This page was generated on 2018-10-17 08:51:56 -0400 (Wed, 17 Oct 2018).
R version 3.5.1 Patched (2018-07-12 r74967) -- "Feather Spray"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin15.6.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("TCC")
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, basename, cbind, colMeans, colSums, colnames,
dirname, do.call, duplicated, eval, evalq, get, grep, grepl,
intersect, is.unsorted, lapply, lengths, mapply, match, mget,
order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind,
rowMeans, rowSums, rownames, sapply, setdiff, sort, table, tapply,
union, unique, unsplit, which, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
locfit 1.5-9.1 2013-03-22
Welcome to 'DESeq'. For improved performance, usability and
functionality, please consider migrating to 'DESeq2'.
Attaching package: 'S4Vectors'
The following object is masked from 'package:base':
expand.grid
Attaching package: 'matrixStats'
The following objects are masked from 'package:Biobase':
anyMissing, rowMedians
Attaching package: 'DelayedArray'
The following objects are masked from 'package:matrixStats':
colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges
The following objects are masked from 'package:base':
aperm, apply
Attaching package: 'DESeq2'
The following objects are masked from 'package:DESeq':
estimateSizeFactorsForMatrix, getVarianceStabilizedData,
varianceStabilizingTransformation
Attaching package: 'limma'
The following object is masked from 'package:DESeq2':
plotMA
The following object is masked from 'package:DESeq':
plotMA
The following object is masked from 'package:BiocGenerics':
plotMA
Attaching package: 'TCC'
The following object is masked from 'package:edgeR':
calcNormFactors
TCC::INFO: Identifying DE genes using wad ...
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using wad ...
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using tmm ...
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 3 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 2 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 3 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 3 )
TCC::INFO: Done.
TCC::INFO: Generating simulation data under NB distribution ...
TCC::INFO: (genesizes : 1000 )
TCC::INFO: (replicates : 3, 3 )
TCC::INFO: (PDEG : 0.16, 0.04 )
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ bayseq - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ bayseq - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ bayseq - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using bayseq ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.7357281
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using deseq ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8601875
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq2 - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq2 - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq2 - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using deseq2 ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8598406
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ edger - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ edger - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using edger ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8734719
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ voom - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ voom - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ voom - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using voom ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8310656
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Generating simulation data under NB distribution ...
TCC::INFO: (genesizes : 1000 )
TCC::INFO: (replicates : 1, 1 )
TCC::INFO: (PDEG : 0.16, 0.04 )
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ bayseq - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ bayseq - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ bayseq - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using bayseq ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.6686031
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq - tmm ] X 1 )
Error in .local(object, ...) :
None of your conditions is replicated. Use method='blind' to estimate across conditions, or 'pooled-CR', if you have crossed factors.
In addition: Warning messages:
1: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
2: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
3: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
4: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq - deseq ] X 1 )
Error in .local(object, ...) :
None of your conditions is replicated. Use method='blind' to estimate across conditions, or 'pooled-CR', if you have crossed factors.
In addition: Warning messages:
1: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
2: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq - deseq2 ] X 1 )
Error in .local(object, ...) :
None of your conditions is replicated. Use method='blind' to estimate across conditions, or 'pooled-CR', if you have crossed factors.
In addition: Warning messages:
1: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
2: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using deseq ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8193219
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq2 - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq2 - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq2 - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using deseq2 ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8374125
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ edger - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ edger - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using edger ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8095375
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Generating simulation data under NB distribution ...
TCC::INFO: (genesizes : 1000 )
TCC::INFO: (samples : 8 )
TCC::INFO: (factors : 2 )
TCC::INFO: (PDEG : 0.1 )
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ bayseq - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ bayseq - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ bayseq - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using bayseq ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.6295278
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq - tmm ] X 1 )
Error in .local(object, ...) :
None of your conditions is replicated. Use method='blind' to estimate across conditions, or 'pooled-CR', if you have crossed factors.
In addition: Warning messages:
1: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
2: In checkForExperimentalReplicates(object, modelMatrix) :
Deprectation note: Analysis of designs without replicates will be removed
in the Oct 2018 release: DESeq2 v1.22.0, after which DESeq2 will give an error.
3: In checkForExperimentalReplicates(object, modelMatrix) :
The design matrix has the same number of samples and coefficients to fit,
estimating dispersion by treating samples as replicates. This analysis
is not useful for accurate differential expression analysis, and arguably
not for data exploration either, as large differences appear as high dispersion.
4: In checkForExperimentalReplicates(object, modelMatrix) :
Deprectation note: Analysis of designs without replicates will be removed
in the Oct 2018 release: DESeq2 v1.22.0, after which DESeq2 will give an error.
5: In checkForExperimentalReplicates(object, modelMatrix) :
The design matrix has the same number of samples and coefficients to fit,
estimating dispersion by treating samples as replicates. This analysis
is not useful for accurate differential expression analysis, and arguably
not for data exploration either, as large differences appear as high dispersion.
6: In checkForExperimentalReplicates(object, modelMatrix) :
Deprectation note: Analysis of designs without replicates will be removed
in the Oct 2018 release: DESeq2 v1.22.0, after which DESeq2 will give an error.
