p2J17" "p2J21" "p2N01" "p2N05" "p2N09" "p2N13" "p2N17" "p2N21" [145] "p1A01" "p1A05" "p1A09" "p1A13" "p1A17" "p1A21" "p1E01" "p1E05" "p1E09" [154] "p1E13" "p1E17" "p1E21" "p1I01" "p1I05" "p1I09" "p1I13" "p1I17" "p1I21" [163] "p1M01" "p1M05" "p1M09" "p1M13" "p1M17" "p1M21" "p2A01" "p2A05" "p2A09" [172] "p2A13" "p2A17" "p2A21" "p2E01" "p2E05" "p2E09" "p2E13" "p2E17" "p2E21" [181] "p2I01" "p2I05" "p2I09" "p2I13" "p2I17" "p2I21" "p2M01" "p2M05" "p2M09" [190] "p2M13" "p2M17" "p2M21" "p1D02" "p1D06" "p1D10" "p1D14" "p1D18" "p1D22" [199] "p1H02" "p1H06" "p1H10" "p1H14" "p1H18" "p1H22" "p1L02" "p1L06" "p1L10" [208] "p1L14" "p1L18" "p1L22" "p1P02" "p1P06" "p1P10" "p1P14" "p1P18" "p1P22" [217] "p2D02" "p2D06" "p2D10" "p2D14" "p2D18" "p2D22" "p2H02" "p2H06" "p2H10" [226] "p2H14" "p2H18" "p2H22" "p2L02" "p2L06" "p2L10" "p2L14" "p2L18" "p2L22" [235] "p2P02" "p2P06" "p2P10" "p2P14" "p2P18" "p2P22" "p1C02" "p1C06" "p1C10" [244] "p1C14" "p1C18" "p1C22" "p1G02" "p1G06" "p1G10" "p1G14" "p1G18" "p1G22" [253] "p1K02" "p1K06" "p1K10" "p1K14" "p1K18" "p1K22" "p1O02" "p1O06" "p1O10" [262] "p1O14" "p1O18" "p1O22" "p2C02" "p2C06" "p2C10" "p2C14" "p2C18" "p2C22" [271] "p2G02" "p2G06" "p2G10" "p2G14" "p2G18" "p2G22" "p2K02" "p2K06" "p2K10" [280] "p2K14" "p2K18" "p2K22" "p2O02" "p2O06" "p2O10" "p2O14" "p2O18" "p2O22" [289] "p1B02" "p1B06" "p1B10" "p1B14" "p1B18" "p1B22" "p1F02" "p1F06" "p1F10" [298] "p1F14" "p1F18" "p1F22" "p1J02" "p1J06" "p1J10" "p1J14" "p1J18" "p1J22" [307] "p1N02" "p1N06" "p1N10" "p1N14" "p1N18" "p1N22" "p2B02" "p2B06" "p2B10" [316] "p2B14" "p2B18" "p2B22" "p2F02" "p2F06" "p2F10" "p2F14" "p2F18" "p2F22" [325] "p2J02" "p2J06" "p2J10" "p2J14" "p2J18" "p2J22" "p2N02" "p2N06" "p2N10" [334] "p2N14" "p2N18" "p2N22" "p1A02" "p1A06" "p1A10" "p1A14" "p1A18" "p1A22" [343] "p1E02" "p1E06" "p1E10" "p1E14" "p1E18" "p1E22" "p1I02" "p1I06" "p1I10" [352] "p1I14" "p1I18" "p1I22" "p1M02" "p1M06" "p1M10" "p1M14" "p1M18" "p1M22" [361] "p2A02" "p2A06" "p2A10" "p2A14" "p2A18" "p2A22" "p2E02" "p2E06" "p2E10" [370] "p2E14" "p2E18" "p2E22" "p2I02" "p2I06" "p2I10" "p2I14" "p2I18" "p2I22" [379] "p2M02" "p2M06" "p2M10" "p2M14" "p2M18" "p2M22" "p1D03" "p1D07" "p1D11" [388] "p1D15" "p1D19" "p1D23" "p1H03" "p1H07" "p1H11" "p1H15" "p1H19" "p1H23" [397] "p1L03" "p1L07" "p1L11" "p1L15" "p1L19" "p1L23" "p1P03" "p1P07" "p1P11" [406] "p1P15" "p1P19" "p1P23" "p2D03" "p2D07" "p2D11" "p2D15" "p2D19" "p2D23" [415] "p2H03" "p2H07" "p2H11" "p2H15" "p2H19" "p2H23" "p2L03" "p2L07" "p2L11" [424] "p2L15" "p2L19" "p2L23" "p2P03" "p2P07" "p2P11" "p2P15" "p2P19" "p2P23" [433] "p1C03" "p1C07" "p1C11" "p1C15" "p1C19" "p1C23" "p1G03" "p1G07" "p1G11" [442] "p1G15" "p1G19" "p1G23" "p1K03" "p1K07" "p1K11" "p1K15" "p1K19" "p1K23" [451] "p1O03" "p1O07" "p1O11" "p1O15" "p1O19" "p1O23" "p2C03" "p2C07" "p2C11" [460] "p2C15" "p2C19" "p2C23" "p2G03" "p2G07" "p2G11" "p2G15" "p2G19" "p2G23" [469] "p2K03" "p2K07" "p2K11" "p2K15" "p2K19" "p2K23" "p2O03" "p2O07" "p2O11" [478] "p2O15" "p2O19" "p2O23" "p1B03" "p1B07" "p1B11" "p1B15" "p1B19" "p1B23" [487] "p1F03" "p1F07" "p1F11" "p1F15" "p1F19" "p1F23" "p1J03" "p1J07" "p1J11" [496] "p1J15" "p1J19" "p1J23" "p1N03" "p1N07" "p1N11" "p1N15" "p1N19" "p1N23" [505] "p2B03" "p2B07" "p2B11" "p2B15" "p2B19" "p2B23" "p2F03" "p2F07" "p2F11" [514] "p2F15" "p2F19" "p2F23" "p2J03" "p2J07" "p2J11" "p2J15" "p2J19" "p2J23" [523] "p2N03" "p2N07" "p2N11" "p2N15" "p2N19" "p2N23" "p1A03" "p1A07" "p1A11" [532] "p1A15" "p1A19" "p1A23" "p1E03" "p1E07" "p1E11" "p1E15" "p1E19" "p1E23" [541] "p1I03" "p1I07" "p1I11" "p1I15" "p1I19" "p1I23" "p1M03" "p1M07" "p1M11" [550] "p1M15" "p1M19" "p1M23" "p2A03" "p2A07" "p2A11" "p2A15" "p2A19" "p2A23" [559] "p2E03" "p2E07" "p2E11" "p2E15" "p2E19" "p2E23" "p2I03" "p2I07" "p2I11" [568] "p2I15" "p2I19" "p2I23" "p2M03" "p2M07" "p2M11" "p2M15" "p2M19" "p2M23" [577] "p1D04" "p1D08" "p1D12" "p1D16" "p1D20" "p1D24" "p1H04" "p1H08" "p1H12" [586] "p1H16" "p1H20" "p1H24" "p1L04" "p1L08" "p1L12" "p1L16" "p1L20" "p1L24" [595] "p1P04" "p1P08" "p1P12" "p1P16" "p1P20" "p1P24" "p2D04" "p2D08" "p2D12" [604] "p2D16" "p2D20" "p2D24" "p2H04" "p2H08" "p2H12" "p2H16" "p2H20" "p2H24" [613] "p2L04" "p2L08" "p2L12" "p2L16" "p2L20" "p2L24" "p2P04" "p2P08" "p2P12" [622] "p2P16" "p2P20" "p2P24" "p1C04" "p1C08" "p1C12" "p1C16" "p1C20" "p1C24" [631] "p1G04" "p1G08" "p1G12" "p1G16" "p1G20" "p1G24" "p1K04" "p1K08" "p1K12" [640] "p1K16" "p1K20" "p1K24" "p1O04" "p1O08" "p1O12" "p1O16" "p1O20" "p1O24" [649] "p2C04" "p2C08" "p2C12" "p2C16" "p2C20" "p2C24" "p2G04" "p2G08" "p2G12" [658] "p2G16" "p2G20" "p2G24" "p2K04" "p2K08" "p2K12" "p2K16" "p2K20" "p2K24" [667] "p2O04" "p2O08" "p2O12" "p2O16" "p2O20" "p2O24" "p1B04" "p1B08" "p1B12" [676] "p1B16" "p1B20" "p1B24" "p1F04" "p1F08" "p1F12" "p1F16" "p1F20" "p1F24" [685] "p1J04" "p1J08" "p1J12" "p1J16" "p1J20" "p1J24" "p1N04" "p1N08" "p1N12" [694] "p1N16" "p1N20" "p1N24" "p2B04" "p2B08" "p2B12" "p2B16" "p2B20" "p2B24" [703] "p2F04" "p2F08" "p2F12" "p2F16" "p2F20" "p2F24" "p2J04" "p2J08" "p2J12" [712] "p2J16" "p2J20" "p2J24" "p2N04" "p2N08" "p2N12" "p2N16" "p2N20" "p2N24" [721] "p1A04" "p1A08" "p1A12" "p1A16" "p1A20" "p1A24" "p1E04" "p1E08" "p1E12" [730] "p1E16" "p1E20" "p1E24" "p1I04" "p1I08" "p1I12" "p1I16" "p1I20" "p1I24" [739] "p1M04" "p1M08" "p1M12" "p1M16" "p1M20" "p1M24" "p2A04" "p2A08" "p2A12" [748] "p2A16" "p2A20" "p2A24" "p2E04" "p2E08" "p2E12" "p2E16" "p2E20" "p2E24" [757] "p2I04" "p2I08" "p2I12" "p2I16" "p2I20" "p2I24" "p2M04" "p2M08" "p2M12" [766] "p2M16" "p2M20" "p2M24" > > ### merge.rglist > > R <- G <- matrix(11:14,4,2) > rownames(R) <- rownames(G) <- c("a","a","b","c") > RG1 <- new("RGList",list(R=R,G=G)) > R <- G <- matrix(21:24,4,2) > rownames(R) <- rownames(G) <- c("b","a","a","c") > RG2 <- new("RGList",list(R=R,G=G)) > merge(RG1,RG2) An object of class "RGList" $R [,1] [,2] [,3] [,4] a 11 11 22 22 a 12 12 23 23 b 13 13 21 21 c 14 14 24 24 $G [,1] [,2] [,3] [,4] a 11 11 22 22 a 12 12 23 23 b 13 13 21 21 c 14 14 24 24 > merge(RG2,RG1) An object of class "RGList" $R [,1] [,2] [,3] [,4] b 21 21 13 13 a 22 22 11 11 a 23 23 12 12 c 24 24 14 14 $G [,1] [,2] [,3] [,4] b 21 21 13 13 a 22 22 11 11 a 23 23 12 12 c 24 24 14 14 > > ### background correction > > RG <- new("RGList", list(R=c(1,2,3,4),G=c(1,2,3,4),Rb=c(2,2,2,2),Gb=c(2,2,2,2))) > backgroundCorrect(RG) An object of class "RGList" $R [,1] [1,] -1 [2,] 0 [3,] 1 [4,] 2 $G [,1] [1,] -1 [2,] 0 [3,] 1 [4,] 2 > backgroundCorrect(RG, method="half") An object of class "RGList" $R [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 $G [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 > backgroundCorrect(RG, method="minimum") An object of class "RGList" $R [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 $G [,1] [1,] 0.5 [2,] 0.5 [3,] 1.0 [4,] 2.0 > backgroundCorrect(RG, offset=5) An object of class "RGList" $R [,1] [1,] 4 [2,] 5 [3,] 6 [4,] 7 $G [,1] [1,] 4 [2,] 5 [3,] 6 [4,] 7 > > ### loessFit > > x <- 1:100 > y <- rnorm(100) > out <- loessFit(y,x) > f1 <- quantile(out$fitted) > r1 <- quantile(out$residual) > w <- rep(1,100) > w[1:50] <- 0.5 > out <- loessFit(y,x,weights=w,method="weightedLowess") > f2 <- quantile(out$fitted) > r2 <- quantile(out$residual) > out <- loessFit(y,x,weights=w,method="locfit") > f3 <- quantile(out$fitted) > r3 <- quantile(out$residual) > out <- loessFit(y,x,weights=w,method="loess") > f4 <- quantile(out$fitted) > r4 <- quantile(out$residual) > w <- rep(1,100) > w[2*(1:50)] <- 0 > out <- loessFit(y,x,weights=w,method="weightedLowess") > f5 <- quantile(out$fitted) > r5 <- quantile(out$residual) > data.frame(f1,f2,f3,f4,f5) f1 f2 f3 f4 f5 0% -0.78835384 -0.687432210 -0.78957137 -0.76756060 -0.63778292 25% -0.18340154 -0.179683572 -0.18979269 -0.16773223 -0.38064318 50% -0.11492924 -0.114796040 -0.12087983 -0.07185314 -0.15971879 75% 0.01507921 -0.008145125 -0.01857508 0.04030634 0.07839396 100% 0.21653837 0.145106033 0.19214597 0.21417361 0.51836274 > data.frame(r1,r2,r3,r4,r5) r1 r2 r3 r4 r5 0% -2.04434053 -2.05132680 -2.02404318 -2.101242874 -2.22280633 25% -0.59321065 -0.57200209 -0.58975649 -0.577887481 -0.71037756 50% 0.05874864 0.04514326 0.08335198 -0.001769806 0.06785517 75% 0.56010750 0.55124530 0.57618740 0.561454370 0.65383830 100% 2.57936026 2.64549799 2.57549257 2.402324533 2.28648835 > > ### normalizeWithinArrays > > RG <- new("RGList",list()) > RG$R <- matrix(rexp(100*2),100,2) > RG$G <- matrix(rexp(100*2),100,2) > RG$Rb <- matrix(rnorm(100*2,sd=0.02),100,2) > RG$Gb <- matrix(rnorm(100*2,sd=0.02),100,2) > RGb <- backgroundCorrect(RG,method="normexp",normexp.method="saddle") Array 1 corrected Array 2 corrected Array 1 corrected Array 2 corrected > summary(cbind(RGb$R,RGb$G)) V1 V2 V3 V4 Min. :0.01626 Min. :0.01213 Min. :0.0000 Min. :0.0000 1st Qu.:0.35497 1st Qu.:0.29133 1st Qu.:0.2745 1st Qu.:0.3953 Median :0.71793 Median :0.70294 Median :0.6339 Median :0.8223 