Back to Multiple platform build/check report for BioC 3.7
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

CHECK report for STATegRa on tokay2

This page was generated on 2018-10-17 08:39:30 -0400 (Wed, 17 Oct 2018).

Package 1438/1561HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
STATegRa 1.16.1
David Gomez-Cabrero , NĂºria Planell
Snapshot Date: 2018-10-15 16:45:08 -0400 (Mon, 15 Oct 2018)
URL: https://git.bioconductor.org/packages/STATegRa
Branch: RELEASE_3_7
Last Commit: 2618af2
Last Changed Date: 2018-05-23 09:19:35 -0400 (Wed, 23 May 2018)
malbec2 Linux (Ubuntu 16.04.1 LTS) / x86_64  OK  OK  OK UNNEEDED, same version exists in internal repository
tokay2 Windows Server 2012 R2 Standard / x64  OK  OK [ OK ] OK UNNEEDED, same version exists in internal repository
merida2 OS X 10.11.6 El Capitan / x86_64  OK  OK  OK  OK UNNEEDED, same version exists in internal repository

Summary

Package: STATegRa
Version: 1.16.1
Command: C:\Users\biocbuild\bbs-3.7-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.7-bioc\R\library --no-vignettes --timings STATegRa_1.16.1.tar.gz
StartedAt: 2018-10-17 05:03:33 -0400 (Wed, 17 Oct 2018)
EndedAt: 2018-10-17 05:10:33 -0400 (Wed, 17 Oct 2018)
EllapsedTime: 419.3 seconds
RetCode: 0
Status:  OK  
CheckDir: STATegRa.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.7-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.7-bioc\R\library --no-vignettes --timings STATegRa_1.16.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.7-bioc/meat/STATegRa.Rcheck'
* using R version 3.5.1 Patched (2018-07-24 r75005)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'STATegRa/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'STATegRa' version '1.16.1'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'STATegRa' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
modelSelection,list-numeric-character: no visible binding for global
  variable 'components'
modelSelection,list-numeric-character: no visible binding for global
  variable 'mylabel'
plotVAF,caClass: no visible binding for global variable 'comp'
plotVAF,caClass: no visible binding for global variable 'VAF'
plotVAF,caClass: no visible binding for global variable 'block'
selectCommonComps,list-numeric: no visible binding for global variable
  'comps'
selectCommonComps,list-numeric: no visible binding for global variable
  'block'
selectCommonComps,list-numeric: no visible binding for global variable
  'comp'
selectCommonComps,list-numeric: no visible binding for global variable
  'ratio'
Undefined global functions or variables:
  VAF block comp components comps mylabel ratio
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... OK
Examples with CPU or elapsed time > 5s
                  user system elapsed
plotRes           6.65   0.08    6.74
plotVAF           5.58   0.08    5.65
omicsCompAnalysis 5.12   0.11    5.24
** running examples for arch 'x64' ... OK
Examples with CPU or elapsed time > 5s
        user system elapsed
plotRes 6.56   0.11    6.67
plotVAF 5.41   0.09    5.50
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
  Running 'STATEgRa_Example.omicsCLUST.R'
  Running 'STATEgRa_Example.omicsPCA.R'
  Running 'STATegRa_Example.omicsNPC.R'
  Running 'runTests.R'
 OK
** running tests for arch 'x64' ...
  Running 'STATEgRa_Example.omicsCLUST.R'
  Running 'STATEgRa_Example.omicsPCA.R'
  Running 'STATegRa_Example.omicsNPC.R'
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  'C:/Users/biocbuild/bbs-3.7-bioc/meat/STATegRa.Rcheck/00check.log'
for details.



Installation output

STATegRa.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.7/bioc/src/contrib/STATegRa_1.16.1.tar.gz && rm -rf STATegRa.buildbin-libdir && mkdir STATegRa.buildbin-libdir && C:\Users\biocbuild\bbs-3.7-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=STATegRa.buildbin-libdir STATegRa_1.16.1.tar.gz && C:\Users\biocbuild\bbs-3.7-bioc\R\bin\R.exe CMD INSTALL STATegRa_1.16.1.zip && rm STATegRa_1.16.1.tar.gz STATegRa_1.16.1.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100 3177k  100 3177k    0     0  39.3M      0 --:--:-- --:--:-- --:--:-- 43.0M

install for i386

* installing *source* package 'STATegRa' ...
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
  converting help for package 'STATegRa'
    finding HTML links ... done
    STATegRa-defunct                        html  
    STATegRa                                html  
    STATegRaUsersGuide                      html  
    STATegRa_data                           html  
    STATegRa_data_TCGA_BRCA                 html  
    bioDist                                 html  
    bioDistFeature                          html  
    bioDistFeaturePlot                      html  
    bioDistW                                html  
    bioDistWPlot                            html  
    bioDistclass                            html  
    bioMap                                  html  
    caClass-class                           html  
    combiningMappings                       html  
    createOmicsExpressionSet                html  
    getInitialData                          html  
    getLoadings                             html  
    getMethodInfo                           html  
    getPreprocessing                        html  
    getScores                               html  
    getVAF                                  html  
    holistOmics                             html  
    modelSelection                          html  
    finding level-2 HTML links ... done

    omicsCompAnalysis                       html  
    omicsNPC                                html  
    plotRes                                 html  
    plotVAF                                 html  
** building package indices
** installing vignettes
** testing if installed package can be loaded
In R CMD INSTALL

install for x64

* installing *source* package 'STATegRa' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'STATegRa' as STATegRa_1.16.1.zip
* DONE (STATegRa)
In R CMD INSTALL
In R CMD INSTALL
* installing to library 'C:/Users/biocbuild/bbs-3.7-bioc/R/library'
package 'STATegRa' successfully unpacked and MD5 sums checked
In R CMD INSTALL

Tests output

STATegRa.Rcheck/tests_i386/runTests.Rout


R version 3.5.1 Patched (2018-07-24 r75005) -- "Feather Spray"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2

Distinctive components
[[1]]
[1] 0

[[2]]
[1] 0

Common components
[1] 2

Distinctive components
[[1]]
[1] 1

[[2]]
[1] 1

Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2



RUNIT TEST PROTOCOL -- Wed Oct 17 05:08:03 2018 
*********************************************** 
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: In rownames(pData) == colnames(exprs) :
  longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
> 
> proc.time()
   user  system elapsed 
   4.10    0.34   10.37 

STATegRa.Rcheck/tests_x64/runTests.Rout


R version 3.5.1 Patched (2018-07-24 r75005) -- "Feather Spray"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2

Distinctive components
[[1]]
[1] 0

[[2]]
[1] 0

Common components
[1] 2

Distinctive components
[[1]]
[1] 1

[[2]]
[1] 1

Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2



RUNIT TEST PROTOCOL -- Wed Oct 17 05:10:16 2018 
*********************************************** 
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: In rownames(pData) == colnames(exprs) :
  longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
> 
> proc.time()
   user  system elapsed 
   3.85    0.20    4.35 

STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsCLUST.Rout


R version 3.5.1 Patched (2018-07-24 r75005) -- "Feather Spray"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> #######   then the class is created.
> 
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
> 
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+                 metadata =  list(type_v1="Gene",type_v2="miRNA",
+                                  source_database="targetscan.Hs.eg.db",
+                                  data_extraction="July2014"),
+                 map=mapdata)
> 
> 
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> #####    the profile of the main features is computed through the surrogate features.
> 
> # Load Data
> data(STATegRa_S1)
>   #load("../data/STATegRa.S1.Rdata")
> 
> ## Create ExpressionSets
> #  source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
> 
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),     
+              reference = "Var1",
+              mapping = MAP.SYMBOL,
+              surrogateData = miRNA.ds,  ### miRNA data
+              referenceData = mRNA.ds,  ### mRNA data
+              maxitems=2,
+              selectionRule="sd",
+              expfac=NULL,
+              aggregation = "sum",
+              distance = "spearman",
+              noMappingDist = 0,
+              filtering = NULL,
+              name = "mRNAbymiRNA")
> 
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colMeans, colSums, colnames,
    dirname, do.call, duplicated, eval, evalq, get, grep, grepl,
    intersect, is.unsorted, lapply, lengths, mapply, match, mget,
    order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind,
    rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply,
    union, unique, unsplit, which, which.max, which.min

Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

> 
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+                  distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+                  map.name = "id",
+                  map.metadata = list(),
+                  params = list())
> 
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
> 
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
> 
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+                        bioDistList = bioDistList,
+                        weights=weights)
> length(bioDistWList)
[1] 4
> 
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
> 
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+                listDistW = bioDistWList,
+                method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
> 
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
> 
> ## IDH1
> 
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+                        listDistW = bioDistWList,
+                        threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
> 
> ## PDGFRA
> 
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> #                       listDistW = bioDistWList,
> #                       threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
> 
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
> 
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  32.26    1.18   33.59 

STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsCLUST.Rout


R version 3.5.1 Patched (2018-07-24 r75005) -- "Feather Spray"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> #######   then the class is created.
> 
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
> 
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+                 metadata =  list(type_v1="Gene",type_v2="miRNA",
+                                  source_database="targetscan.Hs.eg.db",
+                                  data_extraction="July2014"),
+                 map=mapdata)
> 
> 
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> #####    the profile of the main features is computed through the surrogate features.
> 
> # Load Data
> data(STATegRa_S1)
>   #load("../data/STATegRa.S1.Rdata")
> 
> ## Create ExpressionSets
> #  source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
> 
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),     
+              reference = "Var1",
+              mapping = MAP.SYMBOL,
+              surrogateData = miRNA.ds,  ### miRNA data
+              referenceData = mRNA.ds,  ### mRNA data
+              maxitems=2,
+              selectionRule="sd",
+              expfac=NULL,
+              aggregation = "sum",
+              distance = "spearman",
+              noMappingDist = 0,
+              filtering = NULL,
+              name = "mRNAbymiRNA")
> 
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colMeans, colSums, colnames,
    dirname, do.call, duplicated, eval, evalq, get, grep, grepl,
    intersect, is.unsorted, lapply, lengths, mapply, match, mget,
    order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind,
    rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply,
    union, unique, unsplit, which, which.max, which.min

Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

> 
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+                  distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+                  map.name = "id",
+                  map.metadata = list(),
+                  params = list())
> 
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
> 
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
> 
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+                        bioDistList = bioDistList,
+                        weights=weights)
> length(bioDistWList)
[1] 4
> 
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
> 
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+                listDistW = bioDistWList,
+                method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
4: In plot.window(...) :
  relative range of values =   0 * EPS, is small (axis 2)
5: In plot.window(...) :
  relative range of values =   0 * EPS, is small (axis 2)
6: In plot.window(...) :
  relative range of values =   0 * EPS, is small (axis 2)
7: In plot.window(...) :
  relative range of values =   0 * EPS, is small (axis 2)
> 
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
> 
> ## IDH1
> 
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+                        listDistW = bioDistWList,
+                        threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
> 
> ## PDGFRA
> 
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> #                       listDistW = bioDistWList,
> #                       threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
> 
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
> 
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  27.14    0.92   28.17 

STATegRa.Rcheck/tests_i386/STATegRa_Example.omicsNPC.Rout


R version 3.5.1 Patched (2018-07-24 r75005) -- "Feather Spray"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
> 
> proc.time()
   user  system elapsed 
  64.87    0.23   65.23 

STATegRa.Rcheck/tests_x64/STATegRa_Example.omicsNPC.Rout


R version 3.5.1 Patched (2018-07-24 r75005) -- "Feather Spray"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
> 
> proc.time()
   user  system elapsed 
  83.04    0.20   83.37 

STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsPCA.Rout


R version 3.5.1 Patched (2018-07-24 r75005) -- "Feather Spray"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+     tmp <- ggplot_gtable(ggplot_build(a.gplot))
+     leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+     legend <- tmp$grobs[[leg]]
+     return(legend)}
> 
> #########################
> ## PART 1. Load data
> 
> ## Load data
> data(STATegRa_S3)
> 
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA"     "g_legend"  
> 
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> 
> #########################
> ## PART 2.  Model Selection
> 
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
> 
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2