7: In checkForExperimentalReplicates(object, modelMatrix) :
The design matrix has the same number of samples and coefficients to fit,
estimating dispersion by treating samples as replicates. This analysis
is not useful for accurate differential expression analysis, and arguably
not for data exploration either, as large differences appear as high dispersion.
8: In checkForExperimentalReplicates(object, modelMatrix) :
Deprectation note: Analysis of designs without replicates will be removed
in the Oct 2018 release: DESeq2 v1.22.0, after which DESeq2 will give an error.
9: In checkForExperimentalReplicates(object, modelMatrix) :
The design matrix has the same number of samples and coefficients to fit,
estimating dispersion by treating samples as replicates. This analysis
is not useful for accurate differential expression analysis, and arguably
not for data exploration either, as large differences appear as high dispersion.
10: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq - deseq ] X 1 )
Error in .local(object, ...) :
None of your conditions is replicated. Use method='blind' to estimate across conditions, or 'pooled-CR', if you have crossed factors.
In addition: There were 43 warnings (use warnings() to see them)
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq - deseq2 ] X 1 )
Error in .local(object, ...) :
None of your conditions is replicated. Use method='blind' to estimate across conditions, or 'pooled-CR', if you have crossed factors.
In addition: There were 43 warnings (use warnings() to see them)
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using deseq ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8933889
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq2 - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq2 - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq2 - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using deseq2 ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8666111
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ edger - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ edger - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using edger ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8878222
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ voom - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ voom - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ voom - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using voom ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8541889
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Generating simulation data under NB distribution ...
TCC::INFO: (genesizes : 1000 )
TCC::INFO: (replicates : 3, 3, 3 )
TCC::INFO: (PDEG : 0.12, 0.04, 0.04 )
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ bayseq - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ bayseq - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ bayseq - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using bayseq ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.6940969
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using deseq ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.9056812
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq2 - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq2 - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq2 - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using deseq2 ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.88775
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ edger - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ edger - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using edger ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.9158812
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ voom - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ voom - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ voom - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using voom ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8508562
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Generating simulation data under NB distribution ...
TCC::INFO: (genesizes : 1000 )
TCC::INFO: (replicates : 1, 1, 1 )
TCC::INFO: (PDEG : 0.12, 0.04, 0.04 )
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ bayseq - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ bayseq - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ bayseq - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using bayseq ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.7288406
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq - tmm ] X 1 )
Error in .local(object, ...) :
None of your conditions is replicated. Use method='blind' to estimate across conditions, or 'pooled-CR', if you have crossed factors.
In addition: There were 50 or more warnings (use warnings() to see the first 50)
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq - deseq ] X 1 )
Error in .local(object, ...) :
None of your conditions is replicated. Use method='blind' to estimate across conditions, or 'pooled-CR', if you have crossed factors.
In addition: Warning messages:
1: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
2: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq - deseq2 ] X 1 )
Error in .local(object, ...) :
None of your conditions is replicated. Use method='blind' to estimate across conditions, or 'pooled-CR', if you have crossed factors.
In addition: Warning messages:
1: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
2: In .local(object, ...) :
in estimateDispersions: Ignoring extra argument(s).
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using deseq ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8036156
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq2 - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq2 - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq2 - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using deseq2 ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.7980656
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ edger - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ edger - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using edger ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.7655781
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Generating simulation data under NB distribution ...
TCC::INFO: (genesizes : 1000 )
TCC::INFO: (samples : 12 )
TCC::INFO: (factors : 2 )
TCC::INFO: (PDEG : 0.1 )
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ bayseq - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ bayseq - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ bayseq - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using bayseq ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.6626682
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using deseq ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.9061809
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ deseq2 - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ deseq2 - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ deseq2 - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using deseq2 ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.9016178
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ edger - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ edger - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ edger - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using edger ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.9216906
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : tmm - [ voom - tmm ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq - [ voom - deseq ] X 1 )
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using DEGES
TCC::INFO: (iDEGES pipeline : deseq2 - [ voom - deseq2 ] X 1 )
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using voom ...
TCC::INFO: Done.
NA in cutpts forces recomputation using smallest gap
[1] 0.8510324
NA in cutpts forces recomputation using smallest gap
TCC::INFO: Calculating normalization factors using tmm ...
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using edger ...
TCC::INFO: Done.
TCC::INFO: Calculating normalization factors using tmm ...
TCC::INFO: Done.
TCC::INFO: Identifying DE genes using edger ...
TCC::INFO: Done.
TCC::INFO: Generating simulation data under NB distribution ...
TCC::INFO: (genesizes : 1000 )
TCC::INFO: (replicates : 3, 3 )
TCC::INFO: (PDEG : 0.18, 0.02 )
TCC::INFO: Generating simulation data under NB distribution ...
TCC::INFO: (genesizes : 1000 )
TCC::INFO: (replicates : 3, 3, 3 )
TCC::INFO: (PDEG : 0.18, 0.01, 0.01 )
RUNIT TEST PROTOCOL -- Wed Oct 17 00:35:50 2018
***********************************************
Number of test functions: 10
Number of errors: 0
Number of failures: 0
1 Test Suite :
TCC RUnit Tests - 10 test functions, 0 errors, 0 failures
Number of test functions: 10
Number of errors: 0
Number of failures: 0
There were 50 or more warnings (use warnings() to see the first 50)
>
> proc.time()
user system elapsed
426.078 1.925 455.646