Mean :0.90184 Mean :1.00122 Mean :0.9454 Mean :1.1324 3rd Qu.:1.16891 3rd Qu.:1.33139 3rd Qu.:1.4059 3rd Qu.:1.4221 Max. :4.56267 Max. :6.37947 Max. :5.0486 Max. :6.6295 > RGb <- backgroundCorrect(RG,method="normexp",normexp.method="mle") Array 1 corrected Array 2 corrected Array 1 corrected Array 2 corrected > summary(cbind(RGb$R,RGb$G)) V1 V2 V3 V4 Min. :0.01701 Min. :0.01255 Min. :0.0000 Min. :0.0000 1st Qu.:0.35423 1st Qu.:0.29118 1st Qu.:0.2745 1st Qu.:0.3953 Median :0.71719 Median :0.70280 Median :0.6339 Median :0.8223 Mean :0.90118 Mean :1.00110 Mean :0.9454 Mean :1.1324 3rd Qu.:1.16817 3rd Qu.:1.33124 3rd Qu.:1.4059 3rd Qu.:1.4221 Max. :4.56193 Max. :6.37932 Max. :5.0486 Max. :6.6295 > MA <- normalizeWithinArrays(RGb,method="loess") > summary(MA$M) V1 V2 Min. :-5.88044 Min. :-5.66985 1st Qu.:-1.18483 1st Qu.:-1.57014 Median :-0.21632 Median : 0.04823 Mean : 0.03487 Mean :-0.05481 3rd Qu.: 1.49669 3rd Qu.: 1.45113 Max. : 7.07324 Max. : 6.19744 > #MA <- normalizeWithinArrays(RG[,1:2], mouse.setup, method="robustspline") > #MA$M[1:5,] > #MA <- normalizeWithinArrays(mouse.data, mouse.setup) > #MA$M[1:5,] > > ### normalizeBetweenArrays > > MA2 <- normalizeBetweenArrays(MA,method="scale") > MA$M[1:5,] [,1] [,2] [1,] -1.1689588 4.5558123 [2,] 0.8971363 0.3296544 [3,] 2.8247439 1.4249960 [4,] -1.8533240 0.4804851 [5,] 1.9158459 -5.5087631 > MA$A[1:5,] [,1] [,2] [1,] -2.48465011 -2.4041550 [2,] -0.79230447 -0.9002250 [3,] -0.76237200 0.2071043 [4,] 0.09281027 -1.3880965 [5,] 0.22385828 -3.0855818 > MA2 <- normalizeBetweenArrays(MA,method="quantile") > MA$M[1:5,] [,1] [,2] [1,] -1.1689588 4.5558123 [2,] 0.8971363 0.3296544 [3,] 2.8247439 1.4249960 [4,] -1.8533240 0.4804851 [5,] 1.9158459 -5.5087631 > MA$A[1:5,] [,1] [,2] [1,] -2.48465011 -2.4041550 [2,] -0.79230447 -0.9002250 [3,] -0.76237200 0.2071043 [4,] 0.09281027 -1.3880965 [5,] 0.22385828 -3.0855818 > > ### unwrapdups > > M <- matrix(1:12,6,2) > unwrapdups(M,ndups=1) [,1] [,2] [1,] 1 7 [2,] 2 8 [3,] 3 9 [4,] 4 10 [5,] 5 11 [6,] 6 12 > unwrapdups(M,ndups=2) [,1] [,2] [,3] [,4] [1,] 1 2 7 8 [2,] 3 4 9 10 [3,] 5 6 11 12 > unwrapdups(M,ndups=3) [,1] [,2] [,3] [,4] [,5] [,6] [1,] 1 2 3 7 8 9 [2,] 4 5 6 10 11 12 > unwrapdups(M,ndups=2,spacing=3) [,1] [,2] [,3] [,4] [1,] 1 4 7 10 [2,] 2 5 8 11 [3,] 3 6 9 12 > > ### trigammaInverse > > trigammaInverse(c(1e-6,NA,5,1e6)) [1] 1.000000e+06 NA 4.961687e-01 1.000001e-03 > > ### lmFit, eBayes, topTable > > M <- matrix(rnorm(10*6,sd=0.3),10,6) > rownames(M) <- LETTERS[1:10] > M[1,1:3] <- M[1,1:3] + 2 > design <- cbind(First3Arrays=c(1,1,1,0,0,0),Last3Arrays=c(0,0,0,1,1,1)) > contrast.matrix <- cbind(First3=c(1,0),Last3=c(0,1),"Last3-First3"=c(-1,1)) > fit <- lmFit(M,design) > fit2 <- eBayes(contrasts.fit(fit,contrasts=contrast.matrix)) > topTable(fit2) First3 Last3 Last3.First3 AveExpr F P.Value A 1.77602021 0.06025114 -1.71576906 0.918135675 50.91471061 7.727200e-23 D -0.05454069 0.39127869 0.44581938 0.168369004 2.51638838 8.075072e-02 F -0.16249607 -0.33009728 -0.16760121 -0.246296671 2.18256779 1.127516e-01 G 0.30852468 -0.06873462 -0.37725930 0.119895035 1.61088775 1.997102e-01 H -0.16942269 0.20578118 0.37520387 0.018179245 1.14554368 3.180510e-01 J 0.21417623 0.07074940 -0.14342683 0.142462814 0.82029274 4.403027e-01 C -0.12236781 0.15095948 0.27332729 0.014295836 0.60885003 5.439761e-01 B -0.11982833 0.13529287 0.25512120 0.007732271 0.52662792 5.905931e-01 E 0.01897934 0.10434934 0.08536999 0.061664340 0.18136849 8.341279e-01 I -0.04720963 0.03996397 0.08717360 -0.003622829 0.06168476 9.401792e-01 adj.P.Val A 7.727200e-22 D 3.758388e-01 F 3.758388e-01 G 4.992756e-01 H 6.361019e-01 J 7.338379e-01 C 7.382414e-01 B 7.382414e-01 E 9.268088e-01 I 9.401792e-01 > topTable(fit2,coef=3,resort.by="logFC") logFC AveExpr t P.Value adj.P.Val B D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 > topTable(fit2,coef=3,resort.by="p") logFC AveExpr t P.Value adj.P.Val B A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 > topTable(fit2,coef=3,sort="logFC",resort.by="t") logFC AveExpr t P.Value adj.P.Val B D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 > topTable(fit2,coef=3,resort.by="B") logFC AveExpr t P.Value adj.P.Val B A -1.71576906 0.918135675 -6.8894222 2.674199e-08 2.674199e-07 16.590631 D 0.44581938 0.168369004 1.7901232 8.100587e-02 3.494414e-01 -5.323150 G -0.37725930 0.119895035 -1.5148301 1.376783e-01 3.494414e-01 -5.773625 