> 
> 
> #########################
> ## PART 3. Component Analysis
> 
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                              scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> 
> ## 3.2 Exploring scores structures
> 
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
                      1             2
sample1    0.0781575859  0.0431547441
sample2   -0.1192221282 -0.0294022968
sample3   -0.0531408640  0.0746838113
sample4    0.0292971911  0.0006032619
sample5    0.0202090797 -0.0110455119
sample6    0.1226088393 -0.1053492363
sample7    0.1078931237  0.0322420258
sample8    0.1782891182 -0.1449331061
sample9    0.0468697296  0.0455171040
sample10  -0.0036032580 -0.0420078228
sample11  -0.0035566364  0.0566284634
sample12   0.1006129774 -0.0641394546
sample13  -0.1174412934 -0.0907476019
sample14   0.0981203500 -0.0617762823
sample15   0.0085337242  0.0086956651
sample16   0.0783146771 -0.1581333092
sample17  -0.1483610670 -0.0638580097
sample18  -0.0963084499 -0.0556686612
sample19  -0.0217242944  0.0720128416
sample20  -0.0635634026  0.0779610463
sample21  -0.0201843960 -0.1566381771
sample22   0.0218273786  0.0764057038
sample23   0.0852039236  0.0032763479
sample24  -0.1287181368 -0.1924429523
sample25  -0.0430575516  0.0456637803
sample26  -0.1453899677 -0.0541460477
sample27  -0.0197483736  0.1185594206
sample28  -0.1025339394 -0.0650656375
sample29   0.0706022442  0.0682932864
sample30  -0.1295623194  0.0066680109
sample31   0.1147449254 -0.1232726227
sample32  -0.0374308317 -0.0380247897
sample33   0.0599520671 -0.0136934097
sample34  -0.0984199353 -0.0375363841
sample35  -0.0543096663  0.0378036284
sample36   0.1403627647  0.0343641379
sample37   0.0228947184  0.0732693160
sample38  -0.0222073021  0.0962567283
sample39  -0.0941739144 -0.0215181006
sample40   0.0643806623  0.0687723274
sample41  -0.0327634958  0.1232187332
sample42  -0.0500431548  0.0292513651
sample43  -0.0184497195 -0.0233043282
sample44   0.1487889538 -0.1171212967
sample45  -0.1050778667 -0.1123141458
sample46  -0.1151191672  0.1093996443
sample47  -0.0962591623  0.0288418519
sample48   0.0004832819  0.0310376983
sample49   0.1135203869 -0.1213936494
sample50  -0.0123549776  0.1740761690
sample51   0.0550527361 -0.1258930248
sample52   0.0499118388 -0.0728580723
sample53   0.1119772601 -0.1588063479
sample54  -0.0360055740 -0.0228584988
sample55   0.0210418823 -0.0006750464
sample56  -0.0434171520 -0.0633131239
sample57   0.0197820571 -0.1150753902
sample58   0.0030440642 -0.0326126770
sample59   0.0500256505 -0.0129519457
sample60   0.0184279739 -0.0136217009
sample61   0.0150298780 -0.0635096164
sample62  -0.0304758899  0.0201237898
sample63   0.1102250221 -0.1285969340
sample64   0.1552586852 -0.0971185715
sample65  -0.0058503724 -0.0207103166
sample66  -0.0025607397 -0.0424284537
sample67   0.1546638237  0.0661580520
sample68   0.0536374067  0.0923605864
sample69   0.0640333030 -0.0082003314
sample70   0.0163521818  0.0663227381
sample71  -0.0102536028  0.1345964371
sample72  -0.0654191916  0.0196038266
sample73  -0.1048553298 -0.0220999014
sample74   0.0123800499 -0.0586155877
sample75   0.0392079743  0.0209726645
sample76   0.0648954452  0.0524760445
sample77   0.1172922572  0.0201201329
sample78  -0.1463072570 -0.0708400800
sample79   0.0265209014  0.1603423300
sample80   0.0279739218  0.0214153496
sample81   0.0079212254  0.0738495054
sample82  -0.1544234711  0.0361451177
sample83  -0.0494205596  0.0049941503
sample84  -0.0259039626  0.0346591140
sample85   0.1116487160  0.0031406399
sample86  -0.1306479206  0.0377157392
sample87  -0.0554777960  0.0459740287
sample88  -0.0301626686 -0.0382206190
sample89  -0.1016866269 -0.0694077215
sample90   0.0086821645  0.0201324536
sample91   0.1578629804  0.2097790355
sample92   0.0170933667  0.1655933807
sample93  -0.0979805071  0.0121500471
sample94   0.0131486304  0.0114929401
sample95   0.0315682593  0.0758916112
sample96   0.0024125984  0.0470184572
sample97   0.0634545962 -0.0270303971
sample98  -0.0359372531  0.0135466736
sample99  -0.1009167497 -0.1124713745
sample100  0.0551754078 -0.0246501860
sample101 -0.0080115836  0.1627405806
sample102 -0.0046450892 -0.0095475648
sample103 -0.0472520872  0.0940383538
sample104  0.0198157540  0.0591146107
sample105 -0.0400238952  0.0160949320
sample106 -0.0923810154 -0.0369004082
sample107 -0.1019372323 -0.0224966975
sample108 -0.0877091468  0.0128849427
sample109  0.0864820558  0.0901077674
sample110 -0.1223116475  0.0096108149
sample111  0.0257352710  0.0936278885
sample112 -0.0765285986 -0.0270378650
sample113  0.0258800002 -0.0377439649
sample114  0.0021141190  0.0882040012
sample115  0.0303455582  0.0723731807
sample116  0.0780504522  0.0685160221
sample117  0.0536894190  0.0912023687
sample118  0.0666649893  0.0236260253
sample119  0.1021872737  0.2325000544
sample120  0.0750216443 -0.0243346104
sample121 -0.0756937876 -0.0942970950
sample122 -0.0259631914 -0.0731922151
sample123 -0.1037844761  0.0369179564
sample124  0.0611205362 -0.0421648563
sample125 -0.0738472628 -0.0066943473
sample126  0.0972919153 -0.0762698283
sample127  0.0824699525  0.0096644553
sample128 -0.1249411372 -0.0929255586
sample129 -0.0734063804  0.0434315202
sample130 -0.0003500233  0.0309857747
sample131  0.0930183994 -0.0155969600
sample132  0.0736220786 -0.0732973066
sample133 -0.0498398341  0.0462455842
sample134  0.1644872528 -0.0720046712
sample135 -0.0752295121 -0.0003868828
sample136  0.0227149973  0.0495470315
sample137  0.0564721627  0.0288862140
sample138  0.0255986613  0.0610929345
sample139  0.0621218564 -0.0235856008
sample140 -0.0604148994  0.0435533122
sample141  0.0246743113 -0.0532630082
sample142 -0.0409563819 -0.0316234962
sample143 -0.0077356435  0.0476908699
sample144  0.0173241063  0.0156785752
sample145  0.0485467692 -0.1202739109
sample146  0.0419649934  0.0811241795
sample147 -0.0977304850  0.0274773451
sample148  0.0368253280 -0.0803969323
sample149 -0.0072864904  0.1533016654
sample150  0.1020825393 -0.0624821649
sample151  0.0305397280  0.0289336024
sample152 -0.0533595143  0.0638333475
sample153 -0.0891639283 -0.1799457385
sample154 -0.0727554475  0.0834130075
sample155 -0.0880665882  0.0220771524
sample156 -0.0276558782  0.0326601907
sample157 -0.1155031585 -0.0183635425
sample158 -0.0281506721  0.0104912342
sample159  0.0663233779 -0.0443809705
sample160 -0.0302644049 -0.0404300541
sample161  0.0114712983  0.0591082098
sample162 -0.1337091005 -0.1398132480
sample163  0.1330120805 -0.1688770115
sample164 -0.0150338064 -0.0028375830
sample165  0.0076518870  0.0164145636
sample166  0.0367791570 -0.0630614942
sample167  0.1111989841 -0.0030066329
sample168 -0.0672983002 -0.0446266477
sample169 -0.0413003743 -0.0224446073
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
                      1             2
sample1   -0.0420465091  0.0867866071
sample2   -0.0820848608 -0.0410969842
sample3    0.0155963687 -0.0195185496
sample4   -0.1001342222 -0.0410777488
sample5   -0.0153478865 -0.0253258004
sample6    0.0340243101 -0.0408223811
sample7    0.0722601517  0.0002324895
sample8   -0.0457614168 -0.0370008579
sample9   -0.0086218681  0.0820184597
sample10  -0.0423629682 -0.0083918397
sample11   0.0022590967  0.0787764475
sample12   0.0322076495  0.1479823306
sample13  -0.0293967002 -0.0306743947
sample14   0.0337433382 -0.0367508470
sample15   0.0815558485  0.1275614814
sample16   0.0508336669  0.0540603683
sample17   0.0062556848  0.0041024585
sample18   0.0705602713 -0.0351052887
sample19  -0.0476785605 -0.0509595332
sample20   0.0523023826  0.0715515181
sample21  -0.0119245506 -0.0376088350
sample22   0.0724455467 -0.0095633488
sample23  -0.0992529626  0.0134297880
sample24  -0.1595260231  0.0728681011
sample25  -0.0920661858 -0.0749749862
sample26  -0.0595566636  0.0848972716
sample27   0.0826573297 -0.0086745779
sample28  -0.0384832200  0.0440971856
sample29   0.0777736816  0.1735299814
sample30   0.1229474741 -0.0819017001
sample31   0.0579754832 -0.0238647136
sample32   0.0970367036 -0.0111434319
sample33   0.1017581071 -0.0630451498
sample34   0.0637903232  0.0377936705
sample35   0.0790002512 -0.0229731449
sample36   0.1224934034 -0.1274967047
sample37   0.1798847283 -0.1673445733
sample38   0.0466389537  0.0888154447
sample39  -0.0168694716  0.0421535787
sample40   0.1756417773 -0.1526660133
sample41   0.0042465240  0.0004925555
sample42  -0.0447825994 -0.0651501545
sample43   0.0482293007 -0.0253533128
sample44  -0.1986814717 -0.0545756889
sample45  -0.0741914728  0.0054712676
sample46   0.0478858260 -0.0007078991
sample47   0.0608214967  0.0481616328
sample48  -0.1381466230  0.0578299705
sample49  -0.0530625235 -0.1405525095
sample50  -0.0173654060  0.1602387232
sample51   0.0462460795  0.0303472490
sample52   0.0279998635  0.0280387451
sample53   0.0667503782  0.0237699653
sample54   0.0121813010 -0.0521354915
sample55   0.0182392250  0.0221326763
sample56  -0.0001306736  0.0030908791
sample57   0.0316578474  0.0530189952
sample58   0.0393892390 -0.0297801594
sample59   0.1278272584 -0.0546539384
sample60   0.1486964384  0.1069143084
sample61   0.0793069358  0.0569790658
sample62   0.1172821131 -0.0149209698
sample63  -0.0028809849  0.1300523147
sample64   0.0237298467  0.1073287854
sample65  -0.0126543603  0.0589810095
sample66  -0.0468231575 -0.0771067388
sample67   0.1494285357 -0.0769875617
sample68   0.0978021257 -0.0577362166
sample69   0.0403090413  0.0156038699
sample70   0.0221595097  0.0315437473
sample71  -0.0546334259 -0.0272394531
sample72   0.1107500858 -0.0537330005
sample73   0.0906756487  0.0579958785
sample74   0.0586515256  0.0121417688
sample75   0.0390511682  0.0349278772
sample76  -0.0022939317 -0.1676559787
sample77  -0.0232099727 -0.2067301069
sample78  -0.0929807359 -0.0434929379
sample79  -0.1619385548 -0.0378103106
sample80   0.0680390670  0.1424656753
sample81  -0.0530727703 -0.0358347649
sample82   0.0266849461 -0.0577448457
sample83   0.1517242146 -0.0448568357
sample84  -0.0570943971 -0.0273808805
sample85   0.1086273102 -0.1228129373
sample86   0.0833890506 -0.0442923553
sample87   0.0022040378 -0.0943908180
sample88  -0.0078274011 -0.1140505019
sample89   0.0611008117 -0.0094589184
sample90   0.0022941806 -0.0936254615
sample91   0.0433763074  0.3205973929
sample92  -0.1815222660 -0.0334667514
sample93   0.0267652640  0.0614426280
sample94   0.0181900186  0.0605088538
sample95  -0.0720316851 -0.0013040764
sample96  -0.0559674258 -0.0118787315
sample97  -0.0217420124  0.0195416876
sample98   0.0379197993  0.0588353328
sample99  -0.0792504718 -0.0151263926
sample100  0.0222101084 -0.0023322854
sample101 -0.0387091157  0.1224226026
sample102 -0.2094625106 -0.0516423153
sample103  0.0138554485  0.0301048478
sample104 -0.0807949581 -0.0162712889
sample105 -0.0520491018 -0.1229660761
sample106 -0.0192641698 -0.0185235613
sample107  0.0319014270  0.0405120896
sample108 -0.0140675019  0.0163422357
sample109 -0.1831860434  0.0613022320
sample110 -0.0292782935 -0.0199846674
sample111 -0.1423177179  0.0327351267
sample112  0.0426314064 -0.0029086761
sample113 -0.0771931098  0.0268741630
sample114 -0.0241570741 -0.0184080189
sample115 -0.1958958901  0.0460146997
sample116 -0.1394438774 -0.0530794623
sample117 -0.1672312870 -0.1386523169
sample118 -0.0448332105 -0.0117618367
sample119 -0.0910202360  0.2217436331
sample120 -0.0331404242 -0.0057270800
sample121  0.0307517708  0.1392505863
sample122 -0.0839835376 -0.0291984995
sample123  0.0239674781 -0.0642166825
sample124 -0.0909175393  0.0130428902
sample125 -0.0065361156 -0.1092631060
sample126  0.0935273894  0.1368277325
sample127  0.0035405030  0.0292755184
sample128 -0.0660349083  0.1018574512
sample129  0.0693670490 -0.0695429120
sample130  0.0008516867 -0.0669705078
sample131  0.0431012284  0.0174061308
sample132 -0.0637087175  0.0029382372
sample133 -0.0289465390 -0.0390817277
sample134  0.0446143752  0.0456332098
sample135  0.0712343133  0.0521628388
sample136  0.0596316893  0.0197292761
sample137  0.0793175118 -0.0380636195
sample138 -0.0973506651 -0.0454210717
sample139  0.0539868382 -0.1534331781
sample140  0.0850869958  0.0955805687
sample141 -0.0192721954 -0.0554447006
sample142 -0.0672293074 -0.0461314045
sample143 -0.0303707630 -0.0519258612
sample144 -0.0089351046  0.0145815394
sample145 -0.0638873676  0.0122266992
sample146  0.0585920481  0.0063076129
sample147  0.0894147084 -0.1124624590
sample148 -0.0216436822 -0.0615963272
sample149 -0.0515319345 -0.0839902359
sample150  0.0568230619 -0.0124472674
sample151 -0.0789514028 -0.0261824585
sample152 -0.0330696319  0.1306445089
sample153 -0.1752062417  0.1497752230
sample154  0.0421487620 -0.0037016037
sample155  0.0680198071  0.0095704447
sample156  0.0388948329  0.1057558647
sample157  0.0314764756  0.0561364915
sample158  0.0329629697  0.0353944030
sample159 -0.0398459437 -0.1007369050
sample160  0.0424906772  0.0108493187
sample161 -0.0888340862 -0.0679693426
sample162 -0.0027568904  0.1237847270
sample163 -0.0126225923  0.0725439483
sample164 -0.0566786591 -0.0458318909
sample165 -0.0315331531 -0.0236359852
sample166 -0.0612107307 -0.0425225919
sample167  0.0142729555  0.0179307101
sample168 -0.0169541262 -0.0769615328
sample169  0.0675063782  0.0131499617
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
                      1             2
sample1   -0.0012331503  1.635716e-01
sample2   -0.0724353105  6.022147e-03
sample3   -0.0188459932  1.080029e-01
sample4    0.0390143194 -3.106620e-04
sample5    0.1774810677  2.996427e-02
sample6   -0.0451446346  3.455899e-02
sample7   -0.0226463581  7.019207e-03
sample8   -0.1033684362  9.857957e-03
sample9    0.1350014092 -8.979117e-02
sample10   0.1259884553  5.097936e-02
sample11   0.0979790799 -7.086569e-02
sample12  -0.0863020823  8.620321e-02
sample13  -0.1381401884 -1.827998e-01
sample14  -0.0615074680  2.642809e-02
sample15   0.0381600571  3.101600e-02
sample16  -0.0048779242 -1.271018e-03
sample17  -0.0788483125  1.547608e-02
sample18  -0.0884189446  3.795480e-02
sample19   0.0703043572  1.084003e-01
sample20  -0.0025581547 -7.975970e-02
sample21   0.0941596867  4.126894e-02
sample22  -0.0550270933  7.806617e-02
sample23   0.0679492929  4.102075e-02
sample24  -0.1310969233 -1.649282e-01
sample25   0.0113583616  4.426900e-02
sample26  -0.1402948789 -2.016457e-02
sample27   0.0261565841 -1.589964e-03
sample28  -0.0724200720 -5.850509e-02
sample29  -0.0330054881 -2.062096e-03
sample30  -0.0228750421  2.015347e-02
sample31  -0.0635070255  6.670370e-02
sample32   0.0685100025  4.955247e-02
sample33  -0.0777764879  1.272070e-01
sample34   0.0157842128  3.024312e-02
sample35  -0.0529628191 -1.500981e-01
sample36   0.0070907599 -2.025321e-01
sample37  -0.0442412250 -1.802109e-01
sample38  -0.0781508467  3.676298e-02
sample39   0.0120330158  3.388884e-02
sample40  -0.0473284243 -1.471581e-01
sample41   0.0228192073  2.673457e-02
sample42  -0.0245361788  7.960878e-02
sample43   0.1036362084  8.229577e-02
sample44  -0.1012234586 -7.049241e-02
sample45   0.0013726919  2.451070e-02
sample46  -0.0558506610 -2.948572e-03