H 0.37520387 0.018179245 1.5065768 1.397766e-01 3.494414e-01 -5.785971 C 0.27332729 0.014295836 1.0975061 2.789833e-01 5.196681e-01 -6.313399 B 0.25512120 0.007732271 1.0244023 3.118009e-01 5.196681e-01 -6.390202 F -0.16760121 -0.246296671 -0.6729784 5.048308e-01 7.098782e-01 -6.685541 J -0.14342683 0.142462814 -0.5759097 5.679026e-01 7.098782e-01 -6.745563 I 0.08717360 -0.003622829 0.3500330 7.281504e-01 7.335508e-01 -6.849117 E 0.08536999 0.061664340 0.3427908 7.335508e-01 7.335508e-01 -6.851601 > topTable(fit2,coef=3,lfc=1) logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > topTable(fit2,coef=3,p=0.2) logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > topTable(fit2,coef=3,p=0.2,lfc=0.5) logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > topTable(fit2,coef=3,p=0.2,lfc=0.5,sort="none") logFC AveExpr t P.Value adj.P.Val B A -1.715769 0.9181357 -6.889422 2.674199e-08 2.674199e-07 16.59063 > > designlist <- list(Null=matrix(1,6,1),Two=design,Three=cbind(1,c(0,0,1,1,0,0),c(0,0,0,0,1,1))) > out <- selectModel(M,designlist) > table(out$pref) Null Two Three 5 3 2 > > ### marray object > > #suppressMessages(suppressWarnings(gotmarray <- require(marray,quietly=TRUE))) > #if(gotmarray) { > # data(swirl) > # snorm = maNorm(swirl) > # fit <- lmFit(snorm, design = c(1,-1,-1,1)) > # fit <- eBayes(fit) > # topTable(fit,resort.by="AveExpr") > #} > > ### duplicateCorrelation > > cor.out <- duplicateCorrelation(M) > cor.out$consensus.correlation [1] -0.09290714 > cor.out$atanh.correlations [1] -0.4419130 0.4088967 -0.1964978 -0.6093769 0.3730118 > > ### gls.series > > fit <- gls.series(M,design,correlation=cor.out$cor) > fit$coefficients First3Arrays Last3Arrays [1,] 0.82809594 0.09777201 [2,] -0.08845425 0.27111909 [3,] -0.07175836 -0.11287397 [4,] 0.06955100 0.06852328 [5,] 0.08348330 0.05535668 > fit$stdev.unscaled First3Arrays Last3Arrays [1,] 0.3888215 0.3888215 [2,] 0.3888215 0.3888215 [3,] 0.3888215 0.3888215 [4,] 0.3888215 0.3888215 [5,] 0.3888215 0.3888215 > fit$sigma [1] 0.7630059 0.2152728 0.3350370 0.3227781 0.3405473 > fit$df.residual [1] 10 10 10 10 10 > > ### mrlm > > fit <- mrlm(M,design) Warning message: In rlm.default(x = X, y = y, weights = w, ...) : 'rlm' failed to converge in 20 steps > fit$coef First3Arrays Last3Arrays A 1.75138894 0.06025114 B -0.11982833 0.10322039 C -0.09302502 0.15095948 D -0.05454069 0.33700045 E 0.07927938 0.10434934 F -0.16249607 -0.34010852 G 0.30852468 -0.06873462 H -0.16942269 0.24392984 I -0.04720963 0.03996397 J 0.21417623 -0.05679272 > fit$stdev.unscaled First3Arrays Last3Arrays A 0.5933418 0.5773503 B 0.5773503 0.6096497 C 0.6017444 0.5773503 D 0.5773503 0.6266021 E 0.6307703 0.5773503 F 0.5773503 0.5846707 G 0.5773503 0.5773503 H 0.5773503 0.6544564 I 0.5773503 0.5773503 J 0.5773503 0.6689776 > fit$sigma [1] 0.2894294 0.2679396 0.2090236 0.1461395 0.2309018 0.2827476 0.2285945 [8] 0.2267556 0.3537469 0.2172409 > fit$df.residual [1] 4 4 4 4 4 4 4 4 4 4 > > # Similar to Mette Langaas 19 May 2004 > set.seed(123) > narrays <- 9 > ngenes <- 5 > mu <- 0 > alpha <- 2 > beta <- -2 > epsilon <- matrix(rnorm(narrays*ngenes,0,1),ncol=narrays) > X <- cbind(rep(1,9),c(0,0,0,1,1,1,0,0,0),c(0,0,0,0,0,0,1,1,1)) > dimnames(X) <- list(1:9,c("mu","alpha","beta")) > yvec <- mu*X[,1]+alpha*X[,2]+beta*X[,3] > ymat <- matrix(rep(yvec,ngenes),ncol=narrays,byrow=T)+epsilon > ymat[5,1:2] <- NA > fit <- lmFit(ymat,design=X) > test.contr <- cbind(c(0,1,-1),c(1,1,0),c(1,0,1)) > dimnames(test.contr) <- list(c("mu","alpha","beta"),c("alpha-beta","mu+alpha","mu+beta")) > fit2 <- contrasts.fit(fit,contrasts=test.contr) > eBayes(fit2) An object of class "MArrayLM" $coefficients alpha-beta mu+alpha mu+beta [1,] 3.537333 1.677465 -1.859868 [2,] 4.355578 2.372554 -1.983024 [3,] 3.197645 1.053584 -2.144061 [4,] 2.697734 1.611443 -1.086291 [5,] 3.502304 2.051995 -1.450309 $stdev.unscaled alpha-beta mu+alpha mu+beta [1,] 0.8164966 0.5773503 0.5773503 [2,] 0.8164966 0.5773503 0.5773503 [3,] 0.8164966 0.5773503 0.5773503 [4,] 0.8164966 0.5773503 0.5773503 [5,] 1.1547005 0.8368633 0.8368633 $sigma [1] 1.3425032 0.4647155 1.1993444 0.9428569 0.9421509 $df.residual [1] 6 6 6 6 4 $cov.coefficients alpha-beta mu+alpha mu+beta alpha-beta 0.6666667 3.333333e-01 -3.333333e-01 mu+alpha 0.3333333 3.333333e-01 5.551115e-17 mu+beta -0.3333333 5.551115e-17 3.333333e-01 $rank [1] 3 $Amean [1] 0.2034961 0.1954604 -0.2863347 0.1188659 0.1784593 $method [1] "ls" $design mu alpha beta 1 1 0 0 2 1 0 0 3 1 0 0 4 1 1 0 5 1 1 0 6 1 1 0 7 1 0 1 8 1 0 1 9 1 0 1 $contrasts alpha-beta mu+alpha mu+beta mu 0 1 1 alpha 1 1 0 beta -1 0 1 $df.prior [1] 9.306153 $s2.prior [1] 0.923179 $var.prior [1] 17.33142 17.33142 12.26855 $proportion [1] 0.01 $s2.post [1] 1.2677996 0.6459499 1.1251558 0.9097727 0.9124980 $t alpha-beta mu+alpha mu+beta [1,] 3.847656 2.580411 -2.860996 [2,] 6.637308 5.113018 -4.273553 [3,] 3.692066 1.720376 -3.500994 [4,] 3.464003 2.926234 -1.972606 [5,] 3.175181 2.566881 -1.814221 $df.total [1] 15.30615 15.30615 15.30615 15.30615 13.30615 $p.value alpha-beta mu+alpha mu+beta [1,] 1.529450e-03 0.0206493481 0.0117123495 [2,] 7.144893e-06 0.0001195844 0.0006385076 [3,] 2.109270e-03 0.1055117477 0.0031325769 [4,] 3.381970e-03 0.0102514264 0.0668844448 [5,] 7.124839e-03 0.0230888584 0.0922478630 $lods alpha-beta mu+alpha mu+beta [1,] -1.013417 -3.702133 -3.0332393 [2,] 3.981496 1.283349 -0.2615911 [3,] -1.315036 -5.168621 -1.7864101 [4,] -1.757103 -3.043209 -4.6191869 [5,] -2.257358 -3.478267 -4.5683738 $F [1] 7.421911 22.203107 7.608327 6.227010 5.060579 $F.p.value [1] 5.581800e-03 2.988923e-05 5.080726e-03 1.050148e-02 2.320274e-02 > > ### uniquegenelist > > uniquegenelist(letters[1:8],ndups=2) [1] "a" "c" "e" "g" > uniquegenelist(letters[1:8],ndups=2,spacing=2) [1] "a" "b" "e" "f" > > ### classifyTests > > tstat <- matrix(c(0,5,0, 0,2.5,0, -2,-2,2, 1,1,1), 4, 3, byrow=TRUE) > classifyTestsF(tstat) TestResults matrix [,1] [,2] [,3] [1,] 0 1 0 [2,] 0 0 0 [3,] -1 -1 1 [4,] 0 0 0 > FStat(tstat) [1] 8.333333 2.083333 4.000000 1.000000 attr(,"df1") [1] 3 attr(,"df2") [1] Inf > classifyTestsT(tstat) TestResults matrix [,1] [,2] [,3] [1,] 0 1 0 [2,] 0 0 0 [3,] 0 0 0 [4,] 0 0 0 > classifyTestsP(tstat) TestResults matrix [,1] [,2] [,3] [1,] 0 1 0 [2,] 0 1 0 [3,] 0 0 0 [4,] 0 0 0 > > ### avereps > > x <- matrix(rnorm(8*3),8,3) > colnames(x) <- c("S1","S2","S3") > rownames(x) <- c("b","a","a","c","c","b","b","b") > avereps(x) S1 S2 S3 b -0.2353018 0.5220094 0.2302895 a -0.4347701 0.6453498 -0.6758914 c 0.3482980 -0.4820695 -0.3841313 > > ### roast > > y <- matrix(rnorm(100*4),100,4) > sigma <- sqrt(2/rchisq(100,df=7)) > y <- y*sigma > design <- cbind(Intercept=1,Group=c(0,0,1,1)) > iset1 <- 1:5 > y[iset1,3:4] <- y[iset1,3:4]+3 > iset2 <- 6:10 > roast(y=y,iset1,design,contrast=2) Active.Prop P.Value Down 0 0.996498249 Up 1 0.004002001 UpOrDown 1 0.008000000 Mixed 1 0.008000000 > roast(y=y,iset1,design,contrast=2,array.weights=c(0.5,1,0.5,1)) Active.Prop P.Value Down 0 0.99899950 Up 1 0.00150075 UpOrDown 1 0.00300000 Mixed 1 0.00300000 > w <- matrix(runif(100*4),100,4) > roast(y=y,iset1,design,contrast=2,weights=w) Active.Prop P.Value Down 0 0.9994997 Up 1 0.0010005 UpOrDown 1 0.0020000 Mixed 1 0.0020000 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,gene.weights=runif(100)) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1 Up 0.008 0.015 0.008 0.015 set2 5 0 0 Up 0.959 0.959 0.687 0.687 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,array.weights=c(0.5,1,0.5,1)) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1 Up 0.004 0.007 0.004 0.007 set2 5 0 0 Up 0.679 0.679 0.658 0.658 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0.0 1 Up 0.003 0.005 0.003 0.005 set2 5 0.2 0 Down 0.950 0.950 0.250 0.250 > mroast(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1)) NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 0 1 Up 0.001 0.001 0.001 0.001 set2 5 0 0 Down 0.791 0.791 0.146 0.146 > fry(y=y,list(set1=iset1,set2=iset2),design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1)) NGenes Direction PValue FDR PValue.Mixed FDR.Mixed set1 5 Up 0.0007432594 0.001486519 1.820548e-05 3.641096e-05 set2 5 Down 0.8208140511 0.820814051 2.211837e-01 2.211837e-01 > rownames(y) <- paste0("Gene",1:100) > iset1A <- rownames(y)[1:5] > fry(y=y,index=iset1A,design,contrast=2,weights=w,array.weights=c(0.5,1,0.5,1)) NGenes Direction PValue PValue.Mixed set1 5 Up 0.0007432594 1.820548e-05 > > ### camera > > camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1),allow.neg.cor=TRUE,inter.gene.cor=NA) NGenes Correlation Direction PValue set1 5 -0.2481655 Up 0.001050253 > camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA) NGenes Correlation Direction PValue FDR set1 5 -0.2481655 Up 0.0009047749 0.00180955 set2 5 0.1719094 Down 0.9068364378 0.90683644 > camera(y=y,iset1,design,contrast=2,weights=c(0.5,1,0.5,1)) NGenes Direction PValue set1 5 Up 1.105329e-10 > camera(y=y,list(set1=iset1,set2=iset2),design,contrast=2) NGenes Direction PValue FDR set1 5 Up 7.334400e-12 1.466880e-11 set2 5 Down 8.677115e-01 8.677115e-01 > camera(y=y,iset1A,design,contrast=2) NGenes Direction PValue set1 5 Up 7.3344e-12 > > ### with EList arg > > y <- new("EList",list(E=y)) > roast(y=y,iset1,design,contrast=2) Active.Prop P.Value Down 0 0.997498749 Up 1 0.003001501 UpOrDown 1 0.006000000 Mixed 1 0.006000000 > camera(y=y,iset1,design,contrast=2,allow.neg.cor=TRUE,inter.gene.cor=NA) NGenes Correlation Direction PValue set1 5 -0.2481655 Up 0.0009047749 > camera(y=y,iset1,design,contrast=2) NGenes Direction PValue set1 5 Up 7.3344e-12 > > ### eBayes with trend > > fit <- lmFit(y,design) > fit <- eBayes(fit,trend=TRUE) > topTable(fit,coef=2) logFC AveExpr t P.Value adj.P.Val B Gene2 3.729512 1.73488969 4.865697 0.0004854886 0.02902331 0.1596831 Gene3 3.488703 1.03931081 4.754954 0.0005804663 0.02902331 -0.0144071 Gene4 2.696676 1.74060725 3.356468 0.0063282637 0.21094212 -2.3434702 Gene1 2.391846 1.72305203 3.107124 0.0098781268 0.24695317 -2.7738874 Gene33 -1.492317 -0.07525287 -2.783817 0.0176475742 0.29965463 -3.3300835 Gene5 2.387967 1.63066783 2.773444 0.0179792778 0.29965463 -3.3478204 Gene80 -1.839760 -0.32802306 -2.503584 0.0291489863 0.37972679 -3.8049642 Gene39 1.366141 -0.27360750 2.451133 0.0320042242 0.37972679 -3.8925860 Gene95 -1.907074 1.26297763 -2.414217 0.0341754107 0.37972679 -3.9539571 Gene50 1.034777 0.01608433 2.054690 0.0642289403 0.59978803 -4.5350317 > fit$df.prior [1] 9.098442 > fit$s2.prior Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8 0.6901845 0.6977354 0.3860494 0.7014122 0.6341068 0.2926337 0.3077620 0.3058098 Gene9 Gene10 Gene11 Gene12 Gene13 Gene14 Gene15 Gene16 0.2985145 0.2832520 0.3232434 0.3279710 0.2816081 0.2943502 0.3127994 0.2894802 Gene17 Gene18 Gene19 Gene20 Gene21 Gene22 Gene23 Gene24 0.2812758 0.2840051 0.2839124 0.2954261 0.2838592 0.2812704 0.3157029 0.2844541 Gene25 Gene26 Gene27 Gene28 Gene29 Gene30 Gene31 Gene32 0.4778832 0.2818242 0.2930360 0.2940957 0.2941862 0.3234399 0.3164779 0.2853510 Gene33 Gene34 Gene35 Gene36 Gene37 Gene38 Gene39 Gene40 0.2988244 0.3450090 0.3048596 0.3089086 0.3104534 0.4551549 0.3220008 0.2813286 Gene41 Gene42 Gene43 Gene44 Gene45 Gene46 Gene47 Gene48 0.2826027 0.2822504 0.2823330 0.3170673 0.3146173 0.3146793 0.2916540 0.2975003 Gene49 Gene50 Gene51 Gene52 Gene53 Gene54 Gene55 Gene56 0.3538946 0.2907240 0.3199596 0.2816641 0.2814293 0.2996822 0.2812885 0.2896157 Gene57 Gene58 Gene59 Gene60 Gene61 Gene62 Gene63 Gene64 0.2955317 0.2815907 0.2919420 0.2849675 0.3540805 0.3491713 0.2975019 0.2939325 Gene65 Gene66 Gene67 Gene68 Gene69 Gene70 Gene71 Gene72 0.2986943 0.3265466 0.3402343 0.3394927 0.2813283 0.2814440 0.3089669 0.3030850 Gene73 Gene74 Gene75 Gene76 Gene77 Gene78 Gene79 Gene80 0.2859286 0.2813216 0.3475231 0.3334419 0.2949550 0.3108702 0.2959688 0.3295294 Gene81 Gene82 Gene83 Gene84 Gene85 Gene86 Gene87 Gene88 0.3413700 0.2946268 0.3029565 0.2920284 0.2926205 0.2818046 0.3425116 0.2882936 Gene89 Gene90 Gene91 Gene92 Gene93 Gene94 Gene95 Gene96 0.2945459 0.3077919 0.2892134 0.2823787 0.3048049 0.2961408 0.4590012 0.2812784 Gene97 Gene98 Gene99 Gene100 0.2846345 0.2819651 0.3137551 0.2856081 > summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.2335 0.2603 0.2997 0.3375 0.3655 0.7812 > > y$E[1,1] <- NA > y$E[1,3] <- NA > fit <- lmFit(y,design) > fit <- eBayes(fit,trend=TRUE) > topTable(fit,coef=2) logFC AveExpr t P.Value adj.P.Val B Gene3 3.488703 1.03931081 4.604490 0.0007644061 0.07644061 -0.2333915 Gene2 3.729512 1.73488969 4.158038 0.0016033158 0.08016579 -0.9438583 Gene4 2.696676 1.74060725 2.898102 0.0145292666 0.44537707 -3.0530813 Gene33 -1.492317 -0.07525287 -2.784004 0.0178150826 0.44537707 -3.2456324 Gene5 2.387967 1.63066783 2.495395 0.0297982959 0.46902627 -3.7272957 Gene80 -1.839760 -0.32802306 -2.491115 0.0300256116 0.46902627 -3.7343584 Gene39 1.366141 -0.27360750 2.440729 0.0328318388 0.46902627 -3.8172597 Gene1 2.638272 1.47993643 2.227507 0.0530016060 0.58890673 -3.9537576 Gene95 -1.907074 1.26297763 -2.288870 0.0429197808 0.53649726 -4.0642439 Gene50 1.034777 0.01608433 2.063663 0.0635275235 0.60439978 -4.4204731 > fit$df.residual[1] [1] 0 > fit$df.prior [1] 8.971891 > fit$s2.prior [1] 0.7014084 