sample47  -0.0380478824 -4.554236e-02
sample48   0.0784340496 -4.888894e-02
sample49  -0.0605167916  1.162473e-02
sample50   0.0530082788  2.737810e-02
sample51   0.1514645408 -5.678261e-02
sample52   0.1860935949 -1.246711e-01
sample53  -0.0064179548  2.701060e-02
sample54   0.0697037596  2.308413e-02
sample55   0.1633577681 -1.366435e-02
sample56   0.1011484028 -4.682134e-02
sample57   0.1730374361 -1.609594e-01
sample58  -0.0071384871  1.666952e-02
sample59  -0.0030458605 -3.005374e-02
sample60   0.0215841841 -2.665887e-01
sample61   0.1510585256 -1.002384e-01
sample62  -0.0925531650  4.845730e-02
sample63  -0.0596315225  4.137108e-02
sample64  -0.0449227175  2.600951e-03
sample65   0.0939382341  4.406949e-02
sample66   0.1063397865  5.710077e-02
sample67  -0.0201581279 -2.361746e-01
sample68   0.0037208163 -2.418542e-02
sample69  -0.0645161902  1.155618e-01
sample70  -0.1013439699  1.351780e-01
sample71  -0.0016466194  2.976772e-02
sample72   0.0328895321  2.835773e-02
sample73   0.0275080419  5.148153e-02
sample74   0.1341718474  7.895302e-02
sample75   0.0951576634  3.943146e-02
sample76  -0.0864720079 -3.035052e-02
sample77  -0.1035749538  2.545327e-02
sample78  -0.1575647761 -4.939472e-02
sample79   0.0189138253 -4.874692e-02
sample80   0.1384142720 -4.317661e-05
sample81  -0.0118846653  6.357908e-02
sample82  -0.1675306736 -3.533965e-02
sample83  -0.0065671203  7.812499e-02
sample84   0.1486890692  3.109094e-02
sample85  -0.0532720545 -7.417986e-02
sample86  -0.1138475023  1.823341e-05
sample87   0.0432865816 -6.080499e-02
sample88   0.0433451082 -1.402486e-01
sample89   0.0331204858  1.395430e-02
sample90  -0.0607413434  8.610387e-02
sample91  -0.0566264113 -1.303770e-01
sample92  -0.0359580869 -1.061605e-01
sample93  -0.0433646424  4.443611e-02
sample94  -0.0477292036  1.059571e-01
sample95  -0.0249595919  3.980509e-02
sample96   0.0035217662  9.293930e-02
sample97  -0.0066051797  1.527234e-01
sample98   0.0020367092  5.579515e-02
sample99  -0.0886621488  3.728376e-02
sample100 -0.1091259560  3.560402e-02
sample101 -0.0739723925  4.317884e-02
sample102  0.0574455906  2.784084e-02
sample103  0.0142733628 -9.706357e-03
sample104  0.0710395529 -4.068333e-02
sample105  0.0980829978  3.452996e-02
sample106 -0.0254260467 -3.628932e-02
sample107 -0.0160654925  9.173399e-02
sample108 -0.0200988279  2.379699e-02
sample109 -0.0389781916 -1.692314e-02
sample110 -0.0326305262 -2.988086e-02
sample111  0.0676936006  6.038246e-02
sample112  0.0167883511 -5.336915e-03
sample113  0.0969214094  2.757701e-02
sample114 -0.0026397970  9.209101e-02
sample115 -0.0308049505 -1.603747e-02
sample116 -0.1240306515 -1.272998e-01
sample117  0.0334728586 -5.392664e-02
sample118 -0.1037152224 -6.252439e-02
sample119 -0.1064170880 -1.196218e-01
sample120 -0.0771357556  1.004935e-01
sample121 -0.0129352223 -3.181914e-02
sample122  0.0847487769  5.568463e-02
sample123 -0.0041335593 -7.693538e-03
sample124 -0.0583461995  8.396475e-02
sample125  0.0634843304  5.232568e-02
sample126 -0.0662581948  1.091730e-01
sample127 -0.0865025518  1.094172e-01
sample128 -0.0627821816  1.471094e-02
sample129 -0.0336274663  4.007777e-02
sample130 -0.0293518082  8.046087e-02
sample131 -0.0469196812  2.209386e-03
sample132 -0.0241745369  1.248608e-01
sample133  0.0907303748 -1.466698e-02
sample134 -0.0350841265 -7.539660e-02
sample135  0.0001334833 -9.185811e-03
sample136 -0.0335874809  9.860182e-02
sample137 -0.0640147304  7.554373e-02
sample138  0.0060964059  1.742782e-02
sample139 -0.0592082874 -5.615004e-02
sample140  0.0427988520  1.099465e-02
sample141  0.0618793436  9.301101e-02
sample142  0.0898552559 -3.573325e-02
sample143  0.0817390928 -8.880529e-02
sample144  0.0787754504  3.821394e-02
sample145  0.1085819542 -1.569461e-01
sample146 -0.0589555106  4.373237e-02
sample147 -0.0495328040 -7.278028e-03
sample148  0.1161590576 -9.078145e-03
sample149 -0.0121575747 -7.788462e-02
sample150 -0.0314511997 -3.520219e-02
sample151  0.0575380987  1.945391e-02
sample152 -0.0494540450 -7.025567e-02
sample153 -0.0941338360 -2.153270e-01
sample154 -0.0335928982 -2.078824e-02
sample155  0.0690459002  2.780362e-02
sample156  0.1039902323  6.292487e-02
sample157 -0.0408645830 -8.065518e-03
sample158  0.1018106304 -7.817031e-03
sample159 -0.0281732456  1.207260e-02
sample160  0.1643052880 -2.977822e-03
sample161  0.0374329978 -8.524590e-02
sample162 -0.0804538142 -8.349634e-02
sample163 -0.0743232161  1.406346e-02
sample164  0.1208804345  2.139523e-02
sample165  0.1608115933 -2.025161e-02
sample166 -0.0425947789  2.660801e-02
sample167 -0.0226849475  4.464257e-02
sample168 -0.0180737307  7.471686e-04
sample169  0.0190780159 -2.645426e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
                   [,1]          [,2]
sample1   -0.0572060227 -1.729087e-02
sample2    0.0875245208  1.112588e-02
sample3    0.0403482602 -3.168994e-02
sample4   -0.0218345996  4.052760e-06
sample5   -0.0150905011  4.795041e-03
sample6   -0.0924362933  4.511003e-02
sample7   -0.0793066751 -1.243823e-02
sample8   -0.1342997187  6.215220e-02
sample9   -0.0338886944 -1.854401e-02
sample10   0.0020547173  1.749421e-02
sample11   0.0037275602 -2.364116e-02
sample12  -0.0753094533  2.772698e-02
sample13   0.0856160091  3.679963e-02
sample14  -0.0737457307  2.668452e-02
sample15  -0.0062111746 -3.554864e-03
sample16  -0.0602355268  6.675115e-02
sample17   0.1086768843  2.524534e-02
sample18   0.0702999472  2.231671e-02
sample19   0.0173785882 -3.024846e-02
sample20   0.0484173812 -3.310904e-02
sample21   0.0124657042  6.517144e-02
sample22  -0.0140989936 -3.159137e-02
sample23  -0.0627028403 -5.393710e-04
sample24   0.0919972100  7.909297e-02
sample25   0.0326998483 -1.945206e-02
sample26   0.1064741246  2.120849e-02
sample27   0.0166058995 -4.964993e-02
sample28   0.0743504770  2.614211e-02
sample29  -0.0511008491 -2.782647e-02
sample30   0.0962250842 -3.974893e-03
sample31  -0.0869563008  5.250819e-02
sample32   0.0271858919  1.552005e-02
sample33  -0.0448364581  6.243160e-03
sample34   0.0718415218  1.469396e-02
sample35   0.0403086451 -1.632629e-02
sample36  -0.1036402827 -1.304320e-02
sample37  -0.0159385744 -3.036525e-02
sample38   0.0182198369 -4.034805e-02
sample39   0.0690363619  8.058350e-03
sample40  -0.0467312750 -2.810325e-02
sample41   0.0263674438 -5.171216e-02
sample42   0.0374578960 -1.268634e-02
sample43   0.0132336869  9.536642e-03
sample44  -0.1119154428  5.028683e-02
sample45   0.0759639367  4.587903e-02
sample46   0.0871885519 -4.670385e-02
sample47   0.0721490571 -1.288540e-02
sample48   0.0005086144 -1.290565e-02
sample49  -0.0858177028  5.173760e-02
sample50   0.0118992665 -7.276215e-02
sample51  -0.0426446855  5.306205e-02
sample52  -0.0381605826  3.086785e-02
sample53  -0.0855757630  6.730043e-02
sample54   0.0261723092  9.184260e-03
sample55  -0.0156418304  4.682404e-04
sample56   0.0307831193  2.597550e-02
sample57  -0.0157242103  4.829381e-02
sample58  -0.0031174404  1.359898e-02
sample59  -0.0373001859  5.868397e-03
sample60  -0.0142609099  5.831654e-03
sample61  -0.0122255144  2.663579e-02
sample62   0.0228002942 -8.692265e-03
sample63  -0.0833127581  5.473229e-02
sample64  -0.1166548159  4.196500e-02
sample65   0.0038808902  8.568590e-03
sample66   0.0011561811  1.766612e-02
sample67  -0.1129311062 -2.608702e-02
sample68  -0.0382526429 -3.804045e-02
sample69  -0.0476502440  4.003241e-03
sample70  -0.0110329882 -2.752719e-02
sample71   0.0096850282 -5.627056e-02
sample72   0.0487124704 -8.800131e-03
sample73   0.0773058132  8.239864e-03
sample74  -0.0102488176  2.454957e-02
sample75  -0.0286613976 -8.387293e-03
sample76  -0.0472655595 -2.129315e-02
sample77  -0.0865043074 -7.296820e-03
sample78   0.1070293698  2.818346e-02
sample79  -0.0165060681 -6.659721e-02
sample80  -0.0206765949 -8.712112e-03
sample81  -0.0050943615 -3.079175e-02
sample82   0.1153622361 -1.647054e-02
sample83   0.0367979217 -2.538114e-03
sample84   0.0199463070 -1.468961e-02
sample85  -0.0827122185 -2.709824e-04
sample86   0.0969487314 -1.699897e-02
sample87   0.0421957457 -1.965953e-02
sample88   0.0215934743  1.566050e-02
sample89   0.0751559502  2.811652e-02
sample90  -0.0057328000 -8.283795e-03
sample91  -0.1134005268 -8.603522e-02
sample92  -0.0101689918 -6.894992e-02
sample93   0.0725967502 -6.003176e-03
sample94  -0.0096878852 -4.693081e-03
sample95  -0.0223502239 -3.139636e-02
sample96  -0.0013232863 -1.963604e-02
sample97  -0.0476541710  1.183660e-02
sample98   0.0269546160 -5.978398e-03
sample99   0.0728179461  4.597884e-02
sample100 -0.0413398038  1.079347e-02
sample101  0.0087536994 -6.796076e-02
sample102  0.0032509529  3.932612e-03
sample103  0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105  0.0294940465 -7.140722e-03
sample106  0.0686472054  1.462895e-02
sample107  0.0748635927  8.401339e-03
sample108  0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110  0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112  0.0570870472  1.066018e-02
sample113 -0.0200110554  1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586  1.089843e-02
sample121  0.0542443861  3.861344e-02
sample122  0.0178575357  3.027138e-02
sample123  0.0775020581 -1.636852e-02
sample124 -0.0460701050  1.814758e-02
sample125  0.0543846585  2.075898e-03
sample126 -0.0729417144  3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128  0.0908136899  3.758801e-02
sample129  0.0552445878 -1.879062e-02
sample130  0.0007128089 -1.294308e-02
sample131 -0.0693311345  7.357082e-03
sample132 -0.0556565156  3.126995e-02
sample133  0.0375870104 -1.977240e-02
sample134 -0.1229130924  3.159495e-02
sample135  0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201  1.040683e-02
sample140  0.0452288969 -1.876279e-02
sample141 -0.0189142561  2.247042e-02
sample142  0.0297545566  1.280524e-02
sample143  0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491  5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147  0.0726083535 -1.239968e-02
sample148 -0.0284795794  3.389732e-02
sample149  0.0082261455 -6.399305e-02
sample150 -0.0765013197  2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152  0.0403422737 -2.714879e-02
sample153  0.0629117719  7.425085e-02
sample154  0.0551622927 -3.548984e-02
sample155  0.0654439133 -1.005306e-02
sample156  0.0209310714 -1.390213e-02
sample157  0.0851522597  6.577150e-03
sample158  0.0208354599 -4.663078e-03
sample159 -0.0498794349  1.913257e-02
sample160  0.0216074437  1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162  0.0963663017  5.705881e-02
sample163 -0.1009542191  7.174224e-02
sample164  0.0109881996  1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357  2.673084e-02
sample167 -0.0825048036  2.278863e-03
sample168  0.0486147429  1.793843e-02
sample169  0.0302506727  8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
                   [,1]          [,2]
sample1   -0.0621842115 -1.364509e-02
sample2    0.0944623785  9.720892e-03
sample3    0.0406196267 -2.236338e-02
sample4   -0.0229316496 -3.932487e-04
sample5   -0.0157330047  3.231033e-03
sample6   -0.0945794025  3.120720e-02
sample7   -0.0854427118 -1.052880e-02
sample8   -0.1376625920  4.286608e-02
sample9   -0.0377115311 -1.415134e-02
sample10   0.0035244506  1.280825e-02
sample11   0.0016639987 -1.717895e-02
sample12  -0.0781403168  1.884368e-02
sample13   0.0938400516  2.838858e-02
sample14  -0.0759839772  1.810989e-02
sample15  -0.0068340837 -2.705361e-03
sample16  -0.0590150849  4.757848e-02
sample17   0.1178805097  2.040526e-02
sample18   0.0767858320  1.756604e-02
sample19   0.0157112113 -2.172867e-02
sample20   0.0485318300 -2.327033e-02
sample21   0.0185928176  4.777095e-02
sample22  -0.0191358702 -2.329775e-02
sample23  -0.0672994194 -1.535656e-03
sample24   0.1047476642  5.935707e-02
sample25   0.0329844953 -1.358036e-02
sample26   0.1154952052  1.741529e-02
sample27   0.0133849853 -3.590922e-02
sample28   0.0821554039  2.042376e-02
sample29  -0.0567643690 -2.123848e-02
sample30   0.1016073931 -1.134728e-03
sample31  -0.0880396372  3.670548e-02
sample32   0.0300363338  1.182406e-02
sample33  -0.0467252272  3.739254e-03
sample34   0.0783666394  1.203777e-02
sample35   0.0424227097 -1.118559e-02
sample36  -0.1107646166 -1.143464e-02
sample37  -0.0191667664 -2.246060e-02
sample38   0.0155968095 -2.909621e-02
sample39   0.0746847148  7.148218e-03
sample40  -0.0517028178 -2.137267e-02
sample41   0.0234979494 -3.723018e-02
sample42   0.0388797356 -8.557228e-03
sample43   0.0149555568  7.210002e-03
sample44  -0.1150305613  3.461805e-02
sample45   0.0846146236  3.486020e-02
sample46   0.0884426404 -3.246853e-02
sample47   0.0748644971 -8.083045e-03
sample48  -0.0012033198 -9.403647e-03
sample49  -0.0872662737  3.616245e-02
sample50   0.0066941314 -5.284863e-02
sample51  -0.0411777630  3.791830e-02
sample52  -0.0379355780  2.180834e-02
sample53  -0.0851639886  4.751761e-02
sample54   0.0288006248  7.184424e-03
sample55  -0.0164920835  5.919925e-05
sample56   0.0355115616  1.951043e-02
sample57  -0.0141146068  3.492409e-02
sample58  -0.0015636132  9.862883e-03
sample59  -0.0390656483  3.590929e-03
sample60  -0.0139454780  3.963030e-03
sample61  -0.0106410274  1.919705e-02
sample62   0.0236748439 -5.922677e-03
sample63  -0.0846790877  3.839102e-02
sample64  -0.1202581015  2.846469e-02
sample65   0.0050548584  6.328644e-03
sample66   0.0028013072  1.291807e-02
sample67  -0.1231623009 -2.112565e-02
sample68  -0.0437782161 -2.845072e-02
sample69  -0.0501199692  2.053469e-03
sample70  -0.0140278645 -2.027157e-02
sample71   0.0057489505 -4.085977e-02
sample72   0.0511212704 -5.522408e-03
sample73   0.0828141409  7.431582e-03
sample74  -0.0085959456  1.772951e-02
sample75  -0.0312180394 -6.636869e-03
sample76  -0.0519051781 -1.640191e-02
sample77  -0.0925924762 -6.907800e-03
sample78   0.1163971046  2.251122e-02
sample79  -0.0240906926 -4.887766e-02
sample80  -0.0221327065 -6.730703e-03
sample81  -0.0072114968 -2.254399e-02
sample82   0.1204416674 -9.907422e-03
sample83   0.0386739485 -1.171663e-03
sample84   0.0195988488 -1.033806e-02
sample85  -0.0877680171 -1.725057e-03
sample86   0.1023541048 -1.062501e-02
sample87   0.0425213089 -1.356865e-02
sample88   0.0244788514  1.180820e-02
sample89   0.0804276691  2.188588e-02
sample90  -0.0074639871 -6.140721e-03
sample91  -0.1278832404 -6.485140e-02
sample92  -0.0162199697 -5.048358e-02
sample93   0.0769344893 -3.045135e-03
sample94  -0.0104345587 -3.593172e-03
sample95  -0.0260058453 -2.330475e-02
sample96  -0.0025018700 -1.433516e-02
sample97  -0.0492358305  7.774183e-03
sample98   0.0279220220 -3.862141e-03
sample99   0.0813921923  3.487339e-02
sample100 -0.0428797405  7.112807e-03
sample101  0.0032855240 -4.940743e-02
sample102  0.0038439317  2.938008e-03
sample103  0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105  0.0314853405 -4.656633e-03
sample106  0.0726456731  1.192390e-02
sample107  0.0807342975  7.508627e-03
sample108  0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110  0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112  0.0599954082  8.820317e-03
sample113 -0.0195006577  1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131  6.937326e-03