0.9646561 0.4276287 0.9716476 0.8458852 0.2910492 0.3097052 [8] 0.3074225 0.2985517 0.2786374 0.3267121 0.3316013 0.2766404 0.2932679 [15] 0.3154347 0.2869186 0.2761395 0.2799884 0.2795119 0.2946468 0.2794412 [22] 0.2761282 0.3186442 0.2806092 0.4596465 0.2767847 0.2924541 0.2939204 [29] 0.2930568 0.3269177 0.3194905 0.2814293 0.2989389 0.3483845 0.3062977 [36] 0.3110287 0.3127934 0.4418052 0.3254067 0.2761732 0.2780422 0.2773311 [43] 0.2776653 0.3201314 0.3174515 0.3175199 0.2897731 0.2972785 0.3567262 [50] 0.2885556 0.3232426 0.2767207 0.2762915 0.3000062 0.2761306 0.2870975 [57] 0.2947817 0.2766152 0.2901489 0.2813183 0.3568982 0.3724440 0.2972804 [64] 0.2927300 0.2987764 0.3301406 0.3437962 0.3430762 0.2761729 0.2763094 [71] 0.3110958 0.3041715 0.2822004 0.2761654 0.3507694 0.3371214 0.2940441 [78] 0.3132660 0.2953388 0.3331880 0.3448949 0.2946558 0.3040162 0.2902616 [85] 0.2910320 0.2769211 0.3459946 0.2859057 0.2935193 0.3097398 0.2865663 [92] 0.2774968 0.3062327 0.2955576 0.5425422 0.2761214 0.2808585 0.2771484 [99] 0.3164981 0.2817725 > summary(fit$s2.post) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.2296 0.2581 0.3003 0.3453 0.3652 0.9158 > > ### voom > > y <- matrix(rpois(100*4,lambda=20),100,4) > design <- cbind(Int=1,x=c(0,0,1,1)) > v <- voom(y,design) > names(v) [1] "E" "weights" "design" "targets" > summary(v$E) V1 V2 V3 V4 Min. :12.25 Min. :12.58 Min. :12.19 Min. :12.24 1st Qu.:13.13 1st Qu.:13.07 1st Qu.:13.15 1st Qu.:13.03 Median :13.29 Median :13.30 Median :13.30 Median :13.27 Mean :13.28 Mean :13.29 Mean :13.29 Mean :13.28 3rd Qu.:13.49 3rd Qu.:13.51 3rd Qu.:13.50 3rd Qu.:13.50 Max. :14.23 Max. :14.28 Max. :13.97 Max. :13.96 > summary(v$weights) V1 V2 V3 V4 Min. : 5.935 Min. : 5.935 Min. : 5.935 Min. : 5.935 1st Qu.: 6.788 1st Qu.: 7.049 1st Qu.: 7.207 1st Qu.: 6.825 Median :11.066 Median :10.443 Median :10.606 Median :10.414 Mean :10.421 Mean :10.485 Mean :10.571 Mean :10.532 3rd Qu.:13.485 3rd Qu.:14.155 3rd Qu.:13.859 3rd Qu.:14.121 Max. :15.083 Max. :15.101 Max. :15.095 Max. :15.063 > > ### goana > > EB <- c("133746","1339","134","1340","134083","134111","134147","134187","134218","134266", + "134353","134359","134391","134429","134430","1345","134510","134526","134549","1346", + "134637","1347","134701","134728","1348","134829","134860","134864","1349","134957", + "135","1350","1351","135112","135114","135138","135152","135154","1352","135228", + "135250","135293","135295","1353","135458","1355","1356","135644","135656","1357", + "1358","135892","1359","135924","135935","135941","135946","135948","136","1360", + "136051","1361","1362","136227","136242","136259","1363","136306","136319","136332", + "136371","1364","1365","136541","1366","136647","1368","136853","1369","136991", + "1370","137075","1371","137209","1373","137362","1374","137492","1375","1376", + "137682","137695","137735","1378","137814","137868","137872","137886","137902","137964") > go <- goana(fit,FDR=0.8,geneid=EB) > topGO(go,n=10,truncate.term=30) Term Ont N Up Down P.Up GO:0070062 extracellular exosome CC 8 0 4 1.000000000 GO:0043230 extracellular organelle CC 8 0 4 1.000000000 GO:1903561 extracellular vesicle CC 8 0 4 1.000000000 GO:0072359 circulatory system developm... BP 2 0 2 1.000000000 GO:0007507 heart development BP 2 0 2 1.000000000 GO:0032501 multicellular organismal pr... BP 31 6 7 0.796992878 GO:0098609 cell-cell adhesion BP 5 4 0 0.009503355 GO:0097190 apoptotic signaling pathway BP 3 3 0 0.010952381 GO:0031252 cell leading edge CC 3 3 0 0.010952381 GO:0006897 endocytosis BP 3 3 0 0.010952381 P.Down GO:0070062 0.003047199 GO:0043230 0.003047199 GO:1903561 0.003047199 GO:0072359 0.009090909 GO:0007507 0.009090909 GO:0032501 0.009111120 GO:0098609 1.000000000 GO:0097190 1.000000000 GO:0031252 1.000000000 GO:0006897 1.000000000 > topGO(go,n=10,truncate.term=30,sort="down") Term Ont N Up Down P.Up P.Down GO:0070062 extracellular exosome CC 8 0 4 1.0000000 0.003047199 GO:0043230 extracellular organelle CC 8 0 4 1.0000000 0.003047199 GO:1903561 extracellular vesicle CC 8 0 4 1.0000000 0.003047199 GO:0072359 circulatory system developm... BP 2 0 2 1.0000000 0.009090909 GO:0007507 heart development BP 2 0 2 1.0000000 0.009090909 GO:0032501 multicellular organismal pr... BP 31 6 7 0.7969929 0.009111120 GO:0032502 developmental process BP 25 4 6 0.8946593 0.014492712 GO:0031982 vesicle CC 18 1 5 0.9946677 0.015552466 GO:0009887 animal organ morphogenesis BP 3 0 2 1.0000000 0.025788497 GO:0055082 cellular chemical homeostas... BP 3 1 2 0.5476190 0.025788497 > > proc.time() user system elapsed 2.37 0.26 2.93
limma.Rcheck/limma-Ex.timings
name | user | system | elapsed | |
LargeDataObject | 0 | 0 | 0 | |
PrintLayout | 0.000 | 0.000 | 0.001 | |
TestResults | 0 | 0 | 0 | |
alias2Symbol | 3.996 | 0.060 | 4.114 | |
arrayWeights | 0 | 0 | 0 | |
arrayWeightsQuick | 0 | 0 | 0 | |
asMatrixWeights | 0.004 | 0.000 | 0.001 | |
auROC | 0.000 | 0.000 | 0.001 | |
avearrays | 0.004 | 0.000 | 0.002 | |
avereps | 0.000 | 0.000 | 0.001 | |
backgroundcorrect | 0.008 | 0.000 | 0.008 | |
barcodeplot | 0.060 | 0.000 | 0.065 | |
beadCountWeights | 0 | 0 | 0 | |
blockDiag | 0.000 | 0.000 | 0.001 | |
camera | 0.036 | 0.000 | 0.035 | |
cbind | 0.008 | 0.000 | 0.004 | |
changelog | 0.000 | 0.000 | 0.018 | |
channel2M | 0.000 | 0.004 | 0.001 | |
classifytests | 0.000 | 0.000 | 0.002 | |
contrastAsCoef | 0.008 | 0.000 | 0.007 | |
contrasts.fit | 0.012 | 0.000 | 0.010 | |
controlStatus | 0.008 | 0.000 | 0.006 | |
coolmap | 0.136 | 0.004 | 0.142 | |
cumOverlap | 0.000 | 0.000 | 0.001 | |
detectionPValue | 0 | 0 | 0 | |
diffSplice | 0 | 0 | 0 | |
dim | 0.000 | 0.000 | 0.001 | |
dupcor | 0.476 | 0.012 | 0.489 | |
ebayes | 0.012 | 0.000 | 0.013 | |
fitGammaIntercept | 0.000 | 0.000 | 0.001 | |
fitfdist | 0 | 0 | 0 | |
fitmixture | 0.020 | 0.000 | 0.022 | |
genas | 0.084 | 0.004 | 0.091 | |
geneSetTest | 0.004 | 0.000 | 0.002 | |
getSpacing | 0.000 | 0.000 | 0.001 | |
getlayout | 0.000 | 0.000 | 0.001 | |
goana | 0.000 | 0.000 | 0.001 | |
heatdiagram | 0 | 0 | 0 | |
helpMethods | 0 | 0 | 0 | |
ids2indices | 0 | 0 | 0 | |
imageplot | 0.040 | 0.004 | 0.042 | |
intraspotCorrelation | 0 | 0 | 0 | |
isfullrank | 0.000 | 0.000 | 0.001 | |
isnumeric | 0.000 | 0.000 | 0.001 | |
kooperberg | 0 | 0 | 0 | |
limmaUsersGuide | 0.004 | 0.000 | 0.000 | |
lm.series | 0 | 0 | 0 | |
lmFit | 0.440 | 0.000 | 0.444 | |
lmscFit | 0 | 0 | 0 | |
loessfit | 0.004 | 0.000 | 0.005 | |
logcosh | 0 | 0 | 0 | |
logsumexp | 0 | 0 | 0 | |
ma3x3 | 0 | 0 | 0 | |
makeContrasts | 0.004 | 0.000 | 0.001 | |
makeunique | 0 | 0 | 0 | |
mdplot | 0.004 | 0.000 | 0.002 | |
merge | 0.004 | 0.000 | 0.005 | |
mergeScansRG | 0 | 0 | 0 | |
modelMatrix | 0.004 | 0.000 | 0.002 | |
modifyWeights | 0 | 0 | 0 | |
nec | 0 | 0 | 0 | |
normalizeMedianAbsValues | 0.000 | 0.000 | 0.001 | |
normalizeRobustSpline | 0.02 | 0.00 | 0.02 | |
normalizeVSN | 0.456 | 0.012 | 0.470 | |
normalizebetweenarrays | 0.000 | 0.000 | 0.002 | |
normalizeprintorder | 0.004 | 0.000 | 0.000 | |
normexpfit | 0.000 | 0.000 | 0.001 | |
normexpfitcontrol | 0 | 0 | 0 | |
normexpfitdetectionp | 0 | 0 | 0 | |
normexpsignal | 0.000 | 0.000 | 0.001 | |
plotDensities | 0 | 0 | 0 | |
plotExonJunc | 0.000 | 0.000 | 0.001 | |
plotExons | 0 | 0 | 0 | |
plotMD | 0.024 | 0.000 | 0.024 | |
plotMDS | 0.016 | 0.000 | 0.015 | |
plotRLDF | 0.012 | 0.000 | 0.011 | |
plotSplice | 0 | 0 | 0 | |
plotWithHighlights | 0.012 | 0.000 | 0.009 | |
plotma | 0.024 | 0.004 | 0.030 | |
poolvar | 0.000 | 0.000 | 0.001 | |
predFCm | 0.020 | 0.000 | 0.021 | |
printorder | 0.008 | 0.004 | 0.010 | |
printtipWeights | 0 | 0 | 0 | |
propTrueNull | 0.004 | 0.000 | 0.002 | |
propexpr | 0.000 | 0.000 | 0.001 | |
protectMetachar | 0.000 | 0.000 | 0.001 | |
qqt | 0.004 | 0.000 | 0.003 | |
qualwt | 0.000 | 0.000 | 0.001 | |
rankSumTestwithCorrelation | 0.008 | 0.000 | 0.008 | |
read.idat | 0 | 0 | 0 | |
read.ilmn | 0 | 0 | 0 | |
read.maimages | 0 | 0 | 0 | |
readImaGeneHeader | 0 | 0 | 0 | |
readgal | 0 | 0 | 0 | |
removeBatchEffect | 0.008 | 0.000 | 0.012 | |
removeext | 0.000 | 0.000 | 0.001 | |
roast | 0.012 | 0.000 | 0.012 | |
romer | 0.012 | 0.000 | 0.013 | |
selectmodel | 0.008 | 0.000 | 0.007 | |
squeezeVar | 0.000 | 0.000 | 0.001 | |
strsplit2 | 0 | 0 | 0 | |
subsetting | 0.000 | 0.000 | 0.002 | |
targetsA2C | 0.004 | 0.000 | 0.003 | |
topGO | 0.004 | 0.000 | 0.000 | |
topRomer | 0 | 0 | 0 | |
topSplice | 0 | 0 | 0 | |
toptable | 0 | 0 | 0 | |
tricubeMovingAverage | 0.000 | 0.000 | 0.001 | |
trigammainverse | 0.004 | 0.000 | 0.000 | |
trimWhiteSpace | 0 | 0 | 0 | |
uniquegenelist | 0 | 0 | 0 | |
unwrapdups | 0 | 0 | 0 | |
venn | 0.016 | 0.000 | 0.018 | |
volcanoplot | 0 | 0 | 0 | |
voom | 0 | 0 | 0 | |
weightedLowess | 0.008 | 0.000 | 0.007 | |
weightedmedian | 0 | 0 | 0 | |
zscore | 0.000 | 0.000 | 0.001 | |