sample121  0.0613899126  2.915307e-02
sample122  0.0218424338  2.241775e-02
sample123  0.0809008460 -1.051759e-02
sample124 -0.0472109313  1.239887e-02
sample125  0.0583180947  2.521167e-03
sample126 -0.0753941872  2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128  0.1000212216  2.908091e-02
sample129  0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877  4.091672e-03
sample132 -0.0566219024  2.179861e-02
sample133  0.0384172955 -1.372840e-02
sample134 -0.1280862736  2.077912e-02
sample135  0.0592633273  6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861  6.729304e-03
sample140  0.0468926306 -1.285498e-02
sample141 -0.0186248693  1.605439e-02
sample142  0.0328031246  9.887746e-03
sample143  0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310  3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147  0.0765025670 -7.714769e-03
sample148 -0.0276016641  2.420589e-02
sample149  0.0027545308 -4.653007e-02
sample150 -0.0792296010  1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152  0.0409796547 -1.907063e-02
sample153  0.0734301757  5.528780e-02
sample154  0.0557740684 -2.487723e-02
sample155  0.0689436560 -6.127635e-03
sample156  0.0212272938 -9.747423e-03
sample157  0.0911931194  6.355708e-03
sample158  0.0220840645 -3.016357e-03
sample159 -0.0513244242  1.304175e-02
sample160  0.0246213576  1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162  0.1078802043  4.337260e-02
sample163 -0.1017965082  5.047171e-02
sample164  0.0119430799  9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180  1.899222e-02
sample167 -0.0872832229  1.516582e-04
sample168  0.0540714512  1.397701e-02
sample169  0.0328432652  7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
                   [,1]          [,2]
sample1    0.0133684846  2.195848e-02
sample2    0.0254157197 -1.058416e-02
sample3   -0.0049551479 -4.840017e-03
sample4    0.0310390570 -1.063929e-02
sample5    0.0046941318 -6.488426e-03
sample6   -0.0107406753 -1.026702e-02
sample7   -0.0225157631  2.624712e-04
sample8    0.0141320952 -9.505821e-03
sample9    0.0029681280  2.078210e-02
sample10   0.0131729174 -2.275042e-03
sample11  -0.0004164298  1.994019e-02
sample12  -0.0095211620  3.759883e-02
sample13   0.0091018604 -7.953956e-03
sample14  -0.0106557524 -9.181659e-03
sample15  -0.0249924121  3.262724e-02
sample16  -0.0156216400  1.375700e-02
sample17  -0.0019382446  1.073994e-03
sample18  -0.0221072481 -8.703592e-03
sample19   0.0146917619 -1.311712e-02
sample20  -0.0160353760  1.826290e-02
sample21   0.0035947899 -9.616341e-03
sample22  -0.0225060762 -2.532589e-03
sample23   0.0310000683  3.033060e-03
sample24   0.0499544372  1.809450e-02
sample25   0.0284442301 -1.932558e-02
sample26   0.0188220043  2.146985e-02
sample27  -0.0257763219 -1.999228e-03
sample28   0.0120888648  1.125834e-02
sample29  -0.0236482520  4.426726e-02
sample30  -0.0385486305 -2.055935e-02
sample31  -0.0181539336 -5.877838e-03
sample32  -0.0302630460 -2.607192e-03
sample33  -0.0319565715 -1.562628e-02
sample34  -0.0197970124  9.906813e-03
sample35  -0.0247412713 -5.434440e-03
sample36  -0.0386259060 -3.190394e-02
sample37  -0.0566199273 -4.192574e-02
sample38  -0.0142060273  2.259644e-02
sample39   0.0053589035  1.076485e-02
sample40  -0.0552546493 -3.819896e-02
sample41  -0.0013089975  9.278818e-05
sample42   0.0137252142 -1.664652e-02
sample43  -0.0151259626 -6.290953e-03
sample44   0.0617391754 -1.442883e-02
sample45   0.0231410886  1.163143e-03
sample46  -0.0148898209 -1.384176e-04
sample47  -0.0187252536  1.221690e-02
sample48   0.0432839432  1.416671e-02
sample49   0.0160818605 -3.588745e-02
sample50   0.0059333545  4.067003e-02
sample51  -0.0142914866  7.776270e-03
sample52  -0.0086339952  7.208917e-03
sample53  -0.0207386980  6.272432e-03
sample54  -0.0039856719 -1.316934e-02
sample55  -0.0056217017  5.692315e-03
sample56   0.0000123292  8.978290e-04
sample57  -0.0095805555  1.324253e-02
sample58  -0.0124160295 -7.326376e-03
sample59  -0.0400195442 -1.349736e-02
sample60  -0.0460063358  2.770091e-02
sample61  -0.0245266456  1.470710e-02
sample62  -0.0366022783 -3.437352e-03
sample63   0.0013742171  3.288796e-02
sample64  -0.0070599859  2.739588e-02
sample65   0.0041201911  1.498268e-02
sample66   0.0143173351 -1.968812e-02
sample67  -0.0467477531 -1.929938e-02
sample68  -0.0306751978 -1.436184e-02
sample69  -0.0125317217  4.130407e-03
sample70  -0.0068071487  8.080857e-03
sample71   0.0169170264 -7.027348e-03
sample72  -0.0346909749 -1.333770e-02
sample73  -0.0280506153  1.493843e-02
sample74  -0.0182611498  3.294697e-03
sample75  -0.0120563964  8.974612e-03
sample76   0.0001437236 -4.253184e-02
sample77   0.0065330299 -5.252886e-02
sample78   0.0288278141 -1.127782e-02
sample79   0.0503961481 -1.023318e-02
sample80  -0.0207693429  3.648391e-02
sample81   0.0163562768 -9.074596e-03
sample82  -0.0084317129 -1.478976e-02
sample83  -0.0474097918 -1.103126e-02
sample84   0.0177181395 -7.191197e-03
sample85  -0.0342718548 -3.082360e-02
sample86  -0.0261671791 -1.089491e-02
sample87  -0.0009486358 -2.411514e-02
sample88   0.0020528931 -2.894615e-02
sample89  -0.0189361111 -2.638639e-03
sample90  -0.0009863658 -2.390075e-02
sample91  -0.0124352695  8.153234e-02
sample92   0.0564264106 -8.909537e-03
sample93  -0.0081461774  1.570851e-02
sample94  -0.0054896581  1.547251e-02
sample95   0.0224073150 -4.374348e-04
sample96   0.0173528924 -3.050441e-03
sample97   0.0067948115  5.008237e-03
sample98  -0.0116030825  1.498764e-02
sample99   0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101  0.0124923691  3.091503e-02
sample102  0.0650835386 -1.367400e-02
sample103 -0.0042741828  7.855985e-03
sample104  0.0250591040 -4.171938e-03
sample105  0.0157516368 -3.121990e-02
sample106  0.0060593853 -5.101693e-03
sample107 -0.0098329626  1.044506e-02
sample108  0.0044269853  4.142036e-03
sample109  0.0572473486  1.517542e-02
sample110  0.0090474827 -5.119868e-03
sample111  0.0444263015  7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113  0.0241047399  6.706740e-03
sample114  0.0074558775 -4.728652e-03
sample115  0.0611851433  1.117210e-02
sample116  0.0432646951 -1.380556e-02
sample117  0.0516750066 -3.575617e-02
sample118  0.0139942100 -3.279138e-03
sample119  0.0291722987  5.587946e-02
sample120  0.0103515853 -1.690016e-03
sample121 -0.0091396331  3.552116e-02
sample122  0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124  0.0283466326  3.127845e-03
sample125  0.0016472378 -2.770692e-02
sample126 -0.0286529417  3.489336e-02
sample127 -0.0010224500  7.483214e-03
sample128  0.0209049296  2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968  4.637390e-03
sample132  0.0198526786  5.723983e-04
sample133  0.0088812957 -9.988115e-03
sample134 -0.0137484514  1.172591e-02
sample135 -0.0220314568  1.347465e-02
sample136 -0.0185173353  5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138  0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762  2.456863e-02
sample141  0.0058369763 -1.420854e-02
sample142  0.0207886071 -1.188764e-02
sample143  0.0092832598 -1.324238e-02
sample144  0.0028442140  3.627979e-03
sample145  0.0199749569  2.862202e-03
sample146 -0.0182236697  1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148  0.0065435868 -1.572917e-02
sample149  0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151  0.0245166984 -6.888241e-03
sample152  0.0107259913  3.314630e-02
sample153  0.0550963965  3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574  2.642246e-03
sample156 -0.0117803505  2.698265e-02
sample157 -0.0096167165  1.433840e-02
sample158 -0.0101754772  9.137620e-03
sample159  0.0120662931 -2.565236e-02
sample160 -0.0132238202  2.916023e-03
sample161  0.0274491966 -1.748284e-02
sample162  0.0012482909  3.152261e-02
sample163  0.0042031315  1.830701e-02
sample164  0.0174896157 -1.175915e-02
sample165  0.0097517662 -6.119019e-03
sample166  0.0190134679 -1.121582e-02
sample167 -0.0044140836  4.665585e-03
sample168  0.0049689168 -1.941822e-02
sample169 -0.0209802098  3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
                   [,1]          [,2]
sample1   -0.0515543627 -0.0305856787
sample2   -0.0144993256  0.0236342950
sample3   -0.0371833108 -0.0140263348
sample4    0.0068945388 -0.0132539692
sample5    0.0215035333 -0.0663338101
sample6   -0.0187055152  0.0088773016
sample7   -0.0061521552  0.0064029054
sample8   -0.0210874459  0.0334652901
sample9    0.0516865043 -0.0291142799
sample10   0.0059440366 -0.0527217447
sample11   0.0393010793 -0.0200624712
sample12  -0.0420837100  0.0131331362
sample13   0.0333252565  0.0818552509
sample14  -0.0190062644  0.0160202175
sample15  -0.0030968049 -0.0189230681
sample16  -0.0004452158  0.0018880102
sample17  -0.0185848615  0.0240170131
sample18  -0.0273093598  0.0230213640
sample19  -0.0217761111 -0.0445894441
sample20   0.0245820821  0.0159812738
sample21   0.0034527644 -0.0400016054
sample22  -0.0340789054  0.0039289109
sample23  -0.0010344929 -0.0310161212
sample24   0.0289468503  0.0760962436
sample25  -0.0119098496 -0.0122798760
sample26  -0.0181001057  0.0517892852
sample27   0.0050465417 -0.0086515844
sample28   0.0057491502  0.0358830107
sample29  -0.0051104246  0.0116605117
sample30  -0.0103085904  0.0039678538
sample31  -0.0319929858  0.0090606113
sample32  -0.0036232521 -0.0328202010
sample33  -0.0534742153  0.0024751837
sample34  -0.0067495749 -0.0111000311
sample35   0.0378745721  0.0465929296
sample36   0.0647886800  0.0359987924
sample37   0.0488441236  0.0492906912
sample38  -0.0251514062  0.0197110110
sample39  -0.0085428066 -0.0105117852
sample40   0.0379324087  0.0440810741
sample41  -0.0044199152 -0.0128820644
sample42  -0.0292553573 -0.0067045265
sample43  -0.0077829155 -0.0510178219
sample44   0.0045122248  0.0479660309
sample45  -0.0074444298 -0.0051116726
sample46  -0.0088025512  0.0196186661
sample47   0.0076696301  0.0215947965
sample48   0.0290108585 -0.0175568376
sample49  -0.0141754858  0.0184717099
sample50   0.0006282201 -0.0233054373
sample51   0.0441995177 -0.0410022921
sample52   0.0715329391 -0.0399499475
sample53  -0.0095954087 -0.0029140909
sample54   0.0048933768 -0.0281884386
sample55   0.0327325487 -0.0532290012
sample56   0.0323068984 -0.0256595538
sample57   0.0806603122 -0.0286748097
sample58  -0.0064792049 -0.0006945349
sample59   0.0088958941  0.0067389649
sample60   0.0874124612  0.0431964341
sample61   0.0577604571 -0.0326112099
sample62  -0.0313318464  0.0224391756
sample63  -0.0233625220  0.0125110562
sample64  -0.0086426068  0.0148770341
sample65   0.0025256193 -0.0404466327
sample66   0.0006014071 -0.0471576264
sample67   0.0706087042  0.0516228406
sample68   0.0082301011  0.0033109509
sample69  -0.0475076743  0.0001452708
sample70  -0.0600773716  0.0089986962
sample71  -0.0096321627 -0.0050761187
sample72  -0.0031773546 -0.0166221542
sample73  -0.0113700517 -0.0191726684
sample74  -0.0014179662 -0.0608101325
sample75   0.0041911740 -0.0399981269
sample76  -0.0055326449  0.0353114263
sample77  -0.0260214459  0.0305731380
sample78  -0.0119267436  0.0632236007
sample79   0.0186017239  0.0027402910
sample80   0.0241047889 -0.0472697181
sample81  -0.0220288317 -0.0079577210
sample82  -0.0180751258  0.0639051029
sample83  -0.0256671713 -0.0125898269
sample84   0.0161392598 -0.0567222449
sample85   0.0139988188  0.0322763454
sample86  -0.0198382995  0.0389225776
sample87   0.0266270281 -0.0032979996
sample88   0.0515677078  0.0117902495
sample89   0.0014022125 -0.0140510488
sample90  -0.0375949749  0.0044004551
sample91   0.0310397965  0.0440610926
sample92   0.0270570567  0.0324380452
sample93  -0.0215009202  0.0063993941
sample94  -0.0415702912 -0.0037692077
sample95  -0.0168416047  0.0010019120
sample96  -0.0285582661 -0.0187991000
sample97  -0.0490843868 -0.0266760748
sample98  -0.0171579033 -0.0112897471
sample99  -0.0271316525  0.0232395583
sample100 -0.0301789816  0.0305498693
sample101 -0.0264371151  0.0170723968
sample102  0.0012767734 -0.0248949597
sample103  0.0055214687 -0.0030040587
sample104  0.0251346074 -0.0165212671
sample105  0.0062424215 -0.0400309901
sample106  0.0069768684  0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679  0.0023637162
sample109 -0.0014762845  0.0165583675
sample110  0.0036971063  0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112  0.0046098120 -0.0048009350
sample113  0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453  0.0135805368
sample116  0.0183575759  0.0665377581
sample117  0.0227640036 -0.0012287760
sample118  0.0015695248  0.0472617382
sample119  0.0190084932  0.0590034062
sample120 -0.0449645755  0.0072755697
sample121  0.0077307184  0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123  0.0016959300  0.0028593594
sample124 -0.0365091615  0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408  0.0019165544
sample127 -0.0494064872  0.0088209044
sample128 -0.0155454766  0.0186819802
sample129 -0.0184340400  0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422  0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133  0.0204029276 -0.0282209049
sample134  0.0175513332  0.0262883962
sample135  0.0029009925  0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323  0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139  0.0073103935  0.0308956174
sample140  0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142  0.0268670676 -0.0239229634
sample143  0.0421049126 -0.0110888235
sample144  0.0017253664 -0.0341766012
sample145  0.0681741320 -0.0073526377
sample146 -0.0239965222  0.0118396767
sample147 -0.0063453522  0.0183130585
sample148  0.0230825251 -0.0379753037
sample149  0.0223298673  0.0188909118
sample150  0.0055709108  0.0174179009
sample151  0.0039177786 -0.0233533275
sample152  0.0134325667  0.0302344591
sample153  0.0511990309  0.0730230140
sample154  0.0006698324  0.0154177486
sample155  0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599  0.0154934573
sample158  0.0201775524 -0.0332982124
sample159 -0.0086909001  0.0073496711
sample160  0.0295437331 -0.0555734536
sample161  0.0332754288  0.0033779619
sample162  0.0121954537  0.0433540412
sample163 -0.0173490933  0.0227219128
sample164  0.0143374783 -0.0453542590
sample165  0.0343612593 -0.0511194536
sample166 -0.0157536004  0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919  0.0060747155
sample169  0.0116231468 -0.0015112800
> 
> ## 3.3 Plotting VAF
> 
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
> 
> # JIVE plotVAF
> plotVAF(jiveRes)
> 
> 
> #########################
> ## PART 4. Plot Results
> 
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> 
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common and distinctive part. DISCO  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Combined plot for loadings from common and distinctive part  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+         combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+         background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+         axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter:  Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  15.46    0.64   16.31 

STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsPCA.Rout


R version 3.5.1 Patched (2018-07-24 r75005) -- "Feather Spray"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+     tmp <- ggplot_gtable(ggplot_build(a.gplot))
+     leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+     legend <- tmp$grobs[[leg]]
+     return(legend)}
> 
> #########################
> ## PART 1. Load data
> 
> ## Load data
> data(STATegRa_S3)
> 
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA"     "g_legend"  
> 
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> 
> #########################
> ## PART 2.  Model Selection
> 
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
> 
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2

> 
> 
> #########################
> ## PART 3. Component Analysis
> 
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                              scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> 
> ## 3.2 Exploring scores structures
> 
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
                      1             2
sample1   -0.0781574357 -0.0431503625
sample2    0.1192218499  0.0294086372
sample3    0.0531412001 -0.0746839743
sample4   -0.0292975037 -0.0005962361
sample5   -0.0202091717  0.0110463494
sample6   -0.1226089040  0.1053467940
sample7   -0.1078928219 -0.0322473935
sample8   -0.1782895171  0.1449362899
sample9   -0.0468698089 -0.0455174225
sample10   0.0036030592  0.0420109977
sample11   0.0035566473 -0.0566292358
sample12  -0.1006128936  0.0641381171
sample13   0.1174408481  0.0907487914
sample14  -0.0981203274  0.0617738953
sample15  -0.0085334404 -0.0087011664
sample16  -0.0783148602  0.1581295724
sample17   0.1483609939  0.0638581859
sample18   0.0963086185  0.0556641699
sample19   0.0217244065 -0.0720087510
sample20   0.0635636324 -0.0779651775
sample21   0.0201840465  0.1566391085
sample22  -0.0218268902 -0.0764102852
sample23  -0.0852041916 -0.0032691232
sample24   0.1287170983  0.1924539728
sample25   0.0430574200 -0.0456568444
sample26   0.1453896929  0.0541510390
sample27   0.0197488641 -0.1185654753
sample28   0.1025336403  0.0650684535
sample29  -0.0706018621 -0.0682986375
sample30   0.1295627378 -0.0066766355
sample31  -0.1147449134  0.1232687930
sample32   0.0374310792  0.0380180284
sample33  -0.0599516154  0.0136869421
sample34   0.0984200768  0.0375322460
sample35   0.0543098301 -0.0378103686
sample36  -0.1403625533 -0.0343752385
sample37  -0.0228942078 -0.0732841276
sample38   0.0222077114 -0.0962593964
sample39   0.0941738516  0.0215198596
sample40  -0.0643801355 -0.0687866168
sample41   0.0327637928 -0.1232188123
sample42   0.0500431832 -0.0292474627
sample43   0.0184498775  0.0233012175
sample44  -0.1487898480  0.1171349689
sample45   0.1050774325  0.1123199602
sample46   0.1151195582 -0.1094027725
sample47   0.0962593654 -0.0288462305
sample48  -0.0004837167 -0.0310281078
sample49  -0.1135207665  0.1213971838
sample50   0.0123553029 -0.1740744314
sample51  -0.0550529785  0.1258888114
sample52  -0.0499121131  0.0728545706
sample53  -0.1119773625  0.1588015441
sample54   0.0360055680  0.0228575939
sample55  -0.0210418980  0.0006732353
sample56   0.0434169308  0.0633126239
sample57  -0.0197824481  0.1150714850
sample58  -0.0030439919  0.0326098921
sample59  -0.0500253239  0.0129422024
sample60  -0.0184278710  0.0136089352
sample61  -0.0150299392  0.0635028022
sample62   0.0304763727 -0.0201316760
sample63  -0.1102252404  0.1285976667
sample64  -0.1552588051  0.0971168836
sample65   0.0058503087  0.0207115087
sample66   0.0025605422  0.0424318919
sample67  -0.1546634952 -0.0661712296
sample68  -0.0536369431 -0.0923681324
sample69  -0.0640330454  0.0081983701
sample70  -0.0163517872 -0.0663230026
sample71   0.0102537586 -0.1345922675
sample72   0.0654195911 -0.0196117040
sample73   0.1048556051  0.0220940101
sample74  -0.0123799501  0.0586116400
sample75  -0.0392077987 -0.0209754164
sample76  -0.0648953425 -0.0524764265
sample77  -0.1172922151 -0.0201187111
sample78   0.1463068221  0.0708470237
sample79  -0.0265211117 -0.1603311386
sample80  -0.0279737206 -0.0214203581
sample81  -0.0079211511 -0.0738452149
sample82   0.1544236438 -0.0361467452
sample83   0.0494211215 -0.0050045309
sample84   0.0259038521 -0.0346550748
sample85  -0.1116484455 -0.0031495030
sample86   0.1306482905 -0.0377213510
sample87   0.0554778191 -0.0459748648
sample88   0.0301623923  0.0382197839
sample89   0.1016866700  0.0694035107
sample90  -0.0086819932 -0.0201320220
sample91  -0.1578625472 -0.2097827073
sample92  -0.0170936733 -0.1655810638
sample93   0.0979806768 -0.0121511930
sample94  -0.0131484158 -0.0114932025
sample95  -0.0315682621 -0.0758860748
sample96  -0.0024125617 -0.0470136949
sample97  -0.0634545419  0.0270331118
sample98   0.0359374579 -0.0135487831
sample99   0.1009163444  0.1124778138
sample100 -0.0551753165  0.0246489886
sample101  0.0080118811 -0.1627369635
sample102  0.0046444518  0.0095627598
sample103  0.0472523114 -0.0940393032
sample104 -0.0198159420 -0.0591093093
sample105  0.0400237840 -0.0160912964
sample106  0.0923808463  0.0369017335
sample107  0.1019373904  0.0224954513
sample108  0.0877091650 -0.0128834630
sample109 -0.0864824267 -0.0900945512
sample110  0.1223115563 -0.0096086343
sample111 -0.0257354559 -0.0936172127
sample112  0.0765286585  0.0270348424
sample113 -0.0258803137  0.0377495683
sample114 -0.0021138978 -0.0882015555
sample115 -0.0303460062 -0.0723589688
sample116 -0.0780508325 -0.0685068958
sample117 -0.0536897990 -0.0911911501
sample118 -0.0666651125 -0.0236231890
sample119 -0.1021871664 -0.2324938647
sample120 -0.0750216550  0.0243378234
sample121  0.0756936438  0.0942951094
sample122  0.0259628204  0.0731985479
sample123  0.1037846212 -0.0369196717
sample124 -0.0611207849  0.0421721619
sample125  0.0738472720  0.0066950014
sample126 -0.0972916518  0.0762641542
sample127 -0.0824697685 -0.0096637518
sample128  0.1249407751  0.0929311097
sample129  0.0734067409 -0.0434361613
sample130  0.0003501957 -0.0309852781
sample131 -0.0930182851  0.0155937986
sample132 -0.0736222748  0.0733028310
sample133  0.0498397996 -0.0462437919
sample134 -0.1644873474  0.0720006681
sample135  0.0752297140  0.0003819110
sample136 -0.0227145888 -0.0495505063
sample137 -0.0564717532 -0.0288914305
sample138 -0.0255988063 -0.0610858949
sample139 -0.0621217838  0.0235808999
sample140  0.0604152441 -0.0435591646
sample141 -0.0246743936  0.0532648247
sample142  0.0409560433  0.0316278694
sample143  0.0077355258 -0.0476896586
sample144 -0.0173240822 -0.0156778119
sample145 -0.0485474328  0.1202769766
sample146 -0.0419645756 -0.0811280250
sample147  0.0977308244 -0.0274838246
sample148 -0.0368256097  0.0803979450
sample149  0.0072865766 -0.1532986826
sample150 -0.1020825300  0.0624775881
sample151 -0.0305399005 -0.0289279713
sample152  0.0533594807 -0.0638309828
sample153  0.0891627966  0.1799574992
sample154  0.0727557384 -0.0834160090
sample155  0.0880668495 -0.0220818263
sample156  0.0276560999 -0.0326624664
sample157  0.1155032168  0.0183616575
sample158  0.0281507507 -0.0104937905
sample159 -0.0663235658  0.0443836616
sample160  0.0302643905  0.0404266475
sample161 -0.0114715493 -0.0591026965
sample162  0.1337087222  0.1398135330
sample163 -0.1330124383  0.1688780933
sample164  0.0150336162  0.0028415161
sample165 -0.0076520221 -0.0164128792
sample166 -0.0367794295  0.0630660782
sample167 -0.1111988892  0.0030058077
sample168  0.0672981637  0.0446278985
sample169  0.0413004935  0.0224395663
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
                      1             2
sample1    0.0420513387  0.0867863173
sample2    0.0820829142 -0.0410977763
sample3   -0.0155901538 -0.0195182494
sample4    0.1001337280 -0.0410786383
sample5    0.0153466374 -0.0253259628
sample6   -0.0340323556 -0.0408223192
sample7   -0.0722580361  0.0002331996
sample8    0.0457503094 -0.0370015942
sample9    0.0086248432  0.0820184888
sample10   0.0423599492 -0.0083923119
sample11  -0.0022549795  0.0787765984
sample12  -0.0322105053  0.1479824655
sample13   0.0293891876 -0.0306748444
sample14  -0.0337481319 -0.0367506895
sample15  -0.0815539692  0.1275622239
sample16  -0.0508449070  0.0540604659
sample17  -0.0062595637  0.0041023754
sample18  -0.0705638818 -0.0351047849
sample19   0.0476840226 -0.0509598020
sample20  -0.0522964507  0.0715521632
sample21   0.0119129941 -0.0376092907
sample22  -0.0724394800 -0.0095625403
sample23   0.0992532100  0.0134289082
sample24   0.1595121898  0.0728662676
sample25   0.0920692550 -0.0749757041
sample26   0.0595540761  0.0848966267
sample27  -0.0826488018 -0.0086735784
sample28   0.0384789337  0.0440967050
sample29  -0.0777673367  0.1735308224
sample30  -0.1229471359 -0.0819005894
sample31  -0.0579843901 -0.0238644804
sample32  -0.0970392447 -0.0111426552
sample33  -0.1017587798 -0.0630442854
sample34  -0.0637922356  0.0377941555
sample35  -0.0789984960 -0.0229723484
sample36  -0.1224939116 -0.1274955321
sample37  -0.1798821445 -0.1673428017
sample38  -0.0466306814  0.0888160716
sample39   0.0168687820  0.0421533820
sample40  -0.1756392746 -0.1526642926
sample41  -0.0042373298  0.0004928671
sample42   0.0447849104 -0.0651504907
sample43  -0.0482307984 -0.0253529395
sample44   0.1986717439 -0.0545777170
sample45   0.0741838510  0.0054703601
sample46  -0.0478774422 -0.0007072264
sample47  -0.0608189253  0.0481622431
sample48   0.1381488792  0.0578288147
sample49   0.0530523233 -0.1405532560
sample50   0.0173795939  0.1602389553
sample51  -0.0462558395  0.0303473823
sample52  -0.0280063293  0.0280388385
sample53  -0.0667618348  0.0237702001
sample54  -0.0121832992 -0.0521354339
sample55  -0.0182395804  0.0221328380
sample56   0.0001256899  0.0030907417
sample57  -0.0316672959  0.0530190302
sample58  -0.0393917487 -0.0297798829
sample59  -0.1278290418 -0.0546528308
sample60  -0.1486984635  0.1069156149
sample61  -0.0793121135  0.0569796357
sample62  -0.1172801547 -0.0149198847
sample63   0.0028728857  0.1300519966
sample64  -0.0237363024  0.1073287748
sample65   0.0126535124  0.0589808491
sample66   0.0468195786 -0.0771072521
sample67  -0.1494265094 -0.0769860775
sample68  -0.0977962710 -0.0577351419
sample69  -0.0403087385  0.0156042008
sample70  -0.0221532924  0.0315440829
sample71   0.0546432048 -0.0272396407
sample72  -0.1107488103 -0.0537319717
sample73  -0.0906761152  0.0579966360
sample74  -0.0586554356  0.0121421556
sample75  -0.0390493735  0.0349282680
sample76   0.0022960238 -0.1676558831
sample77   0.0232096398 -0.2067302743
sample78   0.0929756266 -0.0434939155
sample79   0.1619493999 -0.0378113913
sample80  -0.0680366203  0.1424663277
sample81   0.0530782663 -0.0358350763
sample82  -0.0266822661 -0.0577445220
sample83  -0.1517235346 -0.0448554787
sample84   0.0570966568 -0.0273813111
sample85  -0.1086289234 -0.1228119642
sample86  -0.0833860712 -0.0442915265
sample87  -0.0022018911 -0.0943906905
sample88   0.0078226191 -0.1140506472
sample89  -0.0611056009 -0.0094585270
sample90  -0.0022928402 -0.0936254019
sample91  -0.0433595000  0.3205982474
sample92   0.1815332686 -0.0334679913
sample93  -0.0267631341  0.0614428933
sample94  -0.0181878359  0.0605090342
sample95   0.0720374243 -0.0013045514
sample96   0.0559713779 -0.0118791299
sample97   0.0217411253  0.0195414232
sample98  -0.0379177934  0.0588356980
sample99   0.0792429223 -0.0151273468
sample100 -0.0222116051 -0.0023321472
sample101  0.0387225092  0.1224226180
sample102  0.2094614478 -0.0516441998
sample103 -0.0138483065  0.0301051824
sample104  0.0807986102 -0.0162718735
sample105  0.0520493366 -0.1229665031
sample106  0.0192614003 -0.0185238097
sample107 -0.0319017105  0.0405123210
sample108  0.0140690582  0.0163421407
sample109  0.1831928338  0.0613008020
sample110  0.0292790401 -0.0199849008
sample111  0.1423250163  0.0327340659
sample112 -0.0426332381 -0.0029083544
sample113  0.0771905205  0.0268733908
sample114  0.0241639675 -0.0184080428
sample115  0.1959014150  0.0460131191
sample116  0.1394475061 -0.0530805453
sample117  0.1672360646 -0.1386535991
sample118  0.0448343962 -0.0117621818
sample119  0.0910381632  0.2217433443
sample120  0.0331392521 -0.0057274374
sample121 -0.0307573514  0.1392506540
sample122  0.0839782559 -0.0291994108
sample123 -0.0239651000 -0.0642163835
sample124  0.0909151244  0.0130419810
sample125  0.0065351177 -0.1092631793
sample126 -0.0935310949  0.1368283844
sample127 -0.0035388341  0.0292755619
sample128  0.0660296771  0.1018566602
sample129 -0.0693639368 -0.0695421988
sample130 -0.0008493996 -0.0669704361
sample131 -0.0431023730  0.0174064759
sample132  0.0637041313  0.0029374980
sample133  0.0289494066 -0.0390818792
sample134 -0.0446201554  0.0456334451
sample135 -0.0712337157  0.0521634742
sample136 -0.0596272156  0.0197299099
sample137 -0.0793152535 -0.0380628567
sample138  0.0973547317 -0.0454218030
sample139 -0.0539903755 -0.1534327497
sample140 -0.0850828122  0.0955814235
sample141  0.0192682873 -0.0554449962
sample142  0.0672262824 -0.0461320687
sample143  0.0303729889 -0.0519260192
sample144  0.0089364256  0.0145814925
sample145  0.0638772555  0.0122258717
sample146 -0.0585857931  0.0063083100
sample147 -0.0894133646 -0.1124615996
sample148  0.0216368758 -0.0615966985
sample149  0.0515418192 -0.0839903482
sample150 -0.0568282017 -0.0124469027
sample151  0.0789531960 -0.0261830977
sample152  0.0330751976  0.1306443624
sample153  0.1751934463  0.1497732798
sample154 -0.0421425931 -0.0037010401
sample155 -0.0680178009  0.0095711002
sample156 -0.0388912102  0.1057562809
sample157 -0.0314769329  0.0561367344
sample158 -0.0329620770  0.0353947213
sample159  0.0398417689 -0.1007373610
sample160 -0.0424937920  0.0108496085
sample161  0.0888370588 -0.0679699960
sample162  0.0027478176  0.1237844000
sample163  0.0126108251  0.0725434548
sample164  0.0566779883 -0.0458324012
sample165  0.0315336312 -0.0236362271
sample166  0.0612059388 -0.0425232793
sample167 -0.0142729866  0.0179308240
sample168  0.0169504470 -0.0769617808
sample169 -0.0675079939  0.0131505149
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
                      1             2
sample1   -0.0012329747  1.635717e-01
sample2   -0.0724350225  6.021288e-03
sample3   -0.0188460421  1.080036e-01
sample4    0.0390145186 -3.113853e-04
sample5    0.1774811587  2.996386e-02
sample6   -0.0451444535  3.455860e-02
sample7   -0.0226466112  7.020127e-03
sample8   -0.1033680453  9.856822e-03
sample9    0.1350011874 -8.979098e-02
sample10   0.1259887106  5.097856e-02
sample11   0.0979788504 -7.086535e-02
sample12  -0.0863019202  8.620317e-02
sample13  -0.1381401153 -1.828007e-01
sample14  -0.0615073911  2.642803e-02
sample15   0.0381599026  3.101662e-02
sample16  -0.0048776879 -1.271813e-03
sample17  -0.0788481077  1.547555e-02
sample18  -0.0884188812  3.795486e-02
sample19   0.0703044380  1.084004e-01
sample20  -0.0025585314 -7.975878e-02
sample21   0.0941601395  4.126746e-02
sample22  -0.0550273291  7.806739e-02
sample23   0.0679495197  4.102008e-02
sample24  -0.1310963122 -1.649308e-01
sample25   0.0113585203  4.426864e-02
sample26  -0.1402946068 -2.016540e-02
sample27   0.0261561372 -1.588497e-03
sample28  -0.0724198824 -5.850590e-02
sample29  -0.0330058380 -2.060870e-03
sample30  -0.0228752470  2.015427e-02
sample31  -0.0635068082  6.670335e-02
sample32   0.0685099649  4.955272e-02
sample33  -0.0777765219  1.272078e-01
sample34   0.0157842381  3.024314e-02
sample35  -0.0529632524 -1.500972e-01
sample36   0.0070901121 -2.025308e-01
sample37  -0.0442420168 -1.802089e-01
sample38  -0.0781511153  3.676416e-02
sample39   0.0120331764  3.388843e-02
sample40  -0.0473291670 -1.471562e-01
sample41   0.0228189554  2.673551e-02
sample42  -0.0245360324  7.960867e-02
sample43   0.1036362756  8.229577e-02
sample44  -0.1012229073 -7.049444e-02
sample45   0.0013731769  2.450916e-02
sample46  -0.0558509843 -2.947426e-03
sample47  -0.0380481064 -4.554176e-02
sample48   0.0784342025 -4.888977e-02
sample49  -0.0605164167  1.162359e-02
sample50   0.0530079465  2.737929e-02
sample51   0.1514646462 -5.678342e-02
sample52   0.1860935272 -1.246717e-01
sample53  -0.0064177241  2.700996e-02
sample54   0.0697038298  2.308390e-02
sample55   0.1633577065 -1.366441e-02
sample56   0.1011485041 -4.682203e-02
sample57   0.1730374216 -1.609603e-01
sample58  -0.0071384724  1.666955e-02
sample59  -0.0030461539 -3.005288e-02
sample60   0.0215835480 -2.665878e-01
sample61   0.1510583713 -1.002385e-01
sample62  -0.0925533850  4.845838e-02
sample63  -0.0596311976  4.137025e-02
sample64  -0.0449225874  2.600593e-03
sample65   0.0939383684  4.406910e-02
sample66   0.1063400603  5.709996e-02
sample67  -0.0201589557 -2.361728e-01
sample68   0.0037203459 -2.418395e-02
sample69  -0.0645161252  1.155622e-01
sample70  -0.1013440002  1.351788e-01
sample71  -0.0016467775  2.976839e-02
sample72   0.0328893123  2.835854e-02
sample73   0.0275080044  5.148185e-02
sample74   0.1341719608  7.895281e-02
sample75   0.0951575710  3.943183e-02
sample76  -0.0864721858 -3.034994e-02
sample77  -0.1035749557  2.545352e-02
sample78  -0.1575644319 -4.939590e-02
sample79   0.0189137175 -4.874679e-02
sample80   0.1384140691 -4.266642e-05
sample81  -0.0118846459  6.357931e-02
sample82  -0.1675308102 -3.533914e-02
sample83  -0.0065673320  7.812606e-02
sample84   0.1486891572  3.109059e-02
sample85  -0.0532724226 -7.417888e-02
sample86  -0.1138477231  1.911862e-05
sample87   0.0432864082 -6.080473e-02
sample88   0.0433450409 -1.402490e-01
sample89   0.0331205713  1.395402e-02
sample90  -0.0607412849  8.610413e-02
sample91  -0.0566272176 -1.303748e-01
sample92  -0.0359582379 -1.061604e-01
sample93  -0.0433646374  4.443634e-02
sample94  -0.0477291345  1.059574e-01
sample95  -0.0249595765  3.980525e-02
sample96   0.0035218946  9.293928e-02
sample97  -0.0066048914  1.527231e-01
sample98   0.0020366822  5.579549e-02
sample99  -0.0886616373  3.728230e-02
sample100 -0.1091259161  3.560419e-02
sample101 -0.0739726339  4.317995e-02
sample102  0.0574460911  2.783920e-02
sample103  0.0142731158 -9.705584e-03
sample104  0.0710395244 -4.068350e-02
sample105  0.0980831283  3.452954e-02
sample106 -0.0254259373 -3.628982e-02
sample107 -0.0160653538  9.173395e-02
sample108 -0.0200987690  2.379692e-02
sample109 -0.0389780685 -1.692357e-02
sample110 -0.0326304866 -2.988109e-02
sample111  0.0676937507  6.038214e-02
sample112  0.0167883427 -5.336938e-03
sample113  0.0969216875  2.757607e-02
sample114 -0.0026398329  9.209155e-02
sample115 -0.0308047398 -1.603820e-02
sample116 -0.1240307109 -1.273000e-01
sample117  0.0334729088 -5.392709e-02
sample118 -0.1037152870 -6.252431e-02
sample119 -0.1064176325 -1.196203e-01
sample120 -0.0771355217  1.004933e-01
sample121 -0.0129350839 -3.181974e-02
sample122  0.0847492062  5.568331e-02
sample123 -0.0041336722 -7.693193e-03
sample124 -0.0583458198  8.396392e-02
sample125  0.0634844530  5.232541e-02
sample126 -0.0662581019  1.091732e-01
sample127 -0.0865024654  1.094176e-01
sample128 -0.0627817660  1.470968e-02
sample129 -0.0336276370  4.007856e-02
sample130 -0.0293517767  8.046116e-02
sample131 -0.0469197625  2.209737e-03
sample132 -0.0241740918  1.248599e-01
sample133  0.0907303245 -1.466700e-02
sample134 -0.0350842039 -7.539662e-02
sample135  0.0001333467 -9.185394e-03
sample136 -0.0335876005  9.860271e-02
sample137 -0.0640148838  7.554466e-02
sample138  0.0060964821  1.742763e-02
sample139 -0.0592084383 -5.614970e-02
sample140  0.0427986048  1.099548e-02
sample141  0.0618796230  9.301040e-02
sample142  0.0898554379 -3.573414e-02
sample143  0.0817389314 -8.880524e-02
sample144  0.0787754768  3.821392e-02
sample145  0.1085821487 -1.569476e-01
sample146 -0.0589557800  4.373356e-02
sample147 -0.0495330333 -7.277232e-03
sample148  0.1161592679 -9.079049e-03
sample149 -0.0121579248 -7.788377e-02
sample150 -0.0314512518 -3.520213e-02
sample151  0.0575382125  1.945354e-02
sample152 -0.0494542005 -7.025538e-02
sample153 -0.0941333006 -2.153296e-01
sample154 -0.0335931857 -2.078732e-02
sample155  0.0690457706  2.780408e-02
sample156  0.1039901649  6.292524e-02
sample157 -0.0408645795 -8.065517e-03
sample158  0.1018105353 -7.816878e-03
sample159 -0.0281730631  1.207208e-02
sample160  0.1643052994 -2.978091e-03
sample161  0.0374329309 -8.524610e-02
sample162 -0.0804535476 -8.349751e-02
sample163 -0.0743228191  1.406229e-02
sample164  0.1208805933  2.139462e-02
sample165  0.1608115922 -2.025190e-02
sample166 -0.0425944795  2.660717e-02
sample167 -0.0226849481  4.464281e-02
sample168 -0.0180735673  7.466367e-04
sample169  0.0190779053 -2.645403e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
                   [,1]          [,2]
sample1   -0.0572060227 -1.729087e-02
sample2    0.0875245208  1.112588e-02
sample3    0.0403482602 -3.168994e-02
sample4   -0.0218345996  4.052760e-06
sample5   -0.0150905011  4.795041e-03
sample6   -0.0924362933  4.511003e-02
sample7   -0.0793066751 -1.243823e-02
sample8   -0.1342997187  6.215220e-02
sample9   -0.0338886944 -1.854401e-02
sample10   0.0020547173  1.749421e-02
sample11   0.0037275602 -2.364116e-02
sample12  -0.0753094533  2.772698e-02
sample13   0.0856160091  3.679963e-02
sample14  -0.0737457307  2.668452e-02
sample15  -0.0062111746 -3.554864e-03
sample16  -0.0602355268  6.675115e-02
sample17   0.1086768843  2.524534e-02
sample18   0.0702999472  2.231671e-02
sample19   0.0173785882 -3.024846e-02
sample20   0.0484173812 -3.310904e-02
sample21   0.0124657042  6.517144e-02
sample22  -0.0140989936 -3.159137e-02
sample23  -0.0627028403 -5.393710e-04
sample24   0.0919972100  7.909297e-02
sample25   0.0326998483 -1.945206e-02
sample26   0.1064741246  2.120849e-02
sample27   0.0166058995 -4.964993e-02
sample28   0.0743504770  2.614211e-02
sample29  -0.0511008491 -2.782647e-02
sample30   0.0962250842 -3.974893e-03
sample31  -0.0869563008  5.250819e-02
sample32   0.0271858919  1.552005e-02
sample33  -0.0448364581  6.243160e-03
sample34   0.0718415218  1.469396e-02
sample35   0.0403086451 -1.632629e-02
sample36  -0.1036402827 -1.304320e-02
sample37  -0.0159385744 -3.036525e-02
sample38   0.0182198369 -4.034805e-02
sample39   0.0690363619  8.058350e-03
sample40  -0.0467312750 -2.810325e-02
sample41   0.0263674438 -5.171216e-02
sample42   0.0374578960 -1.268634e-02
sample43   0.0132336869  9.536642e-03
sample44  -0.1119154428  5.028683e-02
sample45   0.0759639367  4.587903e-02
sample46   0.0871885519 -4.670385e-02
sample47   0.0721490571 -1.288540e-02
sample48   0.0005086144 -1.290565e-02
sample49  -0.0858177028  5.173760e-02
sample50   0.0118992665 -7.276215e-02
sample51  -0.0426446855  5.306205e-02
sample52  -0.0381605826  3.086785e-02
sample53  -0.0855757630  6.730043e-02
sample54   0.0261723092  9.184260e-03
sample55  -0.0156418304  4.682404e-04
sample56   0.0307831193  2.597550e-02
sample57  -0.0157242103  4.829381e-02
sample58  -0.0031174404  1.359898e-02
sample59  -0.0373001859  5.868397e-03
sample60  -0.0142609099  5.831654e-03
sample61  -0.0122255144  2.663579e-02
sample62   0.0228002942 -8.692265e-03
sample63  -0.0833127581  5.473229e-02
sample64  -0.1166548159  4.196500e-02
sample65   0.0038808902  8.568590e-03
sample66   0.0011561811  1.766612e-02
sample67  -0.1129311062 -2.608702e-02
sample68  -0.0382526429 -3.804045e-02
sample69  -0.0476502440  4.003241e-03
sample70  -0.0110329882 -2.752719e-02
sample71   0.0096850282 -5.627056e-02
sample72   0.0487124704 -8.800131e-03
sample73   0.0773058132  8.239864e-03
sample74  -0.0102488176  2.454957e-02
sample75  -0.0286613976 -8.387293e-03
sample76  -0.0472655595 -2.129315e-02
sample77  -0.0865043074 -7.296820e-03
sample78   0.1070293698  2.818346e-02
sample79  -0.0165060681 -6.659721e-02
sample80  -0.0206765949 -8.712112e-03
sample81  -0.0050943615 -3.079175e-02
sample82   0.1153622361 -1.647054e-02
sample83   0.0367979217 -2.538114e-03
sample84   0.0199463070 -1.468961e-02
sample85  -0.0827122185 -2.709824e-04
sample86   0.0969487314 -1.699897e-02
sample87   0.0421957457 -1.965953e-02
sample88   0.0215934743  1.566050e-02
sample89   0.0751559502  2.811652e-02
sample90  -0.0057328000 -8.283795e-03
sample91  -0.1134005268 -8.603522e-02
sample92  -0.0101689918 -6.894992e-02
sample93   0.0725967502 -6.003176e-03
sample94  -0.0096878852 -4.693081e-03
sample95  -0.0223502239 -3.139636e-02
sample96  -0.0013232863 -1.963604e-02
sample97  -0.0476541710  1.183660e-02
sample98   0.0269546160 -5.978398e-03
sample99   0.0728179461  4.597884e-02
sample100 -0.0413398038  1.079347e-02
sample101  0.0087536994 -6.796076e-02
sample102  0.0032509529  3.932612e-03
sample103  0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105  0.0294940465 -7.140722e-03
sample106  0.0686472054  1.462895e-02
sample107  0.0748635927  8.401339e-03
sample108  0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110  0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112  0.0570870472  1.066018e-02
sample113 -0.0200110554  1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586  1.089843e-02
sample121  0.0542443861  3.861344e-02
sample122  0.0178575357  3.027138e-02
sample123  0.0775020581 -1.636852e-02
sample124 -0.0460701050  1.814758e-02
sample125  0.0543846585  2.075898e-03
sample126 -0.0729417144  3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128  0.0908136899  3.758801e-02
sample129  0.0552445878 -1.879062e-02
sample130  0.0007128089 -1.294308e-02
sample131 -0.0693311345  7.357082e-03
sample132 -0.0556565156  3.126995e-02
sample133  0.0375870104 -1.977240e-02
sample134 -0.1229130924  3.159495e-02
sample135  0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201  1.040683e-02
sample140  0.0452288969 -1.876279e-02
sample141 -0.0189142561  2.247042e-02
sample142  0.0297545566  1.280524e-02
sample143  0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491  5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147  0.0726083535 -1.239968e-02
sample148 -0.0284795794  3.389732e-02
sample149  0.0082261455 -6.399305e-02
sample150 -0.0765013197  2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152  0.0403422737 -2.714879e-02
sample153  0.0629117719  7.425085e-02
sample154  0.0551622927 -3.548984e-02
sample155  0.0654439133 -1.005306e-02
sample156  0.0209310714 -1.390213e-02
sample157  0.0851522597  6.577150e-03
sample158  0.0208354599 -4.663078e-03
sample159 -0.0498794349  1.913257e-02
sample160  0.0216074437  1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162  0.0963663017  5.705881e-02
sample163 -0.1009542191  7.174224e-02
sample164  0.0109881996  1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357  2.673084e-02
sample167 -0.0825048036  2.278863e-03
sample168  0.0486147429  1.793843e-02
sample169  0.0302506727  8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
                   [,1]          [,2]
sample1   -0.0621842115 -1.364509e-02
sample2    0.0944623785  9.720892e-03
sample3    0.0406196267 -2.236338e-02
sample4   -0.0229316496 -3.932487e-04
sample5   -0.0157330047  3.231033e-03
sample6   -0.0945794025  3.120720e-02
sample7   -0.0854427118 -1.052880e-02
sample8   -0.1376625920  4.286608e-02
sample9   -0.0377115311 -1.415134e-02
sample10   0.0035244506  1.280825e-02
sample11   0.0016639987 -1.717895e-02
sample12  -0.0781403168  1.884368e-02
sample13   0.0938400516  2.838858e-02
sample14  -0.0759839772  1.810989e-02
sample15  -0.0068340837 -2.705361e-03
sample16  -0.0590150849  4.757848e-02
sample17   0.1178805097  2.040526e-02
sample18   0.0767858320  1.756604e-02
sample19   0.0157112113 -2.172867e-02
sample20   0.0485318300 -2.327033e-02
sample21   0.0185928176  4.777095e-02
sample22  -0.0191358702 -2.329775e-02
sample23  -0.0672994194 -1.535656e-03
sample24   0.1047476642  5.935707e-02
sample25   0.0329844953 -1.358036e-02
sample26   0.1154952052  1.741529e-02
sample27   0.0133849853 -3.590922e-02
sample28   0.0821554039  2.042376e-02
sample29  -0.0567643690 -2.123848e-02
sample30   0.1016073931 -1.134728e-03
sample31  -0.0880396372  3.670548e-02
sample32   0.0300363338  1.182406e-02
sample33  -0.0467252272  3.739254e-03
sample34   0.0783666394  1.203777e-02
sample35   0.0424227097 -1.118559e-02
sample36  -0.1107646166 -1.143464e-02
sample37  -0.0191667664 -2.246060e-02
sample38   0.0155968095 -2.909621e-02
sample39   0.0746847148  7.148218e-03
sample40  -0.0517028178 -2.137267e-02
sample41   0.0234979494 -3.723018e-02
sample42   0.0388797356 -8.557228e-03
sample43   0.0149555568  7.210002e-03
sample44  -0.1150305613  3.461805e-02
sample45   0.0846146236  3.486020e-02
sample46   0.0884426404 -3.246853e-02
sample47   0.0748644971 -8.083045e-03
sample48  -0.0012033198 -9.403647e-03
sample49  -0.0872662737  3.616245e-02
sample50   0.0066941314 -5.284863e-02
sample51  -0.0411777630  3.791830e-02
sample52  -0.0379355780  2.180834e-02
sample53  -0.0851639886  4.751761e-02
sample54   0.0288006248  7.184424e-03
sample55  -0.0164920835  5.919925e-05
sample56   0.0355115616  1.951043e-02
sample57  -0.0141146068  3.492409e-02
sample58  -0.0015636132  9.862883e-03
sample59  -0.0390656483  3.590929e-03
sample60  -0.0139454780  3.963030e-03
sample61  -0.0106410274  1.919705e-02
sample62   0.0236748439 -5.922677e-03
sample63  -0.0846790877  3.839102e-02
sample64  -0.1202581015  2.846469e-02
sample65   0.0050548584  6.328644e-03
sample66   0.0028013072  1.291807e-02
sample67  -0.1231623009 -2.112565e-02
sample68  -0.0437782161 -2.845072e-02
sample69  -0.0501199692  2.053469e-03
sample70  -0.0140278645 -2.027157e-02
sample71   0.0057489505 -4.085977e-02
sample72   0.0511212704 -5.522408e-03
sample73   0.0828141409  7.431582e-03
sample74  -0.0085959456  1.772951e-02
sample75  -0.0312180394 -6.636869e-03
sample76  -0.0519051781 -1.640191e-02
sample77  -0.0925924762 -6.907800e-03
sample78   0.1163971046  2.251122e-02
sample79  -0.0240906926 -4.887766e-02
sample80  -0.0221327065 -6.730703e-03
sample81  -0.0072114968 -2.254399e-02
sample82   0.1204416674 -9.907422e-03
sample83   0.0386739485 -1.171663e-03
sample84   0.0195988488 -1.033806e-02
sample85  -0.0877680171 -1.725057e-03
sample86   0.1023541048 -1.062501e-02
sample87   0.0425213089 -1.356865e-02
sample88   0.0244788514  1.180820e-02
sample89   0.0804276691  2.188588e-02
sample90  -0.0074639871 -6.140721e-03
sample91  -0.1278832404 -6.485140e-02
sample92  -0.0162199697 -5.048358e-02
sample93   0.0769344893 -3.045135e-03
sample94  -0.0104345587 -3.593172e-03
sample95  -0.0260058453 -2.330475e-02
sample96  -0.0025018700 -1.433516e-02
sample97  -0.0492358305  7.774183e-03
sample98   0.0279220220 -3.862141e-03
sample99   0.0813921923  3.487339e-02
sample100 -0.0428797405  7.112807e-03
sample101  0.0032855240 -4.940743e-02
sample102  0.0038439317  2.938008e-03
sample103  0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105  0.0314853405 -4.656633e-03
sample106  0.0726456731  1.192390e-02
sample107  0.0807342975  7.508627e-03
sample108  0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110  0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112  0.0599954082  8.820317e-03
sample113 -0.0195006577  1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131  6.937326e-03
sample121  0.0613899126  2.915307e-02
sample122  0.0218424338  2.241775e-02
sample123  0.0809008460 -1.051759e-02
sample124 -0.0472109313  1.239887e-02
sample125  0.0583180947  2.521167e-03
sample126 -0.0753941872  2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128  0.1000212216  2.908091e-02
sample129  0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877  4.091672e-03
sample132 -0.0566219024  2.179861e-02
sample133  0.0384172955 -1.372840e-02
sample134 -0.1280862736  2.077912e-02
sample135  0.0592633273  6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861  6.729304e-03
sample140  0.0468926306 -1.285498e-02
sample141 -0.0186248693  1.605439e-02
sample142  0.0328031246  9.887746e-03
sample143  0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310  3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147  0.0765025670 -7.714769e-03
sample148 -0.0276016641  2.420589e-02
sample149  0.0027545308 -4.653007e-02
sample150 -0.0792296010  1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152  0.0409796547 -1.907063e-02
sample153  0.0734301757  5.528780e-02
sample154  0.0557740684 -2.487723e-02
sample155  0.0689436560 -6.127635e-03
sample156  0.0212272938 -9.747423e-03
sample157  0.0911931194  6.355708e-03
sample158  0.0220840645 -3.016357e-03
sample159 -0.0513244242  1.304175e-02
sample160  0.0246213576  1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162  0.1078802043  4.337260e-02
sample163 -0.1017965082  5.047171e-02
sample164  0.0119430799  9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180  1.899222e-02
sample167 -0.0872832229  1.516582e-04
sample168  0.0540714512  1.397701e-02
sample169  0.0328432652  7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
                   [,1]          [,2]
sample1    0.0133684846  2.195848e-02
sample2    0.0254157197 -1.058416e-02
sample3   -0.0049551479 -4.840017e-03
sample4    0.0310390570 -1.063929e-02
sample5    0.0046941318 -6.488426e-03
sample6   -0.0107406753 -1.026702e-02
sample7   -0.0225157631  2.624712e-04
sample8    0.0141320952 -9.505821e-03
sample9    0.0029681280  2.078210e-02
sample10   0.0131729174 -2.275042e-03
sample11  -0.0004164298  1.994019e-02
sample12  -0.0095211620  3.759883e-02
sample13   0.0091018604 -7.953956e-03
sample14  -0.0106557524 -9.181659e-03
sample15  -0.0249924121  3.262724e-02
sample16  -0.0156216400  1.375700e-02
sample17  -0.0019382446  1.073994e-03
sample18  -0.0221072481 -8.703592e-03
sample19   0.0146917619 -1.311712e-02
sample20  -0.0160353760  1.826290e-02
sample21   0.0035947899 -9.616341e-03
sample22  -0.0225060762 -2.532589e-03
sample23   0.0310000683  3.033060e-03
sample24   0.0499544372  1.809450e-02
sample25   0.0284442301 -1.932558e-02
sample26   0.0188220043  2.146985e-02
sample27  -0.0257763219 -1.999228e-03
sample28   0.0120888648  1.125834e-02
sample29  -0.0236482520  4.426726e-02
sample30  -0.0385486305 -2.055935e-02
sample31  -0.0181539336 -5.877838e-03
sample32  -0.0302630460 -2.607192e-03
sample33  -0.0319565715 -1.562628e-02
sample34  -0.0197970124  9.906813e-03
sample35  -0.0247412713 -5.434440e-03
sample36  -0.0386259060 -3.190394e-02
sample37  -0.0566199273 -4.192574e-02
sample38  -0.0142060273  2.259644e-02
sample39   0.0053589035  1.076485e-02
sample40  -0.0552546493 -3.819896e-02
sample41  -0.0013089975  9.278818e-05
sample42   0.0137252142 -1.664652e-02
sample43  -0.0151259626 -6.290953e-03
sample44   0.0617391754 -1.442883e-02
sample45   0.0231410886  1.163143e-03
sample46  -0.0148898209 -1.384176e-04
sample47  -0.0187252536  1.221690e-02
sample48   0.0432839432  1.416671e-02
sample49   0.0160818605 -3.588745e-02
sample50   0.0059333545  4.067003e-02
sample51  -0.0142914866  7.776270e-03
sample52  -0.0086339952  7.208917e-03
sample53  -0.0207386980  6.272432e-03
sample54  -0.0039856719 -1.316934e-02
sample55  -0.0056217017  5.692315e-03
sample56   0.0000123292  8.978290e-04
sample57  -0.0095805555  1.324253e-02
sample58  -0.0124160295 -7.326376e-03
sample59  -0.0400195442 -1.349736e-02
sample60  -0.0460063358  2.770091e-02
sample61  -0.0245266456  1.470710e-02
sample62  -0.0366022783 -3.437352e-03
sample63   0.0013742171  3.288796e-02
sample64  -0.0070599859  2.739588e-02
sample65   0.0041201911  1.498268e-02
sample66   0.0143173351 -1.968812e-02
sample67  -0.0467477531 -1.929938e-02
sample68  -0.0306751978 -1.436184e-02
sample69  -0.0125317217  4.130407e-03
sample70  -0.0068071487  8.080857e-03
sample71   0.0169170264 -7.027348e-03
sample72  -0.0346909749 -1.333770e-02
sample73  -0.0280506153  1.493843e-02
sample74  -0.0182611498  3.294697e-03
sample75  -0.0120563964  8.974612e-03
sample76   0.0001437236 -4.253184e-02
sample77   0.0065330299 -5.252886e-02
sample78   0.0288278141 -1.127782e-02
sample79   0.0503961481 -1.023318e-02
sample80  -0.0207693429  3.648391e-02
sample81   0.0163562768 -9.074596e-03
sample82  -0.0084317129 -1.478976e-02
sample83  -0.0474097918 -1.103126e-02
sample84   0.0177181395 -7.191197e-03
sample85  -0.0342718548 -3.082360e-02
sample86  -0.0261671791 -1.089491e-02
sample87  -0.0009486358 -2.411514e-02
sample88   0.0020528931 -2.894615e-02
sample89  -0.0189361111 -2.638639e-03
sample90  -0.0009863658 -2.390075e-02
sample91  -0.0124352695  8.153234e-02
sample92   0.0564264106 -8.909537e-03
sample93  -0.0081461774  1.570851e-02
sample94  -0.0054896581  1.547251e-02
sample95   0.0224073150 -4.374348e-04
sample96   0.0173528924 -3.050441e-03
sample97   0.0067948115  5.008237e-03
sample98  -0.0116030825  1.498764e-02
sample99   0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101  0.0124923691  3.091503e-02
sample102  0.0650835386 -1.367400e-02
sample103 -0.0042741828  7.855985e-03
sample104  0.0250591040 -4.171938e-03
sample105  0.0157516368 -3.121990e-02
sample106  0.0060593853 -5.101693e-03
sample107 -0.0098329626  1.044506e-02
sample108  0.0044269853  4.142036e-03
sample109  0.0572473486  1.517542e-02
sample110  0.0090474827 -5.119868e-03
sample111  0.0444263015  7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113  0.0241047399  6.706740e-03
sample114  0.0074558775 -4.728652e-03
sample115  0.0611851433  1.117210e-02
sample116  0.0432646951 -1.380556e-02
sample117  0.0516750066 -3.575617e-02
sample118  0.0139942100 -3.279138e-03
sample119  0.0291722987  5.587946e-02
sample120  0.0103515853 -1.690016e-03
sample121 -0.0091396331  3.552116e-02
sample122  0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124  0.0283466326  3.127845e-03
sample125  0.0016472378 -2.770692e-02
sample126 -0.0286529417  3.489336e-02
sample127 -0.0010224500  7.483214e-03
sample128  0.0209049296  2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968  4.637390e-03
sample132  0.0198526786  5.723983e-04
sample133  0.0088812957 -9.988115e-03
sample134 -0.0137484514  1.172591e-02
sample135 -0.0220314568  1.347465e-02
sample136 -0.0185173353  5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138  0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762  2.456863e-02
sample141  0.0058369763 -1.420854e-02
sample142  0.0207886071 -1.188764e-02
sample143  0.0092832598 -1.324238e-02
sample144  0.0028442140  3.627979e-03
sample145  0.0199749569  2.862202e-03
sample146 -0.0182236697  1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148  0.0065435868 -1.572917e-02
sample149  0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151  0.0245166984 -6.888241e-03
sample152  0.0107259913  3.314630e-02
sample153  0.0550963965  3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574  2.642246e-03
sample156 -0.0117803505  2.698265e-02
sample157 -0.0096167165  1.433840e-02
sample158 -0.0101754772  9.137620e-03
sample159  0.0120662931 -2.565236e-02
sample160 -0.0132238202  2.916023e-03
sample161  0.0274491966 -1.748284e-02
sample162  0.0012482909  3.152261e-02
sample163  0.0042031315  1.830701e-02
sample164  0.0174896157 -1.175915e-02
sample165  0.0097517662 -6.119019e-03
sample166  0.0190134679 -1.121582e-02
sample167 -0.0044140836  4.665585e-03
sample168  0.0049689168 -1.941822e-02
sample169 -0.0209802098  3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
                   [,1]          [,2]
sample1   -0.0515543627 -0.0305856787
sample2   -0.0144993256  0.0236342950
sample3   -0.0371833108 -0.0140263348
sample4    0.0068945388 -0.0132539692
sample5    0.0215035333 -0.0663338101
sample6   -0.0187055152  0.0088773016
sample7   -0.0061521552  0.0064029054
sample8   -0.0210874459  0.0334652901
sample9    0.0516865043 -0.0291142799
sample10   0.0059440366 -0.0527217447
sample11   0.0393010793 -0.0200624712
sample12  -0.0420837100  0.0131331362
sample13   0.0333252565  0.0818552509
sample14  -0.0190062644  0.0160202175
sample15  -0.0030968049 -0.0189230681
sample16  -0.0004452158  0.0018880102
sample17  -0.0185848615  0.0240170131
sample18  -0.0273093598  0.0230213640
sample19  -0.0217761111 -0.0445894441
sample20   0.0245820821  0.0159812738
sample21   0.0034527644 -0.0400016054
sample22  -0.0340789054  0.0039289109
sample23  -0.0010344929 -0.0310161212
sample24   0.0289468503  0.0760962436
sample25  -0.0119098496 -0.0122798760
sample26  -0.0181001057  0.0517892852
sample27   0.0050465417 -0.0086515844
sample28   0.0057491502  0.0358830107
sample29  -0.0051104246  0.0116605117
sample30  -0.0103085904  0.0039678538
sample31  -0.0319929858  0.0090606113
sample32  -0.0036232521 -0.0328202010
sample33  -0.0534742153  0.0024751837
sample34  -0.0067495749 -0.0111000311
sample35   0.0378745721  0.0465929296
sample36   0.0647886800  0.0359987924
sample37   0.0488441236  0.0492906912
sample38  -0.0251514062  0.0197110110
sample39  -0.0085428066 -0.0105117852
sample40   0.0379324087  0.0440810741
sample41  -0.0044199152 -0.0128820644
sample42  -0.0292553573 -0.0067045265
sample43  -0.0077829155 -0.0510178219
sample44   0.0045122248  0.0479660309
sample45  -0.0074444298 -0.0051116726
sample46  -0.0088025512  0.0196186661
sample47   0.0076696301  0.0215947965
sample48   0.0290108585 -0.0175568376
sample49  -0.0141754858  0.0184717099
sample50   0.0006282201 -0.0233054373
sample51   0.0441995177 -0.0410022921
sample52   0.0715329391 -0.0399499475
sample53  -0.0095954087 -0.0029140909
sample54   0.0048933768 -0.0281884386
sample55   0.0327325487 -0.0532290012
sample56   0.0323068984 -0.0256595538
sample57   0.0806603122 -0.0286748097
sample58  -0.0064792049 -0.0006945349
sample59   0.0088958941  0.0067389649
sample60   0.0874124612  0.0431964341
sample61   0.0577604571 -0.0326112099
sample62  -0.0313318464  0.0224391756
sample63  -0.0233625220  0.0125110562
sample64  -0.0086426068  0.0148770341
sample65   0.0025256193 -0.0404466327
sample66   0.0006014071 -0.0471576264
sample67   0.0706087042  0.0516228406
sample68   0.0082301011  0.0033109509
sample69  -0.0475076743  0.0001452708
sample70  -0.0600773716  0.0089986962
sample71  -0.0096321627 -0.0050761187
sample72  -0.0031773546 -0.0166221542
sample73  -0.0113700517 -0.0191726684
sample74  -0.0014179662 -0.0608101325
sample75   0.0041911740 -0.0399981269
sample76  -0.0055326449  0.0353114263
sample77  -0.0260214459  0.0305731380
sample78  -0.0119267436  0.0632236007
sample79   0.0186017239  0.0027402910
sample80   0.0241047889 -0.0472697181
sample81  -0.0220288317 -0.0079577210
sample82  -0.0180751258  0.0639051029
sample83  -0.0256671713 -0.0125898269
sample84   0.0161392598 -0.0567222449
sample85   0.0139988188  0.0322763454
sample86  -0.0198382995  0.0389225776
sample87   0.0266270281 -0.0032979996
sample88   0.0515677078  0.0117902495
sample89   0.0014022125 -0.0140510488
sample90  -0.0375949749  0.0044004551
sample91   0.0310397965  0.0440610926
sample92   0.0270570567  0.0324380452
sample93  -0.0215009202  0.0063993941
sample94  -0.0415702912 -0.0037692077
sample95  -0.0168416047  0.0010019120
sample96  -0.0285582661 -0.0187991000
sample97  -0.0490843868 -0.0266760748
sample98  -0.0171579033 -0.0112897471
sample99  -0.0271316525  0.0232395583
sample100 -0.0301789816  0.0305498693
sample101 -0.0264371151  0.0170723968
sample102  0.0012767734 -0.0248949597
sample103  0.0055214687 -0.0030040587
sample104  0.0251346074 -0.0165212671
sample105  0.0062424215 -0.0400309901
sample106  0.0069768684  0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679  0.0023637162
sample109 -0.0014762845  0.0165583675
sample110  0.0036971063  0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112  0.0046098120 -0.0048009350
sample113  0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453  0.0135805368
sample116  0.0183575759  0.0665377581
sample117  0.0227640036 -0.0012287760
sample118  0.0015695248  0.0472617382
sample119  0.0190084932  0.0590034062
sample120 -0.0449645755  0.0072755697
sample121  0.0077307184  0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123  0.0016959300  0.0028593594
sample124 -0.0365091615  0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408  0.0019165544
sample127 -0.0494064872  0.0088209044
sample128 -0.0155454766  0.0186819802
sample129 -0.0184340400  0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422  0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133  0.0204029276 -0.0282209049
sample134  0.0175513332  0.0262883962
sample135  0.0029009925  0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323  0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139  0.0073103935  0.0308956174
sample140  0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142  0.0268670676 -0.0239229634
sample143  0.0421049126 -0.0110888235
sample144  0.0017253664 -0.0341766012
sample145  0.0681741320 -0.0073526377
sample146 -0.0239965222  0.0118396767
sample147 -0.0063453522  0.0183130585
sample148  0.0230825251 -0.0379753037
sample149  0.0223298673  0.0188909118
sample150  0.0055709108  0.0174179009
sample151  0.0039177786 -0.0233533275
sample152  0.0134325667  0.0302344591
sample153  0.0511990309  0.0730230140
sample154  0.0006698324  0.0154177486
sample155  0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599  0.0154934573
sample158  0.0201775524 -0.0332982124
sample159 -0.0086909001  0.0073496711
sample160  0.0295437331 -0.0555734536
sample161  0.0332754288  0.0033779619
sample162  0.0121954537  0.0433540412
sample163 -0.0173490933  0.0227219128
sample164  0.0143374783 -0.0453542590
sample165  0.0343612593 -0.0511194536
sample166 -0.0157536004  0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919  0.0060747155
sample169  0.0116231468 -0.0015112800
> 
> ## 3.3 Plotting VAF
> 
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
> 
> # JIVE plotVAF
> plotVAF(jiveRes)
> 
> 
> #########################
> ## PART 4. Plot Results
> 
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> 
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common and distinctive part. DISCO  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Combined plot for loadings from common and distinctive part  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+         combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+         background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+         axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter:  Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  13.84    0.34   14.39 

Example timings

STATegRa.Rcheck/examples_i386/STATegRa-Ex.timings

nameusersystemelapsed
STATegRaUsersGuide000
STATegRa_data0.380.030.75
STATegRa_data_TCGA_BRCA0.000.010.03
bioDist0.980.111.09
bioDistFeature0.750.030.78
bioDistFeaturePlot0.610.020.63
bioDistW0.860.000.86
bioDistWPlot0.530.030.56
bioMap0.020.000.02
combiningMappings0.020.000.01
createOmicsExpressionSet0.170.000.17
getInitialData0.730.090.83
getLoadings0.890.241.13
getMethodInfo0.820.150.97
getPreprocessing1.390.241.62
getScores0.870.171.05
getVAF0.690.140.83
holistOmics0.000.020.01
modelSelection2.440.482.92
omicsCompAnalysis5.120.115.24
omicsNPC0.020.000.01
plotRes6.650.086.74
plotVAF5.580.085.65

STATegRa.Rcheck/examples_x64/STATegRa-Ex.timings

nameusersystemelapsed
STATegRaUsersGuide000
STATegRa_data0.250.000.25
STATegRa_data_TCGA_BRCA000
bioDist0.720.030.75
bioDistFeature0.430.030.47
bioDistFeaturePlot0.520.000.51
bioDistW0.650.030.69
bioDistWPlot0.580.050.63
bioMap0.000.020.01
combiningMappings0.030.000.03
createOmicsExpressionSet0.170.000.17
getInitialData0.610.170.79
getLoadings0.810.120.93
getMethodInfo0.790.160.94
getPreprocessing0.870.231.11
getScores0.770.130.89
getVAF0.930.121.06
holistOmics0.000.020.02
modelSelection2.930.413.33
omicsCompAnalysis4.000.144.14
omicsNPC0.010.000.01
plotRes6.560.116.67
plotVAF5.410